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Preface

Optimization problems on smooth manifolds arise in science and engineering as

a result of natural geometry (e.g., the set of orientations of physical objects in

space is a manifold), latent data simplicity (e.g., high-dimensional data points lie

close to a low-dimensional linear subspace, leading to low-rank data matrices),

symmetry (e.g., observations are invariant under rotation, translation or other

group actions, leading to quotients) and positivity (e.g., covariance matrices and

diffusion tensors are positive definite). This has led to successful applications

notably in machine learning, computer vision, robotics, scientific computing,

dynamical systems and signal processing.

Accordingly, optimization on manifolds has garnered increasing interest from

researchers and engineers alike. Building on fifty years of research efforts that

have recently intensified, it is now recognized as a wide, beautiful and effective

generalization of unconstrained optimization on linear spaces.

Yet, engineering programs seldom include training in differential geometry:

the field of mathematics concerned with smooth manifolds. Moreover, existing

textbooks on this topic usually align with the interests of mathematicians more

than with the needs of engineers and applied mathematicians. This creates a

significant but avoidable barrier to entry for optimizers.

One of my goals in writing this book is to offer a different, if at times unortho-

dox, introduction to differential geometry. Definitions and tools are introduced in

a need-based order for optimization. We start with a restricted setting—that of

embedded submanifolds of linear spaces—which allows us to define all necessary

concepts in direct reference to their usual counterparts from linear spaces. This

covers a wealth of applications.

In what is perhaps the clearest departure from standard exposition, charts and

atlases are not introduced until quite late. The reason for doing so is twofold:

pedagogically, charts and atlases are more abstract than what is needed to work

on embedded submanifolds; and pragmatically, charts are seldom if ever useful

in practice. It would be unfortunate to give them center stage.

Of course, charts and atlases are the right tool to provide a unified treatment

of all smooth manifolds in an intrinsic way. They are introduced eventually,

at which point it becomes possible to discuss quotient manifolds: a powerful

language to understand symmetry in optimization. Perhaps this abstraction is

necessary to fully appreciate the depth of optimization on manifolds as more
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x Preface

than just a fancy tool for constrained optimization in linear spaces, and truly a

mathematically natural setting for unconstrained optimization in a wider sense.

Time-tested optimization algorithms are introduced immediately after the

early chapters about embedded geometry. Crucially, the design and analysis of

these methods remain unchanged whether we are optimizing on a manifold which

is embedded in a linear space or not. This makes it possible to get to algorithms

early on, without sacrificing generality. It also underlines the conceptual point

that the algorithms truly operate on the manifolds intrinsically.

The last two chapters visit more advanced topics that are not typically neces-

sary for simple applications. The first one delves deeper into geometric tools. The

second one introduces the basics of geodesic convexity: a broad generalization of

convexity, which is one of the most fruitful structures in classical optimization.

Intended audience

This book is intended for students and researchers alike. The material has proved

popular with applied mathematicians and mathematically inclined engineering

and computer science students at the graduate and advanced undergraduate

levels.

Readers are assumed to be comfortable with linear algebra and multivariable

calculus. Central to the raison d’être of this book, there are no prerequisites in

differential geometry or optimization. For computational aspects, it is helpful to

have notions of numerical linear algebra, for which I recommend the approachable

textbook by Trefethen and Bau [TB97].

Building on these expectations, the aim is to give full proofs and intuition for

all concepts that are introduced, at least for submanifolds of linear spaces. The

hope is to equip readers to pursue research projects in (or using) optimization on

manifolds, involving both mathematical analysis and efficient implementation.

How to use this book

The book is self-contained and should suit both self-learners and instructors.

Chapters 3 and 5 can serve as a standalone introduction to differential and

Riemannian geometry. They focus on embedded submanifolds of linear spaces,

with proofs. Chapter 7 details examples of manifolds: it is meant for on-and-off

reading in parallel with Chapters 3 and 5. These chapters do not involve charts,

and they aim to convey the fact that geometric tools are computational tools.

From there, the expected next step is to work through Chapters 4 and 6 about

optimization algorithms. Readers may also choose to embark on Chapter 8 to

see how embedded manifolds fit into the general theory of smooth manifolds.

That is a useful (though not fully necessary) stepping stone toward Chapter 9

about quotient manifolds. Alternatively, they may decide to learn about further

geometric tools in Chapter 10 or about a Riemannian notion of convexity in

Chapter 11.
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Preface xi

These chapter dependencies are summarized in the diagram below, where an

arrow from A to B means it is preferable to read A before B.

Ch. 3

start

Ch. 7 Ch. 4

Ch. 5 Ch. 6

Ch. 8 Ch. 9

Ch. 10

Ch. 11

1. Introduction
2. Applications
3. First-order geometry
4. First-order optimization
5. Second-order geometry
6. Second-order optimization
7. Examples of manifolds
8. General manifolds
9. Quotient manifolds

10. Additional geometric tools
11. Geodesic convexity

In a graduate course at Princeton University in 2019 and 2020 (24 lectures of

80 minutes each), I covered much of Chapters 1–6 and select parts of Chapter 7

before the midterm break, then much of Chapters 8–9 and select parts of Chap-

ters 10–11 after the break. At EPFL in 2021, I discussed mostly Chapters 1–8

in 13 lectures of 90 minutes each supplemented with exercise sessions.

The numerous exercises in the book have wide-ranging difficulty levels. Some

are included in part as a way to convey information while skipping technicalities.

Starred sections can be skipped safely for a first encounter with the material.

Chapters end with references and notes that many readers may find relevant but

which would otherwise break the flow. Did ⋆the mark in the margin catch your

attention? That is its purpose. You may see a couple of those in the book.

What is new, or different, or hard to find elsewhere

The de facto reference for optimization on manifolds is the landmark 2008 book

Optimization Algorithms on Matrix Manifolds by Pierre-Antoine Absil, Robert

Mahony and Rodolphe Sepulchre [AMS08]. It is an important source for the

present book as well, with significant overlap of topics. In the years since, the

field has evolved, and with it the need for an entry point catering to a broader

audience. In an effort to address these needs, I aim to:

1. Provide a different, self-contained introduction to the core concepts.

This includes a “charts last” take on differential geometry with proofs adapted

accordingly; a somewhat unusual yet equivalent definition of connections that

(I believe) is more intuitive from an optimizer’s point of view; and an account

of optimization on quotient manifolds which benefits from years of hindsight.

This introduction is informed by the pains I had entering the field.
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2. Discuss new topics that have grown in importance since 2008.

This includes a replacement of asymptotic convergence results in favor of

worst-case, non-asymptotic iteration complexity results; a related take on

Lipschitz continuity for Riemannian gradients and Hessians paired with their

effect on Taylor expansions on manifolds; an explicit construction of geometric

tools necessary for optimization over matrices of fixed rank; a simple study

of metric projection retractions; an extrinsic view of the Riemannian Hes-

sian for submanifolds through the Weingarten map and second fundamental

form; a discussion of the smooth invertibility of retractions and of the domain

of the inverse of the exponential map; transporters as a natural alternative

to vector and parallel transports; finite differences of gradients to approxi-

mate Hessians; and an introduction to geodesic convexity (not restricted to

Hadamard manifolds) with a gradient algorithm for the strongly convex case.

Many of these build on research papers referenced in text.

3. Share tricks of the trade that are seldom, if ever, spelled out.

This includes several examples of manifolds worked out in full detail; prag-

matic instructions for how to derive expressions for gradients and Hessians

of matrix functions, and how to check them numerically; explicit formulas

for geometric tools on product manifolds (mostly given as exercises); and a

number of comments informed by ten years of software development in the

field.

The main differential geometry references I used are the fantastic books by

Lee [Lee12, Lee18], O’Neill [O’N83], and Brickell and Clark [BC70]. Definitions

of geometric concepts in this book, though at times stated differently, are fully

compatible with Absil et al.’s book. This is also compatible with Lee’s text-

books with one exception: Riemannian submanifolds to us are understood to be

embedded submanifolds, whereas Lee also allows them to be merely immersed

submanifolds. Moreover, we use the word “manifold” to mean “smooth mani-

fold,” that is, C∞. Most results extend to manifolds and functions of class Ck.

There is much to say about the impact of curvature on optimization. This is

an active research topic that has not stabilized yet. Therefore, I chose to omit

curvature entirely from this book, save for a few brief comments in the last two

chapters. Likewise, optimization on manifolds is proving to be a particularly

fertile ground for benign non-convexity and related phenomena. There are only

a few hints to that effect throughout the book: the research continues.

Software and online resources

Little to no space is devoted to existing software packages for optimization on

manifolds, or to numerical experiments. Yet, such packages significantly speed

up research and development in the field. The reader may want to experiment

with Manopt (Matlab), PyManopt (Python) or Manopt.jl (Julia), all available

from manopt.org.
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In particular, the Matlab implementations of most manifolds discussed in this

book are listed in Table 7.1 on p155. Gradient descent (Algorithm 4.1) with

backtracking line-search (Algorithm 4.2) is available as steepestdescent. The

trust-region method (Algorithm 6.3) with the truncated conjugate gradient sub-

problem solver (Algorithm 6.4) is available as trustregions. These implemen-

tations include a wealth of tweaks and tricks that are important in practice:

many are explained here, some are only documented in the code. The Python

and Julia versions offer similar features.

The following webpage collects further resources related to this book:

nicolasboumal.net/book

In particular, teaching and learning material will be listed there, as well as errata.
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Vandereycken, Coralia Cartis, Bamdev Mishra, Suvrit Sra, Stephen McKeown,

John M. Lee and Sándor Z. Németh for numerous conversations that led to direct

improvements. Likewise, reviewers offered welcome advice and suggestions for
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to the people involved with the Manopt toolboxes: these efforts are led with

Bamdev for the Matlab version; by Jamie Townsend, Niklas Koep and Sebastian

Weichwald for the Python version; and by Ronny Bergmann for the Julia version.

I am also indebted to the mathematics departments at Princeton University

and EPFL for supporting me while I was writing. Finally, I thank Katie Leach

at Cambridge University Press for her enthusiasm and candid advice that helped

shape this project into its final form.
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Notation

The following lists typical uses of symbols. Local exceptions are documented in

place. For example, c typically denotes a curve, but sometimes denotes a real

constant. Symbols defined and used locally only are omitted.

