A tutorial on Riemannian optimization
Context, geometry, algorithms, resources

SIAM Conference on Optimization, June 2023
Nicolas Boumal – chair of continuous optimization
Institute of Mathematics, EPFL
Göttingen, Germany—1854

Drawing: J.C. Eberlein (via Wikipedia)
Step 0 in optimization

It starts with a set S and a function $f: S \rightarrow \mathbb{R}$. We want to compute:

$$\min_{x \in S} f(x)$$

These bare objects fully specify the problem.

Any additional structure on S and f may (and should) be exploited for algorithmic purposes but is not part of the problem.
Classical unconstrained optimization

The search space is a linear space, e.g., $S = \mathbb{R}^n$:

$$\min_{x \in \mathbb{R}^n} f(x)$$

We can choose to turn \mathbb{R}^n into a Euclidean space: $\langle u, v \rangle = u^\top v$.

If f is differentiable, we have a gradient ∇f and Hessian $\text{Hess } f$.

We can build algorithms with them: gradient descent, Newton’s...

\[\langle \nabla f(x), v \rangle = Df(x)[v] = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t} \]
\[\text{Hess } f(x)[v] = D(\nabla f)(x)[v] = \lim_{t \to 0} \frac{\nabla f(x + tv) - \nabla f(x)}{t} \]
This tutorial: optimization on manifolds

We target applications where $S = \mathcal{M}$ is a smooth manifold:

$$\min_{x \in \mathcal{M}} f(x)$$

We can choose to turn \mathcal{M} into a Riemannian manifold.

If f is differentiable, we have a Riemannian gradient and Hessian. We can build algorithms with them: gradient descent, Newton’s...
Fifty years

Proposed by Luenberger in 1972.

Practical since the 1990s with numerical linear algebra.

Popularized in the 2010s by Absil, Mahony & Sepulchre’s book.

Becoming mainstream now.
Software, book, lectures, slides

Manopt software packages

manopt.org

- Matlab with Bamdev Mishra, P.-A. Absil, R. Sepulchre+
- Julia by Ronny Bergmann+
- Python by James Townsend, Niklas Koep and Sebastian Weichwald+

Book (pdf, lecture material, videos) and these slides

nicolasboumal.net/book

nicolasboumal.net/SIAMOP23

Many thanks to Cambridge University Press, who agreed for me to keep the preprint freely available online.
How do manifolds arise in optimization?

- Linear spaces
- Orthonormality
- Positivity
- Rank
- Symmetry
- Lifts/parameterizations
- Products

arXiv:2207.03512, with Eitan Levin & Joe Kileel
The goal for this tutorial

Main effort: building differential geometry in ~ 2 hours.

Think of it as a technically precise bird’s-eye view, focused on intuition.

“What’s a manifold?”

“I understand basics of Riemannian optimization geometry and algorithms.”
What do we need?

\[
\min_x f(x)
\]

Euclidean optimization

Basic step:

\[x_{k+1} = x_k + s_k \]

Gradient descent:

\[s_k = -\alpha_k \nabla f(x_k) \]

Newton’s method:

\[\text{Hess} f(x_k)(s_k) = -\nabla f(x_k) \]

Riemannian optimization

\[x_{k+1} = R_{x_k}(s_k) \]

same, with Riemannian gradient

and Riemannian Hessian.

(Fancier algorithms involve more substantial differences, especially in analysis.)
Today, we build the following tools, from the ground up.

Focus on embedded submanifolds of linear spaces.
What is a manifold? Take zero: words

Let \mathcal{E} be a linear space (say, $\mathcal{E} = \mathbb{R}^d$).

