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Abstract: The regression problem of fitting a “smooth”, discrete curve to data points on a
Riemannian manifold is formulated here as an unconstrained, finite-dimensional optimization
problem. Smoothness of a discrete curve, seen as a sequence of close points on the manifold, is
assessed and encouraged by a regularity term in the objective function. This term is built upon
a generalization of finite differences to manifolds introduced in this work. Tuning of the balance
between fitting and regularity (or energy-efficiency) is achieved by adjusting two parameters.
The proposed framework is described in detail and is then applied to the special orthogonal
group SO(n), i.e., the set of rotations in Rn. A Riemannian version of the nonlinear conjugate
gradient method is used to minimize the resulting objective. To this end, an explicit formula
for the derivative of the matrix logarithm is derived, yielding explicit formulas for the gradient
of the objective. Numerical results are presented and show that smooth curves in SO(n) can be
obtained in a few hundred iterations with the proposed algorithm. Copyright c© 2011 IFAC
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1. INTRODUCTION

Fitting a regression curve to data points can serve at
least two purposes: it may help reduce measurement noise
and it can fill gaps in the data. This paper presents a
framework and an algorithm to define and solve a type of
discrete regression problem across time-labeled data points
on manifolds. Unlike regression in Euclidean spaces, only
little work has been done in this area.

Let p1, p2, . . . , pN be N data points in the Euclidean space
Rn with time labels t1 ≤ t2 ≤ · · · ≤ tN . Continuous
regression consists in searching for a curve γ : [t1, tN ] →
Rn that simultaneously (i) reasonably fits the data and (ii)
is sufficiently “smooth”. One common way of formalizing
this loose description of a natural need is to express γ as
the minimizer of an objective function such as

Ec(γ) =
1

2

N
∑

i=1

‖pi − γ(ti)‖
2

+
λ

2

∫ tN

t1

‖γ̇(t)‖2dt+
µ

2

∫ tN

t1

‖γ̈(t)‖2dt, (1)

defined over some suitable curve space Γc. When speed
and acceleration have physical importance, in terms of en-
ergy for example, this formulation is especially adequate.
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The tuning parameters λ and µ enable the user to tune
the balance between the conflicting goals of fitting and
smoothness. It is well known that (i) when λ > 0, µ = 0,
the optimal γ is piecewise affine—see [Machado et al.,
2006, Th. 3.2]—and (ii) when λ = 0, µ > 0, the optimal
γ is an approximating cubic spline (provided Γc con-
tains these curves)—see [Machado and Silva Leite, 2006,
Prop. 4.5, 4.6].

In this paper, the N data points pi are allowed to lie on a
Riemannian manifold M and the objective is discretized.
Doing so, one avoids having to formulate and solve a
variational problem on manifolds. A general framework
is developed and an example is given for the case where
M is the special orthogonal group SO(n), i.e., the set of
n-by-n orthogonal matrices of determinant +1. SO(n) is
in one-to-one correspondence with rotations in R

n, hence
its importance.

A number of authors have studied the problem of fitting
smooth curves to data on manifolds. A central algorithm
for spline construction in Euclidean spaces is the de Castel-
jau algorithm. The latter was modified then generalized
to manifolds by Jakubiak et al. [2006]. Related papers
referenced in that work are mainly focusing on continuous
interpolation problems. A few of these are specific to
SO(3). Jakubiak et al. emphasize the industrial impor-
tance of interpolation on SO(3) and hint that the first
author focusing on it may be Shoemake [1985]. Shoemake
used quaternions, hence the algorithm is very specific to
the manifold at hand.
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Fig. 1. Our algorithms fit a “smooth”, discrete curve
(γ1, . . . , γNd

) to N data points pi on a manifold M.

Machado et al. [2006] show how (1) can be extended
to manifolds for the special, simpler case µ = 0. They
show that, for suitable manifolds, the solutions are broken
geodesics approximating the data. Camarinha et al. [1995]
elaborate a definition of splines of class Ck on manifolds.
Samir et al. [2011] present a steepest descent algorithm
to minimize the extended version of (1) on manifolds and
demonstrate it on the sphere. The optimal curves they
obtain are cubic splines in the sense of Camarinha et al.