R,C Real and complex numbers

R+ Positive reals (x > 0)

Rm×n Real matrices of size m× n
Rm×n

r Real matrices of size m× n and rank r

Sym(n),Skew(n) Symmetric and skew-symmetric real matrices of size n

sym(M), skew(M) Symmetric and skew-symmetric parts of a matrix M

Sym(n)+ Symmetric positive definite real matrices of size n

Tr(M),det(M) Trace, determinant of a square matrix M

diag(M) Vector of diagonal entries of a matrix M

diag(u1, . . . , un) Diagonal matrix of size n with given diagonal entries

M† Moore–Penrose pseudoinverse of matrix M

Id Identity matrix of size d

I Subset of R (often open with 0 ∈ I) or identity matrix

Id Identity operator

|a| Modulus of a ∈ C (absolute value if a ∈ R)

|A| Cardinality of a set A

E , E ′,F Linear spaces, often with a Euclidean structure

M,M′,M,N Smooth manifolds, often with a Riemannian structure

Sd−1 Unit sphere, in a Euclidean space of dimension d

OB(d, n) Oblique manifold (product of Sd−1 copied n times)

O(d),SO(d) Orthogonal and special orthogonal groups in Rd×d

St(n, p) Stiefel manifold embedded in Rn×p

Gr(n, p) Grassmann manifold as the quotient St(n, p)/O(p)

GL(n) General linear group (invertible matrices in Rn×n)

Hn Hyperbolic space as hyperboloid embedded in Rn+1

dimM Dimension of M
x, y, z Points on a manifold

u, v, w, s, ξ, ζ Tangent vectors

p, q Integers or polynomials or points on a manifold

TM Tangent bundle of M
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TxM Tangent space to M at x ∈M
NxM Normal space (orthogonal complement of TxM)

Projx,Proj⊥x Orthogonal projector to TxM, NxM
Hx,Vx Horizontal and vertical space at x for a quotient manifold

ProjHx ,ProjVx Orthogonal projectors to Hx,Vx

liftx Horizontal lift operator for quotient manifolds

Rx(v) Retraction R evaluated at (x, v) ∈ TM
Expx(v) Exponential map Exp evaluated at (x, v) ∈ TM
Logx(y) Vector v such that Expx(v) = y (see Definition 10.20)

exp, log Scalar or matrix exponential and logarithm

O,Ox Domain of Exp (subset of TM), Expx (subset of TxM);

Can also denote these domains for a non-global retraction.

inj(M), inj(x) Injectivity radius of a manifold, at a point

⟨·, ·⟩x Riemannian inner product on TxM
⟨·, ·⟩ Euclidean inner product;

Sometimes denotes ⟨·, ·⟩x with subscript omitted.

∥ · ∥, ∥ · ∥x Norms associated to ⟨·, ·⟩ and ⟨·, ·⟩x
∥ · ∥ Also denotes operator norm for linear maps

[·, ·] Lie bracket

∇ Affine connection (often Riemannian) on a manifold
d
dt Classical derivative with respect to t
D
dt Covariant derivative induced by a connection ∇
∂

∂xi
Partial derivative with respect to real variable xi

xi Often the ith coordinate of a vector x ∈ Rn

xk Often the kth element of a sequence x0, x1, x2, . . . ∈M
f, g Real-valued functions

flow A real number such that f(x) ≥ flow for all x

h Often a local defining function with values in Rk

gradf,Hessf Riemannian gradient and Hessian of f ;

Euclidean gradient, Hessian if domain of f is Euclidean.

∇f,∇2f First and second covariant derivatives of f as tensor fields

c, γ Curves

c′, γ′, ċ, γ̇ Velocity vector fields of curves c, γ

c′′, γ′′ Intrinsic acceleration vector fields of c, γ

c̈, γ̈ Extrinsic acceleration vector fields of c, γ

L, Lg, LH Lipschitz constants (nonnegative reals)

L(c) Length of a curve c

dist(x, y) Distance (often Riemannian) between two points x, y

B(x, r) Open ball {v ∈ TxM : ∥v∥x < r} or {y ∈ E : ∥y − x∥ < r}
B̄(x, r) Closed ball as above

A,L Linear maps

A,A+ Atlas, maximal atlas

imL, kerL Range space (image) and null space (kernel) of L
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rank(M), rank(L) Rank of a matrix or linear map

M⊤,M∗ Transpose or Hermitian conjugate-transpose of matrix M

L∗ Adjoint of a linear map L between Euclidean spaces

A ⪰ 0,A ≻ 0 States A = A∗ is positive semidefinite or positive definite

span(u1, . . . , um) Linear subspace spanned by vectors u1, . . . , um
F,G,H Maps, usually to and from linear spaces or manifolds

F : A→ B A map defined on the whole domain A

F |U Restriction of the map F to the domain U

F (·, y) For a map (x, y) 7→ F (x, y), this is the map x 7→ F (x, y)

F ◦G Composition of maps: (F ◦G)(x) = F (G(x))

DF (x)[v] Differential of F at x along v

U, V,W,X, Y, Z Vector fields on a manifold, or

Matrices which could be tangent vectors or points on M;

Y, Z Can also be vector fields along a curve.

U, V,W,O Can also be open sets, usually in a linear space.

f̄ , F̄ , V̄ , . . . Smooth extensions or lifts of f, F, V, . . .

ū, Ū Can also denote complex conjugation of u, U

T Tensor field

Ts Differential of retraction DRx(s)

U ,V Open sets in a manifold

W Weingarten map

II Second fundamental form

fV Vector field x 7→ f(x)V (x) (with f real valued)

V f Real function x 7→ Df(x)[V (x)]

F(M),F(E) Set of smooth real-valued functions on M, E
X(M),X(E) Set of smooth vector fields on M, E
X(c) Set of smooth vector fields along a curve c

Ty←x Vector transport from TxM to TyM
PTc

t1←t0 Parallel transport along curve c from c(t0) to c(t1)

Ps Parallel transport along γ(t) = Expx(ts) from 0 to 1

∼ Equivalence relation

A/∼ Quotient set of A by the relation ∼
[x] Equivalence class of x for some equivalence relation

π Canonical projection π : TM→M or π : M→M/∼;

Occasionally denotes the mathematical constant.

A ⊂ B A is a proper subset of B (the sets are not equal)

A ⊆ B A is a subset of B (the sets may be equal)

A ∩B Intersection of sets A,B

A ∪B Union of sets A,B

∅ Empty set.
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1 Introduction

Optimization is a staple of mathematical modeling. In this rich framework, we

consider a set S called the search space—it contains all possible answers to our

problem, good and bad—and a cost function f : S → R which associates a cost

f(x) to each element x of S. The goal is to find x ∈ S such that f(x) is as small

as possible, that is, a best answer. We write

min
x∈S

f(x)

to represent both the optimization problem and the minimal cost (if it exists).

Occasionally, we wish to denote specifically the subset of S for which the minimal

cost is attained; the standard notation is

arg min
x∈S

f(x),

bearing in mind that this set might be empty. We will discuss a few simple

applications which can be modeled in this form.

Rarely, optimization problems admit an analytical solution. Typically, we need

numerical algorithms to (try to) solve them. Often, the best algorithms exploit

mathematical structure in S and f .

An important special case arises when S is a linear space such as Rn. Minimiz-

ing a function f in Rn is called unconstrained optimization because the variable

x is free to move around Rn, unrestricted.

If f is sufficiently differentiable and Rn is endowed with an inner product (that

is, if we make it into a Euclidean space), then we have a notion of gradient and

perhaps even a notion of Hessian for f . These objects give us a firm understanding

of how f behaves locally around any given point. Famous algorithms such as

gradient descent and Newton’s method exploit these objects to move around Rn

efficiently in search of a solution.

Notice, however, that the Euclidean structure of Rn and the smoothness of f

are irrelevant to the definition of the optimization problem itself: they are merely

structures that we may (and as experience shows, we should) use algorithmically

to our advantage.

Subsuming linearity, we focus on smoothness as the key structure to exploit:

we assume the set S is a smooth manifold and the function f is smooth on S. This

calls for precise definitions, constructed first in Chapter 3. For a first intuition,
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2 Introduction

one can think of smooth manifolds as surfaces in Rn that do not have kinks or

boundaries, such as a plane, a sphere, a torus, or a hyperboloid.

We could think of optimization over such surfaces as constrained , in the sense

that x is not allowed to move freely in Rn: it is constrained to remain on the

surface. Alternatively, and this is the viewpoint favored here, we can think of this

as unconstrained optimization, in a world where the smooth surface is the only

thing that exists: like an ant walking on a large ball might feel unrestricted in

its movements, aware only of the sphere it lives on; or like the two-dimensional

inhabitants of Flatland [Abb84] who find it hard to imagine that there exists

such a thing as a third dimension, feeling thoroughly free in their own subspace.

A natural question then is: can we generalize the Euclidean algorithms from

unconstrained optimization to handle the broader class of optimization over

smooth manifolds? The answer is essentially yes, going back to the 70s [Lue72,

Lic79], the 80s [Gab82] and the 90s [Udr94, Smi94, HM96, Rap97, EAS98], and

sparking a significant amount of research in the past two decades.

To generalize algorithms such as gradient descent and Newton’s method, we

need a proper notion of gradient and Hessian on smooth manifolds. In the linear

case, this required the introduction of an inner product: a Euclidean structure.

In our more general setting, we leverage the fact that smooth manifolds can be

linearized locally around every point. The linearization at x is called the tangent

space at x. By endowing each tangent space with its own inner product (varying

smoothly with x, in a sense to be made precise), we construct what is called a

Riemannian structure on the manifold: it becomes a Riemannian manifold.

A Riemannian structure is sufficient to define gradients and Hessians on the

manifold, paving the way for optimization. There exist several Riemannian struc-

tures on each manifold: our choice may impact algorithmic performance. In that

sense, identifying a useful structure is part of the algorithm design—as opposed

to being part of the problem formulation, which ended with the definition of the

search space (as a crude set) and the cost function.

Chapter 2 covers a few simple applications, mostly to give a sense of how

manifolds come up. We then go on to define smooth manifolds in a restricted1

setting in Chapter 3, where manifolds are embedded in a linear space, much like

the unit sphere in three-dimensional space. In this context, we define notions of

smooth functions, smooth vector fields, gradients and retractions (a means to

move around on a manifold). These tools are sufficient to design and analyze

a first optimization algorithm in Chapter 4: Riemannian gradient descent. As

readers progress through these chapters, it is the intention that they also read

bits of Chapter 7 from time to time: useful embedded manifolds are studied

there in detail. Chapter 5 provides more advanced geometric tools for embedded

manifolds, including the notions of Riemannian connections and Hessians. These

1 Some readers may know Whitney’s celebrated embedding theorems, which state that any

smooth manifold can be embedded in a linear space [BC70, p82]. The mere existence of an
embedding, however, is of little use for computation.
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are put to good use in Chapter 6 to design and analyze Riemannian versions of

Newton’s method and the trust-region method.