A subset \mathcal{M} of that linear space is a smooth manifold if,

for each point $x \in \mathcal{M},$

if we zoom very close,

it’s hard to tell whether \mathcal{M} is linear.
What is a manifold? Take one: pictures
What is a manifold? Take two: examples

Linear spaces: \(\mathbb{R}^n, \mathbb{R}^{m \times n}, \ldots \)

Stiefel manifold: \(\{ X \in \mathbb{R}^{n \times p} : X^T X = I_p \} \)

Rotation group: \(\{ X \in \mathbb{R}^{n \times n} : X^T X = I_n \text{ and } \det(X) = +1 \} \)

Fixed-rank matrices: \(\{ X \in \mathbb{R}^{m \times n} : \text{rank}(X) = r \} \)

Grassmann manifold: \(\{ X \in \mathbb{R}^{n \times n} : X = X^T, X^2 = X, \text{Tr}(X) = p \} \)

Positive definite cone: \(\{ X \in \mathbb{R}^{n \times n} : X = X^T \text{ and } X \succ 0 \} \)

Hyperbolic space: \(\{ x \in \mathbb{R}^{n+1} : x_0^2 = 1 + x_1^2 + \cdots + x_n^2 \text{ and } x_0 > 0 \} \)

... And products: if \(\mathcal{M}_1, \mathcal{M}_2 \) are manifolds, then \(\mathcal{M}_1 \times \mathcal{M}_2 \) is too.
What is a manifold? Take three: math

A subset \mathcal{M} of a linear space \mathcal{E} of dimension $\dim \mathcal{E} = d$ is a smooth embedded submanifold of dimension $\dim \mathcal{M} = n$ if:

For all $x \in \mathcal{M}$, there exists a neighborhood U of x in \mathcal{E}, an open set $V \subseteq \mathbb{R}^d$ and a diffeomorphism $\psi: U \to V$ such that $\psi(U \cap \mathcal{M}) = V \cap E$ where E is a linear subspace of dimension n.

We call \mathcal{E} the embedding space.
What is a manifold? Take four: math (bis)

A subset \mathcal{M} of a linear space \mathcal{E} of dimension $\dim \mathcal{E} = d$ is a smooth embedded submanifold of dimension $\dim \mathcal{M} = n$ if:

For all $x \in \mathcal{M}$, there exists a neighborhood U of x in \mathcal{E} and a smooth function $h: U \to \mathbb{R}^{d-n}$ such that $\mathcal{M} \cap U = \{y \in U: h(y) = 0\}$ and $Dh(x)$ has full rank.

We call h a local defining function.

In words: \mathcal{M} is locally defined by smooth, independent equations.
Tangent vectors of \mathcal{M} embedded in \mathcal{E}

A tangent vector at x is the velocity $c'(0) = \lim_{t \to 0} \frac{c(t) - c(0)}{t}$ of a curve $c: \mathbb{R} \to \mathcal{M}$ with $c(0) = x$.

The tangent space $T_x\mathcal{M}$ is the set of all tangent vectors of \mathcal{M} at x. It is a linear subspace of \mathcal{E} of the same dimension as \mathcal{M}.

If $\mathcal{M} = \{x: h(x) = 0\}$ with $h: \mathcal{E} \to \mathbb{R}^k$ smooth and $\text{rank } Dh(x) = k$, then $T_x\mathcal{M} = \ker Dh(x)$.

$\mathcal{E} \supseteq \mathcal{M}$

If $h(x) = x^T x - 1 = 0$ then $\ker Dh(x) = \{v: x^T v = 0\}$.
Smooth maps on/to manifolds

Let $\mathcal{M}, \mathcal{M}'$ be (smooth, embedded) submanifolds of linear spaces $\mathcal{E}, \mathcal{E}'$.

A map $F: \mathcal{M} \to \mathcal{M}'$ is smooth if it has a smooth extension, i.e., if there exists a neighborhood U of \mathcal{M} in \mathcal{E} and a smooth map $\bar{F}: U \to \mathcal{E}'$ such that $F = \bar{F}|_{\mathcal{M}}$.

Example: a cost function $f: \mathcal{M} \to \mathbb{R}$ is smooth if it is the restriction of a smooth $\bar{f}: U \to \mathbb{R}$.

Composition preserves smoothness.
Differential of a smooth map $F: \mathcal{M} \to \mathcal{M}'$

The differential of F at x is the map $DF(x): T_x \mathcal{M} \to T_{F(x)} \mathcal{M}'$ defined by:

$$DF(x)[v] = (F \circ c)'(0) = \lim_{t \to 0} \frac{F(c(t)) - F(x)}{t}$$

where $c: \mathbb{R} \to \mathcal{M}$ satisfies $c(0) = x$ and $c'(0) = v$.