Most efforts have been focused on building continuous,
interpolating splines for data on manifolds. Some of the
proposed methods are constructive by nature and it may
be unclear whether they are optimal in some sense or
not. Furthermore, it may be excessively costly to solve
variational problems on manifolds when, often times, only
a few points of the computed curve will be useful such
as, e.g., in MPC-like control or when resampling the data.
In practical situations, the data will often be affected by
noise, in which case it may be advantageous to soften the
interpolation constraint in exchange for a smoother curve.
For these reasons, we propose an algorithm for discrete
regression on manifolds.

In this work, the curve space is reduced to the set of
sequences of Nd points on the manifold, Γ = M× . . .×M
(Nd copies of M). For a discrete curve γ = (γ1, . . . , γNd

)
in Γ, each γi is associated to a fixed time τi such that
t1 = τ1 < τ2 < · · · < τNd

= tN . The problem is pictured
in Figure 1. In the case M = Rn, the objective function
we propose reduces to the following discretization of (1):

E(γ) =
1

2

N
∑

i=1

‖pi − γsi‖
2

+
λ

2

Nd
∑

i=1

αi‖vi‖
2 +

µ

2

Nd
∑

i=1

βi‖ai‖
2. (2)

Here, the indices si are chosen such that τsi is closest
(ideally equal) to ti. The weights αi and βi are chosen
based on a suitable numerical integration scheme such as,
e.g., the trapezium method, such that the sums effectively
discretize the integrals present in (1). The vectors vi
and ai, intuitively rooted at γi, approximate velocity
and acceleration along the discrete curve γ at γi. Still
considering M = Rn, the vectors vi and ai can be
defined using finite differences. A bit of algebra shows that
minimizing E comes down to solving a band linear system.

For M a nonlinear manifold, classical finite differences no
longer make sense. Finite differences are generalized to

manifolds in this work, which permits the introduction of a
generalization of (2). The details are covered in Section 3.

The main advantage of this approach is that the problem
reduces to a finite dimensional optimization problem on
a manifold. Efficient algorithms of first and second order
for these problems are covered by Absil et al. [2008], with
an emphasis on matrix manifolds. A geometric, nonlinear
conjugate gradient method is shown in Section 4. It has
the advantage of needing only first order derivatives, like
the steepest descent method, while often being superior to
it according to our experiments.

Finally, the proposed framework is specialized to SO(n) in
Section 5.

2. GEOMETRIC TOOLS

A reminder of essential elements of Riemannian geometry—
mainly based on Boothby [1986] and Absil et al. [2008]—is
given here. The emphasis is on giving the intuition rather
than being technically precise.

Intuitively, manifolds are sets that can be locally identified
with patches of Rn. A simple example of a smooth man-
ifold is the sphere, S2. The sphere is easy to picture and
shares fundamental properties with SO(n): they are both
compact Riemannian submanifolds of a Euclidean space,
respectively R3 and Rn×n. The framework developed to
state and solve regression problems on manifolds is well
defined for all smooth Riemannian manifolds, including
quotient spaces. Nevertheless, focusing on submanifolds of
Euclidean spaces greatly simplifies definitions.

Let M be a smooth manifold. A smooth curve on M is
a smooth function c : I → M, where I is an interval of
R. At each point x ∈ M, one can define a tangent vector
space noted TxM.

Definition 1. (tangent space). Let M ⊂ Rn be a smooth
manifold. The tangent space at x ∈ M, noted TxM, is the
vector subspace of Rn defined by:

TxM = {v ∈ R
n : v = c′(0) for some smooth

c : R → M such that c(0) = x}.

In this definition, c′(t) stands for the usual derivative of c.

Since tangent spaces are vector spaces, they can be en-
dowed with inner products. In loose terms, when the
mapping that maps points on M to inner products is
continuous in some sense, M is a Riemannian manifold.
Since, for all x ∈ M, TxM is a vector subspace of the
embedding space Rn, a natural inner product on TxM,
noted 〈·, ·〉x, is obtained by restricting the inner product
of Rn to TxM. If this is done for all the tangent spaces, M
is a Riemannian submanifold of Rn. The associated norm
is ‖v‖x =

√

〈v, v〉x. When it is clear from the context,
the subscript x is often omitted. SO(n) is a submanifold
of Rn×n endowed with the usual matrix inner product
〈A,B〉 = trace

(

A>B
)

.