The linear embedding space is useful for intuition, to simplify definitions, and

to design tools. Notwithstanding, all the tools and concepts we define in the

restricted setting are intrinsic, in the sense that they are well defined regardless

of the embedding space. We make this precise much later, in Chapter 8, where all

the tools from Chapters 3 and 5 are redefined in the full generality of standard

treatments of differential geometry. This is also the time to discuss topological

issues to some extent. Generality notably makes it possible to discuss a more

abstract class of manifolds called quotient manifolds in Chapter 9. They offer a

beautiful way to harness symmetry, so common in applications.

In closing, Chapter 10 offers a limited treatment of more advanced geometric

tools such as the Riemannian distance, geodesics, the exponential map and its

inverse, parallel transports and transporters, notions of Lipschitz continuity, fi-

nite differences, and covariant differentiation of tensor fields. Then, Chapter 11

covers elementary notions of convexity on Riemannian manifolds with simple

implications for optimization. This topic has been around since the 90s, and has

been gaining traction in research lately.

More than 150 years ago, Riemann invented a new kind of geometry for the

abstract purpose of understanding curvature in high-dimensional spaces. Today,

this geometry plays a central role in the development of efficient algorithms to

tackle technological applications Riemann himself—arguably—could have never

envisioned. Through this book, I invite you to enjoy this singularly satisfying

success of mathematics, with an eye to turning geometry into algorithms.

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

2 Simple examples

Before formally defining what manifolds are, and before introducing any particu-

lar algorithms, this chapter surveys simple problems that are naturally modeled

as optimization on manifolds. These problems are motivated by applications in

various scientific and technological domains. We introduce them chiefly to il-

lustrate how manifolds arise and to motivate the mathematical abstractions in

subsequent chapters.

The first example leads to optimization on an affine subspace: it falls within

the scope of optimization on manifolds, but one can also handle it with classical

tools. Subsequently, we encounter optimization on spheres, products of spheres,

orthonormal matrices, the set of all linear subspaces, rotation matrices, fixed-

rank matrices, positive definite matrices and certain quadratic surfaces. Through

those, we get a glimpse of the wide reach of optimization on manifolds.

Below, we use a few standard concepts from linear algebra and calculus that

are revisited in Section 3.1.

2.1 Sensor network localization from directions: an affine subspace

Consider n sensors located at unknown positions t1, . . . , tn in Rd. We aim to

locate the sensors, that is, estimate the positions ti, based on some directional

measurements. Specifically, for each pair of sensors (i, j) corresponding to an

edge of a graph G, we receive a noisy measurement of the direction from tj to ti:

vij ≈
ti − tj
∥ti − tj∥

,

where ∥x∥ =
√
x21 + · · ·+ x2d is the Euclidean norm on Rd induced by the inner

product ⟨u, v⟩ = u⊤v = u1v1 + · · ·+ udvd.

There are two fundamental ambiguities in this task. First, directional mea-

surements reveal nothing about the global location of the sensors: translating

the sensors as a whole does not affect pairwise directions. Thus, we may assume

without loss of generality that the sensors are centered:

t1 + · · ·+ tn = 0.

Second, the measurements reveal nothing about the global scale of the sensor
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arrangement. Specifically, scaling all positions ti by a scalar α > 0 as αti has no

effect on the directions separating the sensors, so that the true scale cannot be

recovered from the measurements. It is thus legitimate to fix the scale arbitrarily,

to break symmetry. One fruitful way is to assume the following [HLV18]:∑
(i,j)∈G

⟨ti − tj , vij⟩ = 1.

Indeed, if this constraint holds for some set of locations t1, . . . , tn, then it does

not hold for locations αt1, . . . , αtn unless α = 1.

Given a tentative estimator t̂1, . . . , t̂n ∈ Rd for the locations, we may assess

its compatibility with the measurement vij by computing

∥(t̂i − t̂j)−
〈
t̂i − t̂j , vij

〉
vij∥.

Indeed, if t̂i− t̂j and vij are aligned in the same direction, this evaluates to zero.

Otherwise, it evaluates to a positive number, growing as alignment degrades.

Combined with the symmetry-breaking conditions, this suggests the following

formulation for sensor network localization from direction measurements:

min
t̂1,...,t̂n∈Rd

∑
(i,j)∈G

∥(t̂i − t̂j)−
〈
t̂i − t̂j , vij

〉
vij∥2

subject to t̂1 + · · ·+ t̂n = 0 and
∑

(i,j)∈G

〈
t̂i − t̂j , vij

〉
= 1.

The role of the second constraint is clear: it excludes t̂1 = · · · = t̂n = 0, which

would otherwise be optimal.

Grouping the variables as the columns of a matrix, we find that the search

space for this problem is an affine subspace of Rd×n: this is a linear manifold. It

is also an embedded submanifold of Rd×n. Hence, it falls within our framework.

With the simple cost function as above, this problem is in fact a convex

quadratic minimization problem on an affine subspace. As such, it admits an

explicit solution which merely requires solving a linear system. Optimization al-

gorithms can be used to solve this system implicitly. More importantly, the power

of optimization algorithms lies in the flexibility that they offer: alternative cost

functions may be used to improve robustness against specific noise models for

example, and those require more general algorithms [HLV18].

2.2 Single extreme eigenvalue or singular value: spheres

Let A ∈ Rn×n be a symmetric matrix: A = A⊤. By the spectral theorem, A

admits n real eigenvalues λ1 ≤ · · · ≤ λn and corresponding real, orthonormal

eigenvectors v1, . . . , vn ∈ Rn, where orthonormality is assessed with respect to

the standard inner product over Rn: ⟨u, v⟩ = u⊤v.

For now, we focus on computing one extreme eigenpair of A: (λ1, v1) or (λn, vn)
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will do. Let Rn
∗ denote the set of nonzero vectors in Rn. It is well known that

the Rayleigh quotient,

r : Rn
∗ → R : x 7→ r(x) =

⟨x,Ax⟩
⟨x, x⟩

,

attains its extreme values when x is aligned with ±v1 or ±vn, and that the

corresponding value of the quotient is λ1 or λn. We will rediscover such properties

through the prism of optimization on manifolds as a running example in this

book. One can gain some insight by checking that r(vi) = λi.

Say we are interested in the smallest eigenvalue, λ1. Then, we must solve the

following optimization problem:

min
x∈Rn

∗

⟨x,Ax⟩
⟨x, x⟩

.

The set Rn
∗ is open in Rn: it is an open submanifold of Rn. Optimization over

an open set has its challenges (more on this later). Fortunately, we can easily

circumvent these issues in this instance.

Since the Rayleigh quotient is invariant to scaling, that is, since r(αx) = r(x)

for all nonzero real α, we may fix the scale arbitrarily. Given the denominator

of r, one particularly convenient way is to restrict our attention to unit-norm

vectors: ∥x∥2 = ⟨x, x⟩ = 1. The set of such vectors is the unit sphere in Rn:

Sn−1 = {x ∈ Rn : ∥x∥ = 1} .

This is an embedded submanifold of Rn. Our problem becomes:

min
x∈Sn−1

⟨x,Ax⟩ . (2.1)

This is perhaps the simplest non-trivial instance of an optimization problem on

a manifold: we use it recurringly to illustrate concepts as they occur.

Similarly to the above, we may compute the largest singular value of a matrix

M ∈ Rm×n together with associated left- and right-singular vectors by solving

max
x∈Sm−1,y∈Sn−1

⟨x,My⟩ . (2.2)

This is the basis of principal component analysis: see also Section 2.4. The search

space is a Cartesian product of two spheres. This too is a manifold; specifically,

an embedded submanifold of Rm × Rn. In general:

Products of manifolds are manifolds.

This is an immensely useful property.

2.3 Dictionary learning: products of spheres

JPEG and its more recent version JPEG 2000 are some of the most commonly

used compression standards for photographs. At their core, these algorithms rely
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2.3 Dictionary learning: products of spheres 7

on basis expansions: discrete cosine transforms for JPEG, and wavelet transforms

for JPEG 2000. That is, an image (or rather, each patch of the image) is written

as a linear combination of a fixed collection of basis images. To fix notation, say

an image is represented as a vector y ∈ Rd (its pixels rearranged into a single

column vector) and the basis images are b1, . . . , bd ∈ Rd (each of unit norm).

There exists a unique set of coordinates c ∈ Rd such that:

y = c1b1 + · · ·+ cdbd.

Since the basis images are fixed (and known to anyone creating or reading image

files in this format), it is equivalent to store y or c.

The basis is designed carefully with two goals in mind. First, the transform

between y and c should be fast to compute (one good starting point to that

effect is orthogonality). Second, images encountered in practice should lead to

many of the coefficients ci being zero, or close to zero. Indeed, to recover y, it is

only necessary to record the nonzero coefficients. To compress further, we may

also decide not to store the small coefficients: if so, y can still be reconstructed

approximately. Beyond compression, another benefit of sparse expansions is that

they can reveal structural information about the contents of the image.

In dictionary learning, we focus on the second goal. As a key departure from the

above, the idea here is not to design a basis by hand, but rather to learn a good

basis from data automatically. This way, we may exploit structural properties

of images that come up in a particular application. For example, it may be the

case that photographs of faces can be expressed more sparsely in a dedicated

basis as compared to a standard wavelet basis. Pushing this idea further, we

relax the requirement of identifying a basis, instead allowing ourselves to pick

more than d images for our expansions. The collection of images b1, . . . , bn ∈ Rd

forms a dictionary. Its elements are called atoms, and they normally span Rd

in an overcomplete way, meaning any image y can be expanded into a linear

combination of atoms in more than one way. The aim is that at least one of these

expansions should be sparse, or have many small coefficients. For the magnitudes

of coefficients to be meaningful, we further require all atoms to have the same

norm: ∥bi∥ = 1 for all i.

Thus, given a collection of k images y1, . . . , yk ∈ Rd, the task in dictionary

learning is to find atoms b1, . . . , bn ∈ Rd such that (as much as possible) each

image yi is a sparse linear combination of the atoms. Collect the input images as

the columns of a data matrix Y ∈ Rd×k, and the atoms into a matrix D ∈ Rd×n

(to be determined). Expansion coefficients for the images in this dictionary form

the columns of a matrix C ∈ Rn×k so that

Y = DC.

Typically, many choices of C are possible. We aim to pick D such that there

exists a valid (or approximately valid) choice of C with numerous zeros. Let

∥C∥0 denote the number of entries of C different from zero. Then, one possible

formulation of dictionary learning balances both aims with a parameter λ > 0
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as (with b1, . . . , bn the columns of the dictionary matrix D):

min
D∈Rd×n,C∈Rn×k

∥Y −DC∥2 + λ∥C∥0 (2.3)

subject to ∥b1∥ = · · · = ∥bn∥ = 1.

The matrix norm ∥ · ∥ is the Frobenius norm, induced by the standard inner

product ⟨U, V ⟩ = Tr(U⊤V ).