Claim: $DF(x)$ is well defined and linear, and we have a chain rule.

If \bar{F} is a smooth extension of F, then $DF(x) = D\bar{F}(x)|_{T_x \mathcal{M}}$.
Retractions: moving around on \mathcal{M}

The tangent bundle is the set

$$T\mathcal{M} = \{(x, v): x \in \mathcal{M} \text{ and } v \in T_x\mathcal{M}\}.$$

A retraction is a map $R: T\mathcal{M} \to \mathcal{M}: (x, v) \mapsto R_x(v)$ such that each curve

$$c(t) = R_x(tv)$$

satisfies $c(0) = x$ and $c'(0) = v$.

E.g., metric projection: $R_x(v)$ is the projection of $x + v$ to \mathcal{M}.

$\mathcal{M} = \mathbb{R}^n$: $R_x(v) = x + v$; $\mathcal{M} = \{x: \|x\| = 1\}$: $R_x(v) = \frac{x + v}{\|x + v\|}$; $\mathcal{M} = \{X: \text{rank}(X) = r\}$: $R_x(V) = \text{SVD}_r(X + V)$.

Riemannian manifolds

Each tangent space $T_x M$ is a linear space. Endow each one with an inner product: $\langle u, v \rangle_x$ for $u, v \in T_x M$.

A vector field is a map $V: M \to TM$ such that $V(x)$ is tangent at x for all x. We say the inner products $\langle \cdot, \cdot \rangle_x$ vary smoothly with x if $x \mapsto \langle U(x), V(x) \rangle_x$ is smooth for all smooth vector fields U, V.

If the inner products vary smoothly with x, they form a Riemannian metric.

A Riemannian manifold is a smooth manifold with a Riemannian metric.
Riemannian structure and optimization

A Riemannian manifold is a smooth manifold with a smoothly varying choice of inner product on each tangent space.

A manifold can be endowed with many different Riemannian structures.

A problem $\min_{x \in \mathcal{M}} f(x)$ is defined independently of any Riemannian structure.

We choose a metric for algorithmic purposes. Akin to preconditioning.
Riemannian submanifolds

Let the embedding space of \(\mathcal{M} \) be a Euclidean space \(\mathcal{E} \) with metric \(\langle \cdot, \cdot \rangle \).

For example: \(\mathcal{E} = \mathbb{R}^d \) and \(\langle u, v \rangle = u^T v \) for all \(u, v \in \mathbb{R}^d \).

A convenient choice of Riemannian structure for \(\mathcal{M} \) is to let:

\[
\langle u, v \rangle_x = \langle u, v \rangle.
\]

This is well defined because \(u, v \in T_x \mathcal{M} \) are, in particular, elements of \(\mathcal{E} \).

This is a Riemannian metric. With it, \(\mathcal{M} \) is a Riemannian submanifold of \(\mathcal{E} \).

!! A Riemannian submanifold is not just a submanifold that is Riemannian !!
Riemannian gradients

The Riemannian gradient of a smooth $f: \mathcal{M} \to \mathbb{R}$ is the vector field $\text{grad} f$ defined by:

$$\forall (x, v) \in T\mathcal{M}, \quad \langle \text{grad} f (x), v \rangle_x = Df(x)[v].$$

Claim: $\text{grad} f$ is a well-defined smooth vector field.

If \mathcal{M} is a Riemannian submanifold of a Euclidean space \mathcal{E}, then

$$\text{grad} f (x) = \text{Proj}_x \left(\text{grad} \bar{f} (x) \right),$$

where Proj_x is the orthogonal projector from \mathcal{E} to $T_x \mathcal{M}$ and \bar{f} is a smooth extension of f.

$$\langle \text{grad} \bar{f} (x), v \rangle = D\bar{f}(x)[v] = \lim_{t \to 0} \frac{\bar{f}(x + tv) - \bar{f}(x)}{t}$$

(Reminders for $\bar{f}: \mathbb{R}^d \to \mathbb{R}$.)
We’re all set for gradient descent

\[x_{k+1} = R_{x_k}(-\alpha_k \text{grad} f(x_k)) \]

How does \(f(x_{k+1}) \) compare to \(f(x_k) \)?