The objective function constructed in this paper is a real-
valued function defined over a manifold, i.e., a scalar field.
Attempting to minimize this function will raise the need
for an adequate concept of gradient.

Definition 2. (gradient). Let f be a scalar field on a
smooth, finite-dimensional Riemannian manifold M. The



gradient of f at x, denoted by gradf(x), is defined as the
unique element of TxM satisfying:

Df(x)[v] = 〈grad f(x), v〉x , ∀v ∈ TxM,

where Df(x)[v] stands for the directional derivative of f
at x along v.

For a scalar field f on a Euclidean space, grad f is the
usual gradient.

The availability of inner products yields a natural defini-
tion of distance on manifolds. Given x, y ∈ M, consider
a smooth curve c : [0, 1] → M such that c(0) = x and
c(1) = y. The length of the path c between x and y is

L(c) =

∫ 1

0

‖c′(t)‖c(t)dt.

The Riemannian (or geodesic) distance between x and y,
written dist (x, y), is the length of a shortest such path.
According to the Hopf-Rinow theorem, such a path is
guaranteed to exist when M is complete, such as SO(n)
for example.

In a Euclidean space, the shortest path is a straight line.
When parameterized by arclength, such paths have zero
acceleration. This leads to the definition of geodesic curves
on manifolds, which generalize straight lines.

Definition 3. (geodesic curve). A curve c : R → M is a
geodesic curve if it has zero acceleration, i.e., if c′′(t) ⊥
Tc(t)M, ∀t.

Geodesics are shortest paths between close points.

Given a point x ∈ R
n and a vector v ∈ R

n, x + v is the
point in Rn one reaches by traveling from x in the direction
v for a distance ‖v‖ along a straight path. The exponential
map generalizes this notion to manifolds.

Definition 4. (exponential map). Let M be a Riemannian
manifold and x ∈ M. For every v ∈ TxM, there exists
an open interval I 3 0 and a unique geodesic γ(·;x, v) :
I → M such that γ(0;x, v) = x and γ̇(0;x, v) = v.
Moreover, γ(t;x, av) = γ(at;x, v) (homogeneity property).
The mapping

Expx : TxM → M : v 7→ Expx (v) = γ(1;x, v)

is called the exponential map at x.

Of course, when M is a Euclidean space, Expx (v) = x+v.

The inverse mapping, called the logarithmic map and
defined hereafter, will be crucial in generalizing finite
differences. Given a root point x and a target point y, the
logarithmic map returns a tangent vector at x, pointing
toward y, of length dist (x, y).

Definition 5. (logarithmic map). Let M be a Riemannian
manifold. The logarithmic map at x ∈ M is

Logx : M → TxM : y 7→ Logx (y) = v,

such that Expx (v) = y and ‖v‖x = dist (x, y) .

When M is a Euclidean space, Logx (y) = y − x. As is,
Definition 5 is not perfect. There might indeed be more
than one eligible v, as discussed by Samir et al. [2011].
As long as x and y are not “too far apart”, the above
definition is satisfactory.

In Euclidean spaces, it is natural to compare vectors rooted
at different points in space, so much so that the notion
of root of a vector is utterly unimportant. On manifolds,
each tangent vector belongs to a tangent space specific
to its root point. Vectors from different tangent spaces
cannot be combined immediately. One needs a mathemat-
ical tool capable of transporting vectors between tangent
spaces while retaining the information they contain. This
motivates the definition of vector transports T such as
introduced in [Absil et al., 2008 §8.1]. In particular, for
x, y ∈ M and u = Logx (y), Tu : TxM → TyM is a linear
map and T0 is the identity.

3. GENERALIZED OBJECTIVE

In order to generalize (2) to manifolds, two steps need to
be taken. Both originate from the loss of a vector space
structure. First, it is natural to replace the Euclidean dis-
tance ‖pi−γsi‖ with the Riemannian distance dist (pi, γsi).
Then, in the next subsection, we propose geometric formu-
las for the velocity and acceleration vectors vi and ai.