Evidently, allowing the dictionary to be overcomplete (n > d) helps sparsity.

An extreme case is to set n = k, in which case an optimal solution consists in

letting D be Y with normalized columns. Then, each image can be expressed

with a single nonzero coefficient (C is diagonal). This is useless of course, if only

because both parties of the communication must have access to the (possibly

huge) dictionary, and because this choice may generalize poorly when presented

with new images. Interesting scenarios involve n much smaller than k.

The search space for D is a product of several spheres, which is an embedded

submanifold of Rd×n called the oblique manifold :

OB(d, n) = (Sd−1)n =
{
X ∈ Rd×n : diag(X⊤X) = 1

}
,

where 1 ∈ Rn is the all-ones vector and diag : Rn×n → Rn extracts the diagonal

entries of a matrix. The search space in C is the linear manifold Rn×k. Overall,

the search space of the dictionary learning optimization problem is

OB(d, n)× Rn×k,

which is an embedded submanifold of Rd×n × Rn×k.

We note in closing that the cost function in (2.3) is discontinuous because of

the term ∥C∥0, making it hard to optimize. A standard reformulation replaces

the culprit with ∥C∥1: the sum of absolute values of the entries of C. This is

continuous but nonsmooth. A possible further step then is to smooth the cost

function, for example exploiting that |x| ≈
√
x2 + ε2 or |x| ≈ ε log(ex/ε + e−x/ε)

for small ε > 0: these are standard tricks.

Regardless of changes to the cost function, the manifold OB(d, n) is non-

convex, so that finding a global optimum for dictionary learning as stated above

is challenging: see work by Sun et al. [SQW17] for some guarantees.

2.4 Principal component analysis: Stiefel and Grassmann

Let x1, . . . , xn ∈ Rd represent a large collection of centered data points in a

d-dimensional linear space. We may think of it as a cloud of points. It may be

the case that this cloud lies on or near a low-dimensional subspace of Rd, and

it may be distributed anisotropically in that subspace, meaning it shows more

variation along some directions than others. One of the pillars of data analysis is

to determine the main directions of variation of the data. This goes by the name

of principal component analysis (PCA), which we encountered in Section 2.2.
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2.4 Principal component analysis: Stiefel and Grassmann 9

One way to think of a main direction of variation, called a principal com-

ponent, is as a vector u ∈ Sd−1 such that projecting the data points to the

one-dimensional subspace spanned by u ‘preserves most of the variance.’ Specif-

ically, let X ∈ Rd×n be the matrix whose columns are the data points and let

uu⊤ be the orthogonal projector from Rd to the span of u. We wish to maximize

the following for u ∈ Sd−1:

n∑
i=1

∥uu⊤xi∥2 = ∥uu⊤X∥2 = ⟨X⊤uu⊤, X⊤uu⊤⟩ = ⟨XX⊤u, u⟩.

We recognize the Rayleigh quotient of the matrix XX⊤ to be maximized for u

over Sd−1 (Section 2.2). An optimal solution is given by a dominant eigenvector

of XX⊤, or equivalently by a dominant left singular vector of X.

Let u1 ∈ Sd−1 be a principal component. We would like to find a second one.

That is, we aim to find u2 ∈ Sd−1, orthogonal to u1, such that projecting the

data to the subspace spanned by u1 and u2 preserves the most variance. The

orthogonal projector to that subspace is u1u
⊤
1 + u2u

⊤
2 . We maximize

∥(u1u⊤1 + u2u
⊤
2)X∥2 = ⟨XX⊤u1, u1⟩+ ⟨XX⊤u2, u2⟩

over u2 ∈ Sd−1 with u⊤2u1 = 0. The search space for u2 is an embedded subman-

ifold of Rd: it is a unit sphere in the subspace orthogonal to u1.

It is often more convenient to optimize for u1 and u2 simultaneously rather

than sequentially. Then, since the above cost function is symmetric in u1 and

u2, as is the constraint u⊤2u1 = 0, we add weights to the two terms to ensure u1
captures a principal component and u2 captures a second principal component:

max
u1,u2∈Sd−1,u⊤

2u1=0
α1⟨XX⊤u1, u1⟩+ α2⟨XX⊤u2, u2⟩,

with α1 > α2 > 0 arbitrary.

More generally, aiming for k principal components, we look for a matrix U ∈
Rd×k with k orthonormal columns u1, . . . , uk ∈ Rd. The set of such matrices is

called the Stiefel manifold :

St(d, k) = {U ∈ Rd×k : U⊤U = Ik},

where Ik is the identity matrix of size k. It is an embedded submanifold of Rd×k.

The orthogonal projector to the subspace spanned by the columns of U is UU⊤.

Hence, PCA amounts to solving the problem:

max
U∈St(d,k)

k∑
i=1

αi⟨XX⊤ui, ui⟩ = max
U∈St(d,k)

⟨XX⊤U,UD⟩, (2.4)

where D ∈ Rk×k is diagonal with diagonal entries α1 > · · · > αk > 0.

It is well known that collecting k top eigenvectors of XX⊤ (or, equivalently,

k top left singular vectors of X) yields a global optimum of (2.4), meaning this

optimization problem can be solved efficiently using tools from numerical linear
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algebra. Still, the optimization perspective offers significant flexibility that stan-

dard linear algebra algorithms cannot match. Specifically, within an optimization

framework, it is possible to revisit the variance criterion by changing the cost

function. This allows one to promote sparsity or robustness against outliers, for

example to develop variants such as sparse PCA [dBEG08, JNRS10] and robust

PCA [MT11, GZAL14, MZL19, NNSS20]. There may also be computational ad-

vantages, for example in tracking and online models where the dataset changes

or grows with time: it may be cheaper to update a previously computed good

estimator using few optimization steps than to run a complete eigenvalue or

singular value decomposition anew.

If the top k principal components are of interest but their ordering is not,

then we do not need the weight matrix D. In this scenario, we are seeking an

orthonormal basis U for a k dimensional subspace of Rd such that projecting

the data to that subspace preserves as much of the variance as possible. This

description makes it clear that the particular basis is irrelevant: only the selected

subspace matters. This is apparent in the cost function,

f(U) = ⟨XX⊤U,U⟩,

which is invariant under orthogonal transformations. Specifically, for all Q in the

orthogonal group

O(k) = {Q ∈ Rk×k : Q⊤Q = Ik},

we have f(UQ) = f(U). This induces an equivalence relation1 ∼ on the Stiefel

manifold:

U ∼ V ⇐⇒ V = UQ for some Q ∈ O(k).

This equivalence relation partitions St(d, k) into equivalence classes:

[U ] = {V ∈ St(d, k) : U ∼ V } = {UQ : Q ∈ O(k)}.

The set of equivalence classes is called the quotient set :

St(d, k)/∼ = St(d, k)/O(k) = {[U ] : U ∈ St(d, k)}.

Importantly, U, V ∈ St(d, k) are equivalent if and only if their columns span the

same subspace of Rd. In other words: the quotient set is in one-to-one correspon-

dence with the set of subspaces of dimension k in Rd. With the right geometry,

the latter is called the Grassmann manifold :

Gr(d, k) = { subspaces of dimension k in Rd } ≡ St(d, k)/O(k),

where the symbol ≡ reads “is equivalent to” (context indicates in what sense).

As defined here, the Grassmann manifold is a quotient manifold. This type of

1 Recall that an equivalence relation ∼ on a set M is a reflexive (a ∼ a), symmetric (a ∼
b ⇐⇒ b ∼ a) and transitive (a ∼ b and b ∼ c =⇒ a ∼ c) binary relation. The equivalence

class [a] is the set of elements of M that are equivalent to a. Each element of M belongs to

exactly one equivalence class.
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manifold is more abstract than embedded submanifolds, but we can still develop

numerically efficient tools to work with them.

Within our framework, computing the dominant eigenspace of dimension k of

the matrix XX⊤ can be written as:

max
[U ]∈Gr(d,k)

⟨XX⊤U,U⟩.

The cost function is well defined over Gr(d, k) since it depends only on the

equivalence class of U , not on U itself.

Going back to (2.4), we note in passing that k top left and right singular vectors

of a matrix M ∈ Rm×n can be computed by solving the following problem on

a product of Stiefel manifolds (this and (2.4) are sometimes called Brockett cost

functions):

max
U∈St(m,k),V ∈St(n,k)

⟨MV ,UD⟩ ,

where D = diag(α1, . . . , αk) with arbitrary α1 > · · · > αk > 0 as above.

A book by Trendafilov and Gallo provides more in-depth discussion of appli-

cations of optimization on manifolds to data analysis [TG21].

2.5 Synchronization of rotations: special orthogonal group

In structure from motion (SfM), the 3D structure of an object is to be recon-

structed from several 2D images of it. For example, in the paper Building Rome

in a Day [ASS+09], the authors automatically construct a model of the Colos-

seum from over 2000 photographs freely available on the Internet. Because the

pictures are acquired from an unstructured source, one of the steps in the re-

construction pipeline is to estimate camera locations and pose. The pose of a

camera is its orientation in space.

In single particle reconstruction through cryo electron microscopy, an electron

microscope is used to produce 2D tomographic projections of biological objects

such as proteins and viruses. Because shape is a determining factor of function,

the goal is to estimate the 3D structure of the object from these projections.

Contrary to X-ray crystallography (another fundamental tool of structural biol-

ogy), the orientations of the objects in the individual projections are unknown. In

order to estimate the structure, a useful step is to estimate the individual orien-

tations (though high noise levels do not always allow it, in which case alternative

statistical techniques must be used.)

Mathematically, orientations correspond to rotations of R3. Rotations in Rd

can be represented with orthogonal matrices:

SO(d) = {R ∈ Rd×d : R⊤R = Id and det(R) = +1}.

The determinant condition excludes reflections of Rd. The set SO(d) is the special
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12 Simple examples

orthogonal group: it is both a group (in the mathematical sense of the term) and

a manifold (an embedded submanifold of Rd×d)—it is a Lie group.

In both applications described above, similar images or projections can be

compared to estimate relative orientations. Synchronization of rotations is a

mathematical abstraction of the ensuing task. It consists in estimating n indi-

vidual rotation matrices,

R1, . . . , Rn ∈ SO(d),

from pairwise relative rotation measurements: for some pairs (i, j) corresponding

to the edges of a graph G, we observe a noisy version of RiR
−1
j . Let Hij ∈ SO(d)

denote such a measurement. Then, one possible formulation of synchronization

of rotations is:

min
R̂1,...,R̂n∈SO(d)

∑
(i,j)∈G

∥R̂i −HijR̂j∥2.

This is an optimization problem over SO(d)
n
, which is a manifold.