Consider a Taylor expansion of the pullback \(f \circ R_x : T_x \mathcal{M} \to \mathbb{R} : \)

\[f(R_x(s)) = f(x) + \langle \text{grad} f(x), s \rangle_x + O(\|s\|_x^2) \]
Gradient descent on \mathcal{M}

A1 $f(x) \geq f_{\text{low}}$ for all $x \in \mathcal{M}$

A2 $f(R_x(s)) \leq f(x) + \langle s, \nabla f(x) \rangle_x + \frac{L}{2} \|s\|_x^2$

Algorithm: $x_{k+1} = R_x x_k \left(-\frac{1}{L} \nabla f(x_k)\right)$

Complexity: $\left[\min_{k < K} \|\nabla f(x_k)\|_{x_k} \right] \leq \sqrt{\frac{2L(f(x_0) - f_{\text{low}})}{K}}$ (same as Euclidean case)

\[
\begin{align*}
\text{A2} & \Rightarrow f(x_{k+1}) \leq f(x_k) - \frac{1}{L} \|\nabla f(x_k)\|_{x_k}^2 + \frac{1}{2L} \|\nabla f(x_k)\|_{x_k}^2 \\
\Rightarrow f(x_k) - f(x_{k+1}) & \geq \frac{1}{2L} \|\nabla f(x_k)\|_{x_k}^2
\end{align*}
\]

\[
\text{A1} \Rightarrow f(x_0) - f_{\text{low}} \geq f(x_0) - f(x_K) = \sum_{k=0}^{K-1} f(x_k) - f(x_{k+1}) \geq \frac{K}{2L} \min_{k < K} \|\nabla f(x_k)\|_{x_k}^2
\]
Riemannian Hessians

The Riemannian Hessian of f at x should be a symmetric linear map describing gradient change: $\text{Hess}_f(x): T_x\mathcal{M} \to T_x\mathcal{M}$.

Since $\text{grad}_x f: \mathcal{M} \to T\mathcal{M}$ is a smooth map, a natural first attempt is:

$$\text{Hess}_f(x)[v] = \text{Dgrad}_x f(x)[v].$$

However, the rhs is not always in $T_x\mathcal{M}$. We need a new derivative for vector fields.

Fundamental theorem of Riemannian geometry:

There exists a unique way to differentiate vector fields that has “desirable properties”. This Riemannian connection ∇ leads to the Riemannian Hessian

$$\text{Hess}_f(x)[v] = \nabla_v \text{grad}_x f$$

being a symmetric map on $T_x\mathcal{M}$.
Riemannian Hessians

The Riemannian Hessian of \(f \) at \(x \) should be a symmetric linear map describing gradient change: \(\text{Hess}_f(x): T_x\mathcal{M} \to T_x\mathcal{M} \).

Since \(\text{grad}_f: \mathcal{M} \to T\mathcal{M} \) is a smooth map, a natural first attempt is:

\[
\text{Hess}_f(x)[v] = D\text{grad}_f(x)[v].
\]

However, the rhs is not always in \(T_x\mathcal{M} \)… We need a new derivative for vector fields.

If \(\mathcal{M} \) is a Riemannian submanifold of Euclidean space, then:

\[
\text{Hess}_f(x)[v] = \text{Proj}_x(D\text{grad}_f(x)[v])
\]

\[
= \text{Proj}_x(\text{Hess}\bar{f}(x)[v]) + W(v, \text{Proj}_{\mathcal{M}}^\perp(\text{grad}\bar{f}(x)))
\]

where \(W \) is the Weingarten map of \(\mathcal{M} \).
Example: Rayleigh quotient optimization

Compute the smallest eigenvalue of a symmetric matrix $A \in \mathbb{R}^{n \times n}$:

$$\min_{x \in \mathcal{M}} \frac{1}{2} x^T A x \quad \text{with} \quad \mathcal{M} = \{ x \in \mathbb{R}^n : x^T x = 1 \}$$

The cost function $f : \mathcal{M} \to \mathbb{R}$ is the restriction of the smooth function $\bar{f}(x) = \frac{1}{2} x^T A x$ from \mathbb{R}^n to \mathcal{M}.