3.1 Geometric finite differences

For ease of notation, assume the discretization times τi
are homogeneously spaced, with spacing ∆τ . It is not
challenging to get rid of this assumption. When M is a
Euclidean space, a first order, forward finite difference is
a reasonable formula for vi:

vi =
γi+1 − γi

∆τ
.

However, the difference appearing at the numerator does
not, in general, make sense if M lacks a vector space
structure. It can nevertheless be interpreted: γi+1−γi is a
vector rooted at γi and pointing toward γi+1. Furthermore,
the length of the vector is the distance between γi and γi+1.
Using the logarithmic map associated to the manifold M,
consider the following, more general, formula for vi:

vi =
Logγi

(γi+1)

∆τ
. (3)

vi is now a vector in the tangent space Tγi
M pointing

toward γi+1 and such that ‖vi‖ = dist (γi, γi+1) /∆τ .
When M is a Euclidean space, (3) reduces to the original
finite difference formula.

The same trick can be used for second order derivatives,
by exhibiting differences between close points. The classic
formula

ai =
γi+1 − 2γi + γi−1

∆τ2
=

(γi+1 − γi) + (γi−1 − γi)

∆τ2

becomes

ai =
Logγi

(γi+1) + Logγi
(γi−1)

∆τ2
.

This formula exhibits several desirable properties. In par-
ticular, ai is zero if and only if there exists a geodesic γ(t)
such that γ(τj) = γj , j = i− 1, i, i+ 1.

It is easy to construct similar formulas for unevenly spaced
discretization times, unilateral differences (for the end
points) and higher order derivatives.



3.2 Objective function

The complete objective function we propose for the dis-
crete regression problem on manifolds is E : Γ = MNd →
R, with

E(γ) =
1

2

N
∑

i=1

dist2 (pi, γsi)+
λ

2

Nd−1
∑

i=1

αi

∥

∥

∥

∥

Logγi
(γi+1)

∆τ

∥

∥

∥

∥

2

γi

+
µ

2

Nd−1
∑

i=2

βi

∥

∥

∥

∥

Logγi
(γi+1) + Logγi

(γi−1)

∆τ2

∥

∥

∥

∥

2

γi

. (4)

For ease of notation, we have set αNd
, β1 and βNd

to 0.
The simplest choice for the other integration weights is
αi = ∆τ , i = 1 . . .Nd − 1 and βi = ∆τ , i = 2 . . .Nd − 1.

4. GEOMETRIC CONJUGATE GRADIENT

Solving the regression problem on M comes down to mini-
mizing E (4) over Γ, a manifold of dimension Nd dim(M).
Constraining the points γi to lie onM can be difficult with
standard optimization software, since for some manifolds
the constraints may take the form of nonlinear equalities.
It is therefore advisable to use optimization algorithms
that exploit the rich structure of the constraints. For com-
pleteness, a geometric version of the nonlinear conjugate
gradient method adapted from Absil et al. [2008] is given in
Algorithm 1. Under certain conditions, notably on the step
size selection algorithm, the output sequence will converge
toward a critical point. For more information, the reader
is referred to Absil et al. [2008].

Algorithm 1. (Geometric conjugate gradient method).
Input: A scalar field f : N → R, its gradient gradf
and an initial guess x0 ∈ N , where N is a Riemannian
manifold equipped with a vector transport T.
Output: A sequence x1, x2, . . . in N .

p0 := − gradf(x0)
k := 0
while gradf(xk) 6= 0 do
αk := choose step size (classical line-search)
xk+1 := Expxk

(αkpk)

βk+1 := ‖ gradf(xk+1)‖2/‖ gradf(xk)‖2

pk+1 := − gradf(xk+1) + βk+1Tαkpk
(pk)

k := k + 1
end while

Notice that setting βk to zero yields a steepest descent-
like method. For our purpose, Algorithm 1 is applied to
the objective function f = E over the manifold N = Γ.