This also comes up in simultaneous localization and mapping (SLAM), whereby

a robot must simultaneously map its environment and locate itself in it as it

moves around [RDTEL21]. An important aspect of SLAM is to keep track of the

robot’s orientation accurately, by integrating all previously acquired information

to correct estimator drift.

2.6 Low-rank matrix completion: fixed-rank manifold

Let M ∈ Rm×n be a large matrix of interest. Given some of its entries, our task

is to estimate the whole matrix. A commonly cited application for this setup

is that of recommender systems, where row i corresponds to a user, column j

corresponds to an item (a movie, a book. . . ) and entry Mij indicates how much

user i appreciates item j: positive values indicate appreciation, zero is neutral,

and negative values indicate dislike. The known entries may be collected from

user interactions. Typically, most entries are unobserved. Predicting the missing

values may be helpful to automate personalized recommendations.

Of course, without further knowledge about how the entries of the matrix

are related, the completion task is ill-posed. Hope comes from the fact that

certain users share similar traits, so that what one user likes may be informative

about what another, similar user may like. In the same spirit, certain items may

be similar enough that whole groups of users may feel similarly about them.

One mathematically convenient way to capture this idea is to assume M has

(approximately) low rank. The rationale is as follows: if M has rank r, then it

can be factored as

M = LR⊤,

where L ∈ Rm×r and R ∈ Rn×r are full-rank factor matrices. Row i of L, ℓi,
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2.6 Low-rank matrix completion: fixed-rank manifold 13

attributes r numbers to user i, while the jth row of R, rj , attributes r numbers to

item j. Under the low-rank model, the rating of user i for item j is Mij = ⟨ℓi, rj⟩.
One interpretation is that there are r latent features (these could be movie genres

for example): a user has some positive or negative appreciation for each feature,

and an item has traits aligned with or in opposition to these features; the rating

is obtained as the inner product of the two feature vectors.

Under this model, predicting the user ratings for all items amounts to low-rank

matrix completion. Let Ω denote the set of pairs (i, j) such that Mij is observed.

Allowing for noise in the observations and inaccuracies in the model, we aim to

solve

min
X∈Rm×n

∑
(i,j)∈Ω

(Xij −Mij)
2

subject to rank(X) = r.

The search space for this optimization problem is the set of matrices of a given

size and rank:

Rm×n
r = {X ∈ Rm×n : rank(X) = r}.

This set is an embedded submanifold of Rm×n which is frequently useful in

machine learning applications.

Another use for this manifold is solving high-dimensional matrix equations

that may come up in systems and control applications: aiming for a low-rank

solution may be warranted in certain settings, and exploiting this can lower

the computational burden substantially. Yet another context where optimiza-

tion over low-rank matrices occurs is in completing and denoising approximately

separable bivariate functions based on sampled values [Van10, Van13, MV13].

The same set can also be endowed with other geometries, that is, it can be

made into a manifold in other ways. For example, exploiting the factored form

more directly, note that any matrix in Rm×n
r admits a factorization as LR⊤with

both L and R of full rank r. This correspondence is not one-to-one however,

since the pairs (L,R) and (LJ−1, RJ⊤) map to the same matrix in Rm×n
r for all

invertible matrices J : they are equivalent. Similarly to the Grassmann manifold,

this leads to a definition of Rm×n
r as a quotient manifold instead of an embedded

submanifold. Many variations on this theme are possible, some of them more

useful than others depending on the application [Mey11, Mis14].

The set Rm×n
r is not closed in Rm×n, which may create difficulties for op-

timization. The closure of the set corresponds to all matrices of rank at most

r (rather than exactly equal to r). That set is not a manifold, but it can be

smoothly parameterized by a manifold in several ways [LKB22b]. One particu-

larly simple way is through the map (L,R) 7→ LR⊤ where L and R are allowed

to be rank deficient.

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

14 Simple examples

2.7 Gaussian mixture models: positive definite matrices

A common model in machine learning assumes data x1, . . . , xn ∈ Rd are sampled

independently from a mixture of K Gaussians, that is, each data point is sampled

from a probability distribution with density of the form

f(x) =

K∑
k=1

wk
1√

2π det(Σk)
e−

(x−µk)⊤Σ
−1
k

(x−µk)

2 ,

where the centers µ1, . . . , µK ∈ Rd, covariances Σ1, . . . ,ΣK ∈ Sym(d)+ and

mixing probabilities (w1, . . . , wK) ∈ ∆K−1
+ are to be determined. We use the

following notation:

Sym(d)+ = {X ∈ Rd×d : X = X⊤ and X ≻ 0}

for symmetric, positive definite matrices of size d, and

∆K−1
+ = {w ∈ RK : w1, . . . , wK > 0 and w1 + · · ·+ wK = 1}

for the positive part of the simplex, that is, the set of non-vanishing discrete

probability distributions over K objects. In this model, with probability wk, a

point x is sampled from the kth Gaussian, with mean µk and covariance Σk.

The aim is only to estimate the parameters, not to estimate which Gaussian

each point xi was sampled from.

For a given set of observations x1, . . . , xn, a maximum likelihood estimator

solves:

max
µ̂1,...,µ̂K∈Rd,

Σ̂1,...,Σ̂K∈Sym(d)+,

w∈∆K−1
+

n∑
i=1

log

(
K∑

k=1

wk
1√

2π det(Σk)
e−

(xi−µk)⊤Σ
−1
k

(xi−µk)

2

)
. (2.5)

This is an optimization problem over Rd×K × (Sym(d)+)K ×∆K−1
+ , which can

be made into a manifold because Sym(d)+ and ∆K−1
+ can be given a manifold

structure.

The direct formulation of maximum likelihood estimation for Gaussian mixture

models in (2.5) is, however, not computationally favorable. See [HS15] for a

beneficial reformulation, still on a manifold.

2.8 Smooth semidefinite programs

Semidefinite programs (SDPs) are optimization problems of the form

min
X∈Sym(n)

⟨C,X⟩ subject to A(X) = b and X ⪰ 0, (2.6)

where Sym(n) is the space of real, symmetric matrices of size n × n, ⟨A,B⟩ =

Tr(A⊤B), A : Sym(n) → Rm is a linear map defined by m symmetric matrices

A1, . . . , Am as A(X)i = ⟨Ai, X⟩, and X ⪰ 0 means X is positive semidefinite.
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2.8 Smooth semidefinite programs 15

SDPs are convex and they can be solved to global optimality in polyno-

mial time using interior point methods [Nes18, §5.4.4]. Still, handling the pos-

itive semidefiniteness constraint X ⪰ 0 and the dimensionality of the problem

(namely, the n(n+1)
2 variables required to define X) both pose significant com-

putational challenges for large n.

A popular way to address both issues is the Burer–Monteiro approach [BM05],

which consists in factorizing X as X = Y Y ⊤ with Y ∈ Rn×p: the number p

of columns of Y is a parameter. Notice that X is now automatically positive

semidefinite. If p ≥ n, the SDP can be rewritten equivalently as

min
Y ∈Rn×p

⟨CY , Y ⟩ subject to A(Y Y ⊤) = b. (2.7)

If p < n, this corresponds to the SDP with the additional constraint rank(X) ≤ p.
There is a computational advantage to taking p as small as possible. Interestingly,

if the set of matrices X that are feasible for the SDP is compact, then the

Pataki–Barvinok bound [Pat98, Bar95] provides that at least one of the global

optimizers of the SDP has rank r such that r(r+1)
2 ≤ m. In other words: assuming

compactness, the Burer–Monteiro formulation (2.7) is equivalent to the original

SDP so long as p satisfies p(p+1)
2 ≥ m. This is already the case for p = O(

√
m),

which may be significantly smaller than n.

The positive semidefiniteness constraint disappeared, and the dimensionality

of the problem went from O(n2) to np—a potentially appreciable gain. Yet, we

lost something important along the way: the Burer–Monteiro problem is not

convex. It is not immediately clear how to solve it.

The search space of the Burer–Monteiro problem is the set of feasible Y :

M = {Y ∈ Rn×p : A(Y Y ⊤) = b}. (2.8)

Assume the map Y 7→ A(Y Y ⊤) has the property that its differential at all Y in

M has rank m. Then, M is an embedded submanifold of Rn×p. In this special

case, we may try to solve the Burer–Monteiro problem through optimization over

that manifold. It turns out that non-convexity is mostly benign in that scenario,

in a precise sense [BVB19]:

If M is compact and p(p+1)
2 > m, then, for a generic cost matrix C, the smooth

optimization problem minY ∈M ⟨CY , Y ⟩ has no spurious local minima, in the

sense that any point Y which satisfies first- and second-order necessary

optimality conditions is a global optimum.

(Necessary optimality conditions are detailed in Sections 4.2 and 6.1.) Addition-

ally, these global optima map to global optima of the SDP through X = Y Y ⊤.

This suggests that smooth-and-compact SDPs may be solved to global optimality

via optimization on manifolds. The requirement that M be a regularly defined

smooth manifold is not innocuous, but it is satisfied in a number of interesting

applications.

There has been a lot of work on this front in recent years, including the early

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

16 Simple examples

work by Burer and Monteiro [BM03, BM05], the first manifold-inspired perspec-

tive by Journée et al. [JBAS10], qualifications of the benign non-convexity at the

Pataki–Barvinok threshold [BVB16, BVB19] and below in special cases [BBV16],

a proof that p cannot be set much lower than that threshold in general [WW20],

smoothed analyses to assess whether points which satisfy necessary optimal-

ity conditions approximately are also approximately optimal [BBJN18, PJB18,

CM19] and extensions to accommodate scenarios where M is not a smooth

manifold but, more generally, a real algebraic variety [BBJN18, Cif21]. See all

these references for applications, including Max-Cut, community detection, the

trust-region subproblem, synchronization of rotations and more.
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3 Embedded geometry: first order

Our goal is to develop optimization algorithms to solve problems of the form

min
x∈M

f(x), (3.1)

whereM is a smooth and possibly nonlinear space, and f : M→ R is a smooth

cost function. In order to do so, our first task is to clarify what we mean by a

“smooth space,” and a “smooth function” on such a space. Then, we need to

develop any tools required to construct optimization algorithms in this setting.

Let us start with a bird’s-eye view of what this entails, and formalize later on.

For smoothness of M, our model space is the unit sphere in Rd:

Sd−1 = {x ∈ Rd : x⊤x = 1}. (3.2)

Intuitively, we think of Sd−1 as a smooth nonlinear space in Rd. Our definitions

below are compatible with this intuition: we call Sd−1 an embedded submanifold

of Rd.