Tangent spaces $T_x \mathcal{M} = \{ v \in \mathbb{R}^n : x^T v = 0 \}$.

Make \mathcal{M} into a Riemannian submanifold of \mathbb{R}^n with $\langle u, v \rangle = u^T v$.

Projection to $T_x \mathcal{M}$: $\text{Proj}_x (z) = z - (x^T z)x$.

Gradient of \bar{f}: $\text{grad} \bar{f}(x) = Ax$.

Gradient of f: $\text{grad} f(x) = \text{Proj}_x \left(\text{grad} \bar{f}(x) \right) = Ax - (x^T Ax)x$.

Differential of $\text{grad} f$: $D\text{grad} f(x)[v] = Av - (v^T Ax + x^T Av)x - (x^T Ax)v$.

Hessian of f: $\text{Hess} f(x)[v] = \text{Proj}_x (D\text{grad} f(x)[v]) = \text{Proj}_x (Av) - (x^T Ax)v$.

The following are equivalent for $x \in \mathcal{M}$: x is a global minimizer; x is a unit-norm eigenvector of A for the least eigenvalue; $\text{grad} f(x) = 0$ and $\text{Hess} f(x) \succeq 0$.
Enough definitions. Now let’s use this tower.

Connections \(\nabla \), \(\frac{D}{dt} \)

\(\text{grad} f \)

Riemannian metric \(\langle u, v \rangle_x \)

Vector fields

Retractions

\(DF(x)[v] \)

Tangent bundle \(TM \)

What is a smooth function?

What is a tangent vector?

What is a smooth set?
Example:

Max-Cut with Manopt
Full example: hands on with Manopt

Manopt is a family of toolboxes for Riemannian optimization. Go to manopt.org for code, a tutorial, a forum, and a list of other software. Github: github.com/NicolasBoumal/manopt

Matlab example for \(\min_{\|x\|=1} x^T A x: \)

```matlab
problem.M = spherefactory(n);
problem.cost = @(x) x'*A*x;
problem.egrad = @(x) 2*A*x;
x = trustregions(problem);
```

With Bamdev Mishra, P.-A. Absil & R. Sepulchre
Lead by J. Townsend, N. Koep & S. Weichwald
Lead by Ronny Bergmann
What’s in a factory-produced manifold?

Example: stripped down and simplified

```matlab
function M = spherefactory(n)
    M.name = @( ) sprintf('Sphere S^{%d}', n-1);
    M.dim = @( ) n-1;
    M.inner = @(x, u, v) u' * v;
    M.norm = @(x, u) norm(u);
    M.dist = @(x, y) real(2*asin(0.5*norm(x - y)));
    M.typicaldist = @() pi;
    M.proj = @(x, u) u - x*(x' * u);
    M.tangent = M.proj;
    M.tangent2ambient_is_identity = true;
    M.tangent2ambient = @(x, u) u;
    M.egrad2rgrad = M.proj;
    M.ehess2rhess = @(x, egrad, ehess, u) ...
        M.proj(x, ehess - (x' * egrad) * u);
    M.exp = @exponential;
    M.retr = @(x, u) (x+u)/norm(x+u);
    M.invretr = @inverse_retraction;
    M.log = @logarithm;
    M.hash = @(x) ['z' hashmd5(x)];
    M.rand = @() normalize(randn(n, 1));
    M.randvec = @(x) normalize(M.proj(x, randn(n, 1)));
    M.zerovec = @(x) zeros(n, 1);
    M.lincomb = @matrixlincomb;
    M.transp = @(x, y, u) M.proj(y, u);
    M.vec = @(x, u_mat) u_mat;
    M.mat = @(x, u_vec) reshape(u_vec, [n, 1]);
    M.vecmatareisometries = @() true;
end
```
Max-Cut

Input:
An undirected graph.