5. APPLICATION: DENOISING AND RESAMPLING
OF DATA ON SO(n)

The orientation of a rigid body in R3 is characterized by
an axis and an angle of rotation. The associated rotation
can be represented by a 3-by-3 orthogonal matrix of unit
determinant. The set of all these matrices is called the
special orthogonal group of dimension 3, SO(3). It is also
a Riemannian manifold. In this section, denoising and
resampling of data on SO(n) is demonstrated using the
framework proposed in this paper.

Set: SO(n) = {A ∈ Rn×n : A>A = I,det(A) = 1}

Tangent spaces: TA SO(n) = {H ∈ Rn×n : A>H +H>A = 0}

Inner product: 〈H1, H2〉A = trace
(

H>

1
H

2

)

Vector norm: ‖H‖A =
√

〈H,H〉
A

Distance: dist (A,B) = ‖LogA (B)‖ = ‖ log(A>B)‖

Exponential: ExpA (H) = AExpI

(

A>H
)

= A exp(A>H)

Logarithm: LogA (B) = A log(A>B)

Transport: TH1
(H2) = BA>H2, with

H1, H2 ∈ TA SO(n) and H1 = LogA (B) .

Table 1. Toolbox for SO(n).

5.1 Toolbox

All the important geometric functions on SO(n) have nice,
closed-form expressions, as shown in Table 1—see, e.g.,
Boothby [1986] for some treatment of Lie groups. This
toolbox is sufficient to compute the objective function (4).
In order to apply Algorithm 1 to it, the gradient of (4) is
needed too. This will require some work.

5.2 Objective

Specializing (4) to SO(n) yields:

E(γ) =
1

2

N
∑

i=1

∥

∥log(p>i γsi)
∥

∥

2
+

λ

2

Nd−1
∑

i=1

αi

∥

∥

∥

∥

∥

log(γ>
i γi+1)

∆τ

∥

∥

∥

∥

∥

2

+
µ

2

Nd−1
∑

i=2

βi

∥

∥

∥

∥

∥

log(γ>
i γi+1) + log(γ>

i γi−1)

∆τ2

∥

∥

∥

∥

∥

2

, (5)

where log is the matrix logarithm (8). Focusing on the last
term, note that

∥

∥log(γ>
i γi+1) + log(γ>

i γi−1)
∥

∥

2
=

‖ log(γ>
i γi+1)‖

2 + ‖ log(γ>
i γi−1)‖

2

+ 2
〈

log(γ>
i γi+1), log(γ

>
i γi−1)

〉

,

where 〈·, ·〉 stands for the usual real matrix inner product
〈A,B〉 = trace

(

A>B
)

. Two scalar functions f and g are
central to the definition of E:

f(A,B) = ‖ log(A>B)‖2, (6)

g(A,B,C) =
〈

log(A>B), log(A>C)
〉

. (7)

5.3 Gradient of the objective

The objective E (5) is a linear combination of the functions
f and g evaluated at discretization points γi and one (or
two) of their neighbors. Hence, in order to compute the
gradient of E, it is sufficient to have formulas for the
gradients of f and g in each of their variables.

A general result mentioned in [Samir et al., 2011, Theo-
rem 3.1] states that

grad (X 7→ f(A,X)) (B) = −2 LogB (A) .

Since f(A,B) = f(B,A), it remains to derive formulas for
the gradients of g. That is the purpose of this subsection
and will require a significant amount of algebra.



The function g is expressed in terms of the geometric
mapping Log. Log is expressed in terms of the matrix
logarithm, itself defined as a series:

log(A) =

∞
∑

k=1

(−1)k+1

k
(A− I)k. (8)

The series is derived from the real series log(1 + x) =
x − x2/2 + x3/3 − . . ., which is convergent if |x| < 1
(and divergent if |x| > 1). One thus expects the matrix
counterpart to be convergent when ρ(A − I) < 1, where
ρ(X) is the spectral radius of X.

This is indeed the case. On the other hand, log(x) is
well defined for all x > 0. According to [Higham, 2008,
problem 11.1], a Taylor series can be used to define the
principal logarithm of any matrix having no eigenvalue on
R−. A hint to this is that, using the identity

log(A) = s log(A1/s),

it is always possible, with s large enough, to bring the
eigenvalues of A1/s into a circle centered at 1 (in the
complex plane) and with radius strictly smaller than 1.
Consequently, the matrix A1/s − I has spectral radius less
than 1 and the Taylor series (8) is convergent.