An important element in these definitions is to capture the idea that Sd−1

can be locally approximated by a linear space around any point x: we call these

tangent spaces, denoted by TxSd−1. This is as opposed to a cube for which no

good linearization exists at the edges. More specifically for our example, Sd−1

is defined by the constraint x⊤x = 1. We may expect that differentiating this

constraint should yield a suitable linearization, and indeed it does:

TxSd−1 = {v ∈ Rd : v⊤x+ x⊤v = 0} = {v ∈ Rd : x⊤v = 0}. (3.3)

In the same spirit, it stands to reason that linear spaces and open subsets of

linear spaces should also be considered smooth, as they are locally linear too.

We say a function from Rd to R is smooth if it is infinitely differentiable. We

may expect that a function f : Sd−1 → R obtained by restriction to Sd−1 of a

smooth function on Rd ought to be considered smooth. We adopt (essentially)

this as our definition of smooth functions on Sd−1.

In this early chapter, we give a restricted definition of smoothness, focusing on

embedded submanifolds. This allows us to build our initial toolbox more rapidly,

and is sufficient to handle many applications. We extend our perspective to the

general framework later on, in Chapter 8.

To get started with a list of required tools, it is useful to review briefly the
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18 Embedded geometry: first order

main ingredients of optimization on a linear space E :

min
x∈E

f(x). (3.4)

For example, E = Rd or E = Rn×p. Perhaps the most fundamental algorithm to

address this class of problems is gradient descent, also known as steepest descent.

Given an initial guess x0 ∈ E , this algorithm produces iterates on E (a sequence

of points on E) as follows:1

xk+1 = xk − αkgradf(xk), k = 0, 1, 2, . . . (3.5)

where the αk > 0 are aptly chosen step-sizes and gradf : E → E is the gradient of

f . Under mild assumptions, the accumulation points of the sequence x0, x1, x2, . . .

have relevant properties for the optimization problem (3.4). We study these later,

in Chapter 4.

From this discussion, we can identify a list of desiderata for a geometric tool-

box, meant to solve

min
x∈Sd−1

f(x) (3.6)

with some smooth function f on the sphere. The most pressing point is to find

an alternative for the implicit use of linearity in (3.5). Indeed, above, both xk
and gradf(xk) are elements of E . Since E is a linear space, they can be combined

with linear operations. Putting aside for now the issue of defining a proper notion

of gradient for a function f on Sd−1, we must still contend with the issue that

Sd−1 is not a linear space: we have no notion of linear combination here.

Alternatively, we can reinterpret iteration (3.5) and say:

To produce xk+1 ∈ Sd−1, move away from xk along the direction −gradf(xk)

over some distance, while remaining on Sd−1.

Surely, if the purpose is to remain on Sd−1, it would make little sense to move

radially away from the sphere. Rather, using the notion that smooth spaces can

be linearized around x by a tangent space TxSd−1, we only consider moving along

directions in TxSd−1. To this end, we introduce the concept of retraction at x: a

map Rx : TxSd−1 → Sd−1 which allows us to move away from x smoothly along

a prescribed tangent direction while remaining on the sphere. One suggestion

might be as follows, with ∥u∥ =
√
u⊤u (see Figure 3.1):

Rx(v) =
x+ v

∥x+ v∥
. (3.7)

In this chapter, we give definitions that allow for this natural proposal.

It remains to make sense of the notion of gradient for a function on a smooth,

nonlinear space. Once more, we take inspiration from the linear case. For a

smooth function f : E → R, the gradient is defined with respect to an inner

1 Here, xk designates an element in a sequence x0, x1, . . . Sometimes, we also use subscript

notation such as xi to select the ith entry of a column vector x. Context tells which is meant.
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TxS
d−1

x

v

Rx(v)

Sd−1

Figure 3.1 Retraction Rx(v) =
x+v

∥x+v∥ on the sphere.

product ⟨·, ·⟩ : E × E → R (see Definition 3.1 below for a reminder): gradf(x) is

the unique element of E such that, for all v ∈ E ,

Df(x)[v] = ⟨v, gradf(x)⟩ , (3.8)

where Df(x) : E → R is the differential of f at x, that is, it is the linear map

defined by:

Df(x)[v] = lim
t→0

f(x+ tv)− f(x)

t
. (3.9)

Crucially, the gradient of f depends on a choice of inner product (while the

differential of f does not).

For example, on E = Rd equipped with the standard inner product

⟨u, v⟩ = u⊤v (3.10)

and the canonical basis e1, . . . , ed ∈ Rd (the columns of the identity matrix), the

ith coordinate of gradf(x) ∈ Rd is given by

gradf(x)i = ⟨ei, gradf(x)⟩ = Df(x)[ei]

= lim
t→0

f(x+ tei)− f(x)

t
≜

∂f

∂xi
(x), (3.11)

that is, the ith partial derivative of f as a function of x1, . . . , xd ∈ R. This covers

a case so common that it is sometimes presented as the definition of the gradient:

gradf =
[

∂f
∂x1

· · · ∂f
∂xd

]⊤
.

Turning to our nonlinear example again, in order to define a proper notion

of gradient for f : Sd−1 → R, we find that we need to (a) provide a meaningful
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notion of differential Df(x) : TxSd−1 → R, and (b) introduce inner products on

the tangent spaces of Sd−1. Let us focus on the latter for this outline.

Since TxSd−1 is a different linear subspace for various x ∈ Sd−1, we need a

different inner product for each point: ⟨·, ·⟩x denotes our choice of inner product

on TxSd−1. If this choice of inner products varies smoothly with x (in a sense we

make precise below), then we call it a Riemannian metric, and Sd−1 equipped

with this metric is called a Riemannian manifold. This allows us to define the

Riemannian gradient of f on Sd−1: gradf(x) is the unique tangent vector at x

such that, for all v ∈ TxSd−1,

Df(x)[v] = ⟨v, gradf(x)⟩x .

Thus, first we choose a Riemannian metric, then a notion of gradient ensues.

One arguably natural way of endowing Sd−1 with a metric is to exploit the

fact that each tangent space TxSd−1 is a linear subspace of Rd, so that we may

define ⟨·, ·⟩x by restricting the inner product of Rd (3.10) to TxSd−1: for all

u, v ∈ TxSd−1, ⟨u, v⟩x = ⟨u, v⟩. This is indeed a Riemannian metric, and Sd−1

endowed with this metric is called a Riemannian submanifold of Rd.

For Riemannian submanifolds, the Riemannian gradient is particularly simple

to compute. As per our definitions, f : Sd−1 → R is smooth if and only if there

exists a function f̄ : Rd → R, smooth in the usual sense, such that f and f̄

coincide on Sd−1. We will argue that

gradf(x) = Projx(gradf̄(x)), with Projx(v) = (Id − xx⊤)v,

where Projx : Rd → TxSd−1 is the orthogonal projector from Rd to TxSd−1

(orthogonal with respect to the inner product on Rd.) The functions f and f̄

often have the same analytical expression. For example, f(x) = x⊤Ax (for some

matrix A ∈ Rd×d) is smooth on Sd−1 because f̄(x) = x⊤Ax is smooth on Rd and

they coincide on Sd−1. To summarize:

For Riemannian submanifolds, the Riemannian gradient is the orthogonal

projection of the “classical” gradient to the tangent spaces.

With these tools in place, we can justify the following algorithm, an instance

of Riemannian gradient descent on Sd−1. Given x0 ∈ Sd−1, let

xk+1 = Rxk
(−αkgradf(xk)), with gradf(x) = (Id − xx⊤)gradf̄(x),

and Rx(v) =
x+ v

∥x+ v∥
,

where f̄ is a smooth extension of f to Rd. More importantly, these tools give

us a formal framework to design and analyze such algorithms on a large class of

smooth, nonlinear spaces.

We now proceed to construct precise definitions, starting with a few reminders

of linear algebra and multivariate calculus in linear spaces.
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3.1 Reminders of Euclidean space 21

3.1 Reminders of Euclidean space

The letter E always denotes a linear space (or vector space) over the reals, that is,

a set equipped with (and closed under) vector addition and scalar multiplication

by real numbers. Frequent examples include Rd (column vectors of length d),

Rn×p (matrices of size n × p), Sym(n) (real, symmetric matrices of size n),

Skew(n) (real, skew-symmetric matrices of size n), and their (linear) subspaces.

We write span(u1, . . . , um) to denote the subspace of E spanned by vectors

u1, . . . , um ∈ E . By extension, span(X) for a matrix X ∈ Rn×m denotes the

subspace of Rn spanned by the columns of X.

Given two linear spaces E and F , a linear map or linear operator is a map

L : E → F such that L(au + bv) = aL(u) + bL(v) for all u, v ∈ E and a, b ∈ R.

We let imL denote the image (or the range) of L, and we let kerL denote the

kernel (or null space) of L.

A basis for E is a set of vectors (elements of E) e1, . . . , ed such that each vector

x ∈ E can be expressed uniquely as a linear combination x = a1e1 + · · · + aded
with real coefficients a1, . . . , ad. All bases have the same number of elements,

called the dimension of E (dim E = d): it is always finite in our treatment. Each

basis induces a one-to-one linear map identifying E and Rd to each other: we

write E ≡ Rd.

Topology.
Recall that a topology on a set is a collection of subsets called open such that

(a) the whole set and the empty set are open, (b) any union of opens is open,

and (c) the intersection of a finite number of opens is open—more on this in

Section 8.2. A subset is closed if its complement is open. A subset may be open,

closed, both, or neither. We always equip Rd with its usual topology [Lee12,

Ex. A.6]. Each linear space E of dimension d inherits the topology of Rd through

their identification as above. A neighborhood of x in E is an open subset of

E which contains x. Some authors call such sets open neighborhoods. All our

neighborhoods are open, hence we omit the qualifier.

Euclidean structure.
It is useful to endow E with more structure.

Definition 3.1. An inner product on E is a function ⟨·, ·⟩ : E ×E → R with the

following properties. For all u, v, w ∈ E and a, b ∈ R, we have:

1. Symmetry: ⟨u, v⟩ = ⟨v, u⟩;
2. Linearity: ⟨au+ bv, w⟩ = a ⟨u,w⟩+ b ⟨v, w⟩; and

3. Positive definiteness: ⟨u, u⟩ ≥ 0 and ⟨u, u⟩ = 0 ⇐⇒ u = 0.

Two vectors u, v are orthogonal if ⟨u, v⟩ = 0.

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

22 Embedded geometry: first order

Definition 3.2. A linear space E with an inner product ⟨·, ·⟩ is a Euclidean

space. An inner product induces a norm on E called the Euclidean norm:

∥u∥ =
√
⟨u, u⟩. (3.12)

Definition 3.3. A basis u1, . . . , ud of a Euclidean space E is orthonormal if

∀ 1 ≤ i, j ≤ d, ⟨ui, uj⟩ =

{
1 if i = j,

0 otherwise.