Output:
Vertex labels \((+1, -1)\) so that as many edges as possible connect different labels.
Max-Cut

Input:
An undirected graph: adjacency matrix A.

Output:
Vertex labels $x_i \in \{+1, -1\}$ so that as many edges as possible connect different labels.

Time-tested relaxation:

$$\min_{x_1, \ldots, x_n} \sum_{i,j} a_{ij} x_i x_j \quad \text{s.t.} \quad x_i \in \{\pm 1\}$$

Let x_i be unit-norm in \mathbb{R}^p.

Max-Cut via low-rank relaxation in Manopt

With adjacency matrix $A \in \mathbb{R}^{n \times n}$, want:

$$\min_{x_1, \ldots, x_n \in \mathbb{R}^p} \sum_{i,j} a_{ij} x_i^T x_j \quad \text{s.t.} \quad \|x_i\| = 1 \ \forall i$$

The manifold is a product of n spheres:

$$\mathcal{M} = \{x \in \mathbb{R}^p : \|x\| = 1 \}^n$$

$$\equiv \{X \in \mathbb{R}^{p \times n} : \|X_{:,i}\| = 1 \ \forall i\}$$

Called the oblique manifold.

```matlab
data = load('graph20.mat');
A = data.A; n = data.n;
p = 3;
problem.M = obliquefactory(p, n);
problem.cost = @(X) sum((X*A) .* X, 'all');
problem.egrad = @(X) 2*X*A;
problem.ehess = @(X, Xdot) 2*Xdot*A;
X = trustregions(problem);
s = sign(X'*randn(p, 1)); %rand round
```
Active research directions by many

- More algorithms: nonsmooth, stochastic, parallel, randomized, ...
- Constrained optimization on manifolds
- Applications, old and new
- Complexity (upper and lower bounds, acceleration)
- Role of curvature
- Geodesic convexity
- Solution tracking (homotopy, continuation), bilevel, min-max
- Infeasible methods (“off-the-manifold”, still using the structure)
- Broader generalizations: boundary, varieties, lift to smooth manifold, ...
- Benign non-convexity
“... in fact, the great watershed in optimization isn't between linearity and nonlinearity, but **convexity** and **non-convexity**.”

R. T. Rockafellar, in SIAM Review, 1993
Non-convex just means *not* convex.
“... in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and non-convexity.”

R. T. Rockafellar, in SIAM Review, 1993
Pockets of benign non-convexity: Ju Sun’s list

https://sunju.org/research/nonconvex, ~900 papers in March 2021; categories:

Matrix Completion/Sensing
Tensor Recovery/Decomposition & Hidden Variable Models
Phase Retrieval
Dictionary Learning
Deep Learning
Sparse Vectors in Linear Subspaces
Nonnegative/Sparse Principal Component Analysis
Mixed Linear Regression
Blind Deconvolution/Calibration
Super Resolution

Synchronization Problems
Community Detection
Joint Alignment
Numerical Linear Algebra
Bayesian Inference
Empirical Risk Minimization & Shallow Networks
System Identification
Burer-Monteiro Style Decomposition Algorithms
Generic Structured Problems
Nonconvex Feasibility Problems
Separable Nonnegative Factorization (NMF)
Back in Göttingen...

If Riemann didn’t invent his geometry to pick Netflix movies, then why did he?

His motivation was to extend the work of Gauss (his advisor), to understand curvature in spaces of arbitrary dimension.

Bit by bit, the community is building some understanding of the effect curvature has in optimization. To be continued...
Software, book, lectures

Manopt software packages
manopt.org

Matlab with Bamdev Mishra, P.-A. Absil, R. Sepulchre++

Julia by Ronny Bergmann++

Python by James Townsend, Niklas Koep and Sebastian Weichwald++

Book (pdf, lecture material, videos) and these slides
nicolasboumal.net/book
nicolasboumal.net/SIAMOP23

Many thanks to Cambridge University Press, who agreed for me to keep the preprint freely available online.