Working out an explicit formula for the gradients of g
requires formulas for the directional derivatives of the
matrix logarithm. A generic way of computing derivatives
of functions of diagonalizable matrices is demonstrated
next. For it to apply to logarithms, it is crucial that
the matrix logarithm may be expressed as a convergent
Taylor series, as hinted earlier. The way the material in
this section is derived is inspired by [Fillard et al., 2007,
appendix] and Bhatia [2007].

Let A be an n-by-n diagonalizable matrix, U an invertible
matrix and D = diag (λ1, . . . , λn), such that A = UDU−1.
Let z be a smooth, real function defined by a Taylor series

z(x) =

∞
∑

k=0

akx
k.

Generalized to matrices, this yields

z(A) =
∞
∑

k=0

akA
k = U diag (z(λ1), . . . , z(λn))U

−1.

One would like to compute Dz(A)[H ], the directional
derivative of z at A in the direction H , by differentiating
the series term by term. To this end, note that:

D(X 7→ Xk)(A)[H ] = lim
h→0

(A+ hH)k −Ak

h

=

k
∑

l=1

Al−1HAk−l.

Then,

Dz(A)[H ] =

∞
∑

k=1

ak

k
∑

l=1

Al−1HAk−l

= U

[

∞
∑

k=1

ak

k
∑

l=1

Dl−1U−1HUDk−l

]

U−1

= U ·Dz(D)[U−1HU ] · U−1,

which is a simpler object to compute because D is diago-
nal. Define H̃ = U−1HU and M = Dz(D)[H̃ ]. Looking at
M entry-wise yields:

Mij =

∞
∑

k=1

ak

k
∑

l=1

(Dl−1H̃Dk−l)ij

=

∞
∑

k=1

ak

k
∑

l=1

λl−1
i λk−l

j H̃ij

= H̃ij

∞
∑

k=1

ak
λk
j

λi

k
∑

l=1

(

λi

λj

)l

.

Using the identity
∑k

l=1 x
k = x1−xk

1−x , valid for x 6= 1, one
can distinguish two cases:

λk
j

λi

k
∑

l=1

(

λi

λj

)l

=

{

λk
i −λk

j

λi−λj
if λi 6= λj ,

kλk−1
i if λi = λj .

Hence:
Mij = H̃ij z̃(λi, λj),

with:

z̃(λi, λj) =

{

z(λi)−z(λj)
λi−λj

if λi 6= λj ,

z′(λi) if λi = λj .

The coefficients z̃(λi, λj) are termed the first divided
differences (fdd) in [Bhatia, 2007, p. 60]. Consider the

matrix Z̃ such that Z̃ij = z̃(λi, λj). Then,

M = H̃ � Z̃,

where � stands for entry-wise multiplication (Hadamard’s
product). Setting z = log, Algorithm 2 computes the
matrix Dlog (A) [H ] and takes advantage of the fact that
orthogonal matrices are diagonalized by unitary matrices.
Hereafter, Ā denotes the conjugate of A and A∗ is the
conjugate transpose of A.

Algorithm 2. (directional derivative of log).
Input: A ∈ SO(n), H ∈ Rn×n.
Output: Dlog (A) [H ].
Diagonalize A: A = UDU∗, D = diag (λ1, . . . , λn).

Compute H̃ = U∗HU .

Compute Z̃ with Z̃ij =

{

log(λi)−log(λj)
λi−λj

if λi 6= λj ,
1
λi

if λi = λj .

return Dlog (A) [H ] = U(H̃ � Z̃)U∗.

We now state three useful properties without proof, due
to lack of space. The first two refer to the complex inner
product 〈X,Y 〉 = trace (Y ∗X).