The standard inner product on Rd and the associated norm are:

⟨u, v⟩ = u⊤v =
∑
i

uivi, ∥u∥ =

√∑
i

u2i . (3.13)

Similarly, the standard inner product on linear spaces of matrices such as Rn×p

and Sym(n) is the so-called Frobenius inner product, with its associated Frobenius

norm:

⟨U, V ⟩ = Tr(U⊤V ) =
∑
ij

UijVij , ∥U∥ =

√∑
ij

U2
ij , (3.14)

where Tr(M) =
∑

iMii is the trace of a matrix. Summations are over all entries.

When we do not specify it, we mean to use the standard inner product and norm.

We often use the following properties of the above inner product, with matrices

U, V,W,A,B of compatible sizes:

⟨U, V ⟩ = ⟨U⊤, V ⊤⟩, ⟨UA, V ⟩ = ⟨U, V A⊤⟩,
⟨BU, V ⟩ = ⟨U,B⊤V ⟩, ⟨U ⊙W,V ⟩ = ⟨U, V ⊙W ⟩, (3.15)

where ⊙ denotes entrywise multiplication (Hadamard product).

Although we only consider linear spaces over the reals, we can still handle

complex matrices. For example, Cn is a real linear space of dimension 2n. The

standard basis for it is e1, . . . , en, ie1, . . . , ien, where e1, . . . , en form the standard

basis of Rn (the columns of the identity matrix of size n), and i is the imaginary

unit. Indeed, any vector in Cn can be written uniquely as a linear combination of

those basis vectors using real coefficients. The standard inner product and norm

on Cn as a real linear space are:

⟨u, v⟩ = ℜ{u∗v} = ℜ

{∑
k

ūkvk

}
, ∥u∥ =

√∑
k

|uk|2, (3.16)

where u∗ is the Hermitian conjugate-transpose of u, ūk is the complex conjugate

of uk, |uk| is its magnitude and ℜ{a} is the real part of a. This perspective

is equivalent to identifying Cn with R2n, where real and imaginary parts are

considered as two vectors in Rn. Likewise, the set of complex matrices Cn×p is

a real linear space of dimension 2np, with the following standard inner product
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and norm:

⟨U, V ⟩ = ℜ{Tr(U∗V )} = ℜ

{∑
kℓ

ŪkℓVkℓ

}
, ∥U∥ =

√∑
kℓ

|Ukℓ|2. (3.17)

The analog of (3.15) in the complex case is:

⟨U, V ⟩ = ⟨U∗, V ∗⟩, ⟨UA, V ⟩ = ⟨U, V A∗⟩,
⟨BU, V ⟩ = ⟨U,B∗V ⟩, ⟨U ⊙W,V ⟩ = ⟨U, V ⊙ W̄ ⟩. (3.18)

A linear map between two Euclidean spaces has a unique adjoint, which we

now define. These are often useful in deriving gradients of functions—more on

this in Section 4.7.

Definition 3.4. Let E and F be two Euclidean spaces, with inner products ⟨·, ·⟩E
and ⟨·, ·⟩F , respectively. Let L : E → F be a linear map. The adjoint of L is the

linear map L∗ : F → E defined by the following property:

∀u ∈ E , v ∈ F , ⟨L(u), v⟩F = ⟨u,L∗(v)⟩E .

Definition 3.5. Let E be a Euclidean space with inner product ⟨·, ·⟩. If the linear

map A : E → E satisfies

∀u, v ∈ E , ⟨A(u), v⟩ = ⟨u,A(v)⟩ ,

that is, if A = A∗, we say A is self-adjoint or symmetric.

As we can see from (3.15) and (3.18), adjoints and matrix transposes are

intimately related: it is an exercise to make this precise.

Self-adjoint linear maps have important spectral properties.

Theorem 3.6 (Spectral theorem). A self-adjoint map A on a Euclidean space

E admits an orthonormal basis of eigenvectors v1, . . . , vd ∈ E associated to real

eigenvalues λ1, . . . , λd so that A(vi) = λivi for i = 1, . . . , d with d = dim E.

Definition 3.7. A self-adjoint map A on E is positive semidefinite if, for all

u ∈ E, we have ⟨u,A(u)⟩ ≥ 0; we write A ⪰ 0. Owing to the spectral theorem, this

is equivalent to all eigenvalues of A being nonnegative. Similarly, A is positive

definite if ⟨u,A(u)⟩ > 0 for all nonzero u ∈ E; we write A ≻ 0. This is equivalent

to all eigenvalues of A being positive.

Norms on vector spaces induce norms for linear maps.

Definition 3.8. The operator norm of L : E → F is defined as

∥L∥ = max
u∈E,u ̸=0

∥L(u)∥F
∥u∥E

,

where ∥ · ∥E and ∥ · ∥F denote the norms on the Euclidean spaces E and F ,

respectively.
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Equivalently, ∥L∥ is the smallest real such that ∥L(u)∥F ≤ ∥L∥∥u∥E for all u

in E . The singular values of L are the nonnegative square roots of the eigenvalues

of L∗ ◦ L, and ∥L∥ is the largest singular value of L. For a self-adjoint map A
with eigenvalues λ1, . . . , λd, it follows that ∥A∥ = max1≤i≤d |λi|.

Calculus.
We write F : A → B to designate a map F whose domain is all of A. If C is

a subset of A, we write F |C : C → B to designate the restriction of F to the

domain C, so that F |C(x) = F (x) for all x ∈ C.

Let U, V be open sets in two linear spaces E ,F . A map F : U → V is smooth

if it is infinitely differentiable (class C∞) on its domain. We also say that F is

smooth at a point x ∈ U if there exists a neighborhood U ′ of x such that F |U ′ is

smooth. Accordingly, F is smooth if it is smooth at all points in its domain.

If F : U → V is smooth at x, the differential of F at x is the linear map

DF (x) : E → F defined by

DF (x)[u] =
d

dt
F (x+ tu)

∣∣∣∣
t=0

= lim
t→0

F (x+ tu)− F (x)

t
. (3.19)

For a curve c : R→ E , we write c′ to denote its velocity: c′(t) = d
dtc(t).

For a smooth function f : E → R defined on a Euclidean space E , the (Eu-

clidean) gradient of f is the map gradf : E → E defined by the following property:

∀x, v ∈ E , ⟨gradf(x), v⟩ = Df(x)[v].

The (Euclidean) Hessian of f at x is the linear map Hessf(x) : E → E defined

by

Hessf(x)[v] = D(gradf)(x)[v] = lim
t→0

gradf(x+ tv)− gradf(x)

t
.

The Clairaut–Schwarz theorem implies that Hessf(x) is self-adjoint with respect

to the inner product of E .

Exercise 3.9 (Adjoint and transpose). Let u1, . . . , un form an orthonormal

basis of E. Likewise, let v1, . . . , vm form an orthonormal basis of F . Consider a

linear map L : E → F . For each 1 ≤ i ≤ n, the vector L(ui) is an element of F ;

therefore, it expands uniquely in the basis v1, . . . , vm as follows:

L(ui) =

m∑
j=1

Mjivj ,

where we collect the coefficients into a matrix M ∈ Rm×n. This matrix represents

L with respect to the chosen bases. Show that the matrix which represents L∗ with

respect to those same bases is M⊤: the transpose of M . In particular, a linear

map A : E → E is self-adjoint if and only if the matrix associated to it with

respect to the basis u1, . . . , un is symmetric.
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3.2 Embedded submanifolds of a linear space

We set out to define what it means for a subset M of a linear space E to be

smooth. Our main angle is to capture the idea that a smooth set can be linearized

in some meaningful way around each point. To make sense of what that might

mean, consider the sphere Sd−1. This is the set of vectors x ∈ Rd satisfying

h(x) = x⊤x− 1 = 0.

As we discussed in the introduction, it can be adequately linearized around each

point by the set (3.3). The perspective we used to obtain this linearization is

that of differentiating the defining equation. More precisely, consider a truncated

Taylor expansion of h:

h(x+ tv) = h(x) + tDh(x)[v] +O(t2).

If x is in Sd−1 and v is in ker Dh(x) (so that h(x) = 0 and Dh(x)[v] = 0), then

h(x + tv) = O(t2), indicating that x + tv nearly satisfies the defining equation

of Sd−1 for small t. This motivates us to consider the subspace ker Dh(x) as a

linearization of Sd−1 around x. Since

Dh(x)[v] = lim
t→0

h(x+ tv)− h(x)

t
= x⊤v + v⊤x = 2x⊤v,

the kernel of Dh(x) is the subspace orthogonal to x in Rd (with respect to the

usual inner product). This coincides with (3.3), arguably in line with intuition.

At first, one might think that if a set is defined by an equation of the form

h(x) = 0 with some smooth function h, then that set is smooth and can be

linearized by the kernels of Dh. However, this is not the case. Indeed, consider

the following example in R2 (see Figure 3.2):

X =
{
x ∈ R2 : h(x) = x21 − x22 = 0

}
.

The defining function h is smooth, yet the set X is a cross in the plane formed

by the union of the lines x1 = x2 and x1 = −x2. We want to exclude such sets

because of the kink at the origin. What went wrong with it? If we blindly use

the kernel of the differential to linearize X , we first determine

Dh(x) =

[
∂h

∂x1
(x),

∂h

∂x2
(x)

]
= [2x1,−2x2] .

At x = 0, Dh(0) = [0, 0], whose kernel is all of R2: that does not constitute a

reasonable linearization of X around the origin.

We can gain further insight into the issue at hand by considering additional

examples. The zero-sets of the functions h(x) = x21−x32 and h(x) = x21−x42 from

R2 to R, respectively, define a cusp and a double parabola, both of which fail

our intuitive test of smoothness at the origin. What the cross, cusp and double

parabola have in common is that the rank of Dh(x) suddenly drops from one to

zero at the origin, whereas for the sphere that rank is constant (and maximal)

on the whole set.
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Circle: x2
1 + x2

2 − 1 = 0 Cross: x2
1 − x2

2 = 0

Cusp: x2
1 − x3

2 = 0 Double parabola: x2
1 − x4

2 = 0

Figure 3.2 Four different sets S defined as the zero-sets of a smooth function from R2

to R. For each, the sets TxS (Definition 3.14) are drawn at a few different points. Only
the circle (top left) is an embedded submanifold of R2.

These observations motivate the definition below. Since smoothness is a local

notion, the definition is phrased in terms of what the setM looks like around each

point. Since a setM may be equivalently defined by many different functions h,

and since it may not be practical (or even possible, see Section 3.10) to define

all of M with a single function h, the definition allows for a different one to be

used around each point.