〈P,QRS〉 = 〈Q∗PS∗, R〉 , ∀P,Q,R, S ∈ C
n×n. (9)

〈P,Q�R〉 =
〈

P � R̄, Q
〉

, ∀P,Q,R ∈ C
n×n. (10)

ADlog (A) [H ] = Dlog (A) [AH ] ∈ TI SO(n),

∀A ∈ SO(n), H ∈ TI SO(n). (11)

Collecting Algorithm 2 and identities (9)–(11):

D (X 7→ g(A,B,X)) (C)[H ]

=
〈

log(A>B),D
(

X 7→ log(A>X)
)

(C)[H ]
〉

=
〈

log(A>B),Dlog
(

A>C
) [

A>H
]〉

Diagonalize A>C = UDU∗, set H̃ = U∗A>HU

and define Z̃, fdd’s of λ(A>C) w.r.t. log :
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Fig. 2. Regression on SO(3). Line 1: data points (random
orientations). Line 2: piecewise geodesic interpolation.
Line 3: regression with λ = 0 and µ = 10−2. Plot: the
dashed and continuous lines are the speed profiles of
(resp.) Line 2 and Line 3, which is much smoother.

=
〈

log(A>B), U(H̃ � Z̃)U∗
〉

Successively use (9), (10) and (9) :

=
〈

U∗ log(A>B)U, H̃ � Z̃
〉

=
〈

(U∗ log(A>B)U)� ¯̃Z,U∗A>HU
〉

=
〈

AU
(

(

U∗ log(A>B)U
)

� ¯̃Z
)

U∗, H
〉

Identify with Algorithm 2 and use (11) :

=
〈

ADlog
(

C>A
) [

log(A>B)
]

, H
〉

=
〈

CDlog
(

C>A
) [

C>A log(A>B)
]

, H
〉

.

Identification with Definition 2 yields an explicit formula
for the gradient of g in its third and, by symmetry, second
argument. Similar developments yield a formula for the
gradient of g in its first argument. Summing up:

grad
(

X 7→ g(X,B,C)
)

(A) =

ADlog
(

A>B
) [

A>B log(C>A)
]

+ADlog
(

A>C
) [

A>C log(B>A)
]

∈ TA SO(n),

grad
(

X 7→ g(A,X,C)
)

(B) =

BDlog
(

B>A
) [

B>A log(A>C)
]

∈ TB SO(n),

grad
(

X 7→ g(A,B,X)
)

(C) =

CDlog
(

C>A
) [

C>A log(A>B)
]

∈ TC SO(n).

Using (11), it can be checked that these vectors belong
to the appropriate tangent spaces. One now has all the
necessary tools to minimize E over Γ, given N data points
pi ∈ SO(n) and an initial guess γ ∈ Γ. The next subsection
illustrates the results for n = 3.

5.4 Results

Figure 2 demonstrates the effect of regression throughN =
4 random data points on SO(3) (ti = (i−1)/3, i = 1 . . . 4)
with Nd = 13 discretization points (τi = (i − 1)/12, i =
1 . . . 13), in comparison with piecewise geodesic interpola-
tion. The latter was fed to Algorithm 1 as initial guess
to produce the former. Regression yields a significantly
smoother speed profile. In practice, the algorithm operates
by building a coarse γ (small Nd) first, then iteratively
refining and reoptimizing the results. Algorithm 1 was run
for 628 iterations in total. The norm of the gradient was
reduced by about five orders of magnitude between the
initial guess (line 2) and the final result (line 3).

6. CONCLUSIONS AND PERSPECTIVES

We proposed a framework and algorithm for discrete
regression on manifolds and demonstrated it on SO(3).
In other works, we have applied the same method on the
sphere and on the set of positive-definite matrices. The
major challenge now is to apply higher order optimization
methods to the objective function, to improve speed of
convergence. This will require the computation of second
order derivatives, which might prove complicated since
eigenvalue decompositions are involved in the gradient
expression. In future work, we will explore approximations
of the logarithmic map to circumvent this difficulty.
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means as solutions of variational problems. LMS J. of
Comput. Math., 9:86–103, 2006. ISSN 1461-1570.

C. Samir, P.-A. Absil, A. Srivastava, and E. Klassen. A
gradient-descent method for curve fitting on Rieman-
nian manifolds, 2011. Accepted for publication in Foun-
dations of Computational Mathematics.

K. Shoemake. Animating rotation with quaternion curves.
ACM SIGGRAPH, 19(3):245–254, 1985.