Definition 3.10. Let E be a linear space of dimension d. A non-empty subset

M of E is a (smooth) embedded submanifold of E of dimension n if either

1. n = d and M is open in E—we also call this an open submanifold; or

2. n = d − k for some k ≥ 1 and, for each x ∈ M, there exists a neighborhood

U of x in E and a smooth function h : U → Rk such that

(a) If y is in U , then h(y) = 0 if and only if y ∈M; and

(b) rank Dh(x) = k.

Such a function h is called a local defining function for M at x.

If M is a linear (sub)space, we also call it a linear manifold.
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Condition 2(a) in the previous definition can be stated equivalently as:

M∩ U = h−1(0) ≜ {y ∈ U : h(y) = 0}.

It is an exercise to verify that Definition 3.10 excludes various pathological sets

such as the cross (x21 = x22), cusp (x21 = x32) and double parabola (x21 = x42).

Differential geometry defines a broader class of smooth sets called (smooth)

manifolds. We typically omit the word ‘smooth’ as all of our manifolds are

smooth, though bear in mind that in the literature there exist different kinds of

manifolds, not all of which are smooth. Embedded submanifolds are manifolds.

When the statements we make hold true ⋆for smooth manifolds in general, we

use the word manifold (rather than embedded submanifold) to signal it. This is

common throughout Chapters 3 and 5.

The hope is that limiting our initial treatment of manifolds to embedded sub-

manifolds provides a more intuitive entry point to build all the tools we need for

optimization. This is all the more relevant considering that many of the manifolds

we encounter in applications are in fact embedded submanifolds, presented to us

as zero-sets of their local defining functions. All of our optimization algorithms

work on general manifolds. The general theory is in Chapter 8.

To build additional support for our definition of embedded submanifolds, we

further argue that small patches of M can be deformed into linear subspaces

in a smooth and smoothly invertible way. This captures an important feature

of smoothness, namely: upon zooming close to a point of M, what we see can

hardly be distinguished from what we would have seen had M been a linear

subspace of E .

Definition 3.11. A diffeomorphism is a bijective map F : U → V , where U, V

are open sets and such that both F and F−1 are smooth.

Theorem 3.12. Let E be a linear space of dimension d. A subset M of E is

an embedded submanifold of E of dimension n = d − k if and only if for each

x ∈ M there exists a neighborhood U of x in E, an open set V in Rd and a

diffeomorphism F : U → V such that F (M∩ U) = E ∩ V , where E = {y ∈ Rd :

yn+1 = · · · = yd = 0} is a linear subspace of Rd.

The main tool we need to prove Theorem 3.12 is the standard inverse function

theorem, stated here without proof [Lee12, Thm. C.34].

Theorem 3.13 (Inverse function theorem). Suppose U ⊆ E and V ⊆ F are

open subsets of linear spaces of the same dimension, and F : U → V is smooth.

If DF (x) is invertible at some point x ∈ U , then there exist neighborhoods U ′ ⊆ U
of x and V ′ ⊆ V of F (x) such that F |U ′ : U ′ → V ′ (the restriction of F to U ′

and V ′) is a diffeomorphism.

Equipped with this tool, we proceed to prove Theorem 3.12.

Proof of Theorem 3.12. We prove one direction of the theorem, namely: we as-

sume M is an embedded submanifold and construct diffeomorphisms F . The
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other direction is left as an exercise. For the latter, it is helpful to note that if

F is a diffeomorphism with inverse F−1, then DF (x) is invertible and

(DF (x))−1 = DF−1(F (x)). (3.20)

To see this, apply the chain rule to differentiate F−1 ◦ F , noting that this is

nothing but the identity map.

If n = d (that is, M is open in E), the claim is clear: simply let F be any

invertible linear map from E to Rd (for example, using a basis of E), and restrict

its domain and codomain to U =M and V = F (U).

We now consider the more interesting case where n = d − k with k ≥ 1. Let

h : U → Rk be any local defining function for M at x. We work in coordinates

on E , which is thus identified with Rd. Then, we can think of Dh(x) as a matrix

of size k×d. By assumption, Dh(x) has rank k. This means that it is possible to

pick k columns of that matrix which form a k × k invertible matrix. If needed,

permute the chosen coordinates so that the last k columns have that property

(this is without loss of generality). Then, we can write Dh(x) in block form so

that

Dh(x) =
[
A B

]
,

where B ∈ Rk×k is invertible and A is in Rk×(d−k). Now consider the function

F : U → Rd (recall U ⊆ E is the domain of h) defined by

F (y) = (y1, . . . , yd−k, h1(y), . . . , hk(y))⊤, (3.21)

where y1, . . . , yd denote the coordinates of y ∈ E . In order to apply the inverse

function theorem to F at x, we must verify that F is smooth—this is clear—and

that the differential of F at x is invertible. Working this out one row at a time,

we get the following expression for that differential:

DF (x) =

[
Id−k 0

A B

]
,

where Id−k is the identity matrix of size d−k, and 0 here denotes a zero matrix of

size (d−k)×k. The matrix DF (x) is invertible, as demonstrated by the following

expression for its inverse:

(DF (x))−1 =

[
Id−k 0

−B−1A B−1

]
. (3.22)

(Indeed, their product is Id.) Hence, the inverse function theorem asserts that we

may reduce U to a possibly smaller neighborhood of x so that F (now restricted

to that new neighborhood) is a diffeomorphism from U to V = F (U). The

property F (M∩ U) = E ∩ V follows by construction of F from the property

M∩ U = h−1(0).

In order to understand the local geometry of a set around a point, we aim to

describe acceptable directions of movement through that point. This is close in

spirit to the tools we look to develop for optimization, as they involve moving
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away from a point while remaining on the set. Specifically, for a subset M of a

linear space E , consider all the smooth curves of E which lie entirely on M and

pass through a given point x. Collect their velocities as they do so in a set TxM
defined below. In that definition, c is smooth in the usual sense as a map from

(an open subset of) R to E—two linear spaces.

Definition 3.14. Let M be a subset of E. For all x ∈M, define:

TxM = {c′(0) | c : I →M is smooth and c(0) = x} , (3.23)

where I is any open interval containing t = 0. That is, v is in TxM if and only

if there exists a smooth curve on M passing through x with velocity v.

Note that TxM is a subset of E . For the sphere, it is easy to convince oneself

that TxM coincides with the subspace in (3.3). We show in the next theorem

that this is always the case for embedded submanifolds.

Theorem 3.15. Let M be an embedded submanifold of E. Consider x ∈M and

the set TxM (3.23). If M is an open submanifold, then TxM = E. Otherwise,

TxM = ker Dh(x) with h any local defining function at x.

Proof. For open submanifolds, the claim is clear. By definition, TxM is included

in E . The other way around, for any v ∈ E , consider c(t) = x+tv: this is a smooth

curve from some non-empty interval around 0 to M such that c(0) = x, hence

v = c′(0) is in TxM. This shows E is included in TxM, so that the two coincide.

Now consider the case ofM an embedded submanifold of dimension n = d−k
with k ≥ 1. Let h : U → Rk be a local defining function of M around x. The

proof is in two steps. First, we show that TxM is included in ker Dh(x). Then, we

show that TxM contains a linear subspace of the same dimension as ker Dh(x).

These two facts combined indeed confirm that TxM = ker Dh(x).

Step 1. If v is in TxM, there exists c : I → M, smooth, such that c(0) = x

and c′(0) = v. Since c(t) is in M, we have h(c(t)) = 0 for all t ∈ I (if need

be, restrict the interval I to ensure c(t) remains in the domain of h). Thus, the

derivative of h ◦ c vanishes at all times:

0 =
d

dt
h(c(t)) = Dh(c(t))[c′(t)].

In particular, at t = 0 this implies Dh(x)[v] = 0, that is, v ∈ ker Dh(x). This

confirms TxM⊆ ker Dh(x).

Step 2. To show that TxM contains a subspace of the same dimension as

ker Dh(x) (namely, of dimension n = d − k), we must construct smooth curves

on M that pass through x with various velocities. To do so, we call upon Theo-

rem 3.12. The latter provides us with a diffeomorphism F : U → V (where U is

now a possibly smaller neighborhood of x than the original domain of h.) We use

F−1 to construct smooth curves onM that pass through x. Specifically, pick an
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arbitrary u ∈ Rd−k and let

γ(t) = F (x) + t

[
u

0

]
.

(Here, 0 denotes a zero vector of size k.) Notice that γ remains in E ∩ V for t

close to zero, where E is the subspace of Rd consisting of all vectors whose last

k entries are zero. Since F−1(E ∩ V ) =M∩ U , it follows that

c(t) = F−1(γ(t)) (3.24)

resides in M for t close to zero. Moreover, c(0) = x and c is smooth since F−1

is smooth. It follows that c is indeed a smooth curve on M passing through x.

What is the velocity of this curve at x? Applying the chain rule to (3.24), we get

c′(t) = DF−1(γ(t)) [γ′(t)].

In particular, at t = 0 we have

c′(0) = DF−1(F (x))

[
u

0

]
.

Since F is a diffeomorphism, we know from (3.20) that DF−1(F (x)) is an in-

vertible linear map, equal to (DF (x))−1. The specific form of c′(0) is unimpor-

tant. What matters is that each c′(0) of the form above certainly belongs to

TxM (3.23). Since DF−1(F (x)) is invertible and u ∈ Rd−k is arbitrary, this

means that TxM contains a subspace of dimension d−k. But we know from the

previous step that TxM is included in a subspace of dimension d − k, namely,

ker Dh(x). It follows that TxM = ker Dh(x). Since this holds for all x ∈M, the

proof is complete.

Thus, for an embedded submanifold M of dimension n = d− k, for each x in

M, the set TxM is a linear subspace of E of dimension n. These subspaces are

the linearizations of the smooth set M.

Definition 3.16. We call TxM the tangent space to M at x. Vectors in TxM
are called tangent vectors to M at x. The dimension of TxM (which is inde-

pendent of x) coincides with the dimension of M, denoted by dimM.

We consider three brief examples of embedded submanifolds: two obvious by

now, and one arguably less obvious. It is good to keep all three in mind when

assessing whether a certain proposition concerning embedded submanifolds is

likely to be true. Chapter 7 details further examples.

Example 3.17. The set Rd is a linear manifold of dimension d with tangent

spaces TxM = Rd for all x ∈ Rd. The affine space {x ∈ Rd : Ax = b} defined

by a matrix A ∈ Rk×d of rank k and arbitrary vector b ∈ Rk is a manifold of

dimension n = d− k embedded in Rd.
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Example 3.18. The sphere Sd−1 = {x ∈ Rd : x⊤x = 1} is the zero level set of

h(x) = x⊤x − 1, smooth from Rd to R. Since Dh(x)[v] = 2x⊤v, it is clear that

rank Dh(x) = 1 for all x ∈ Sd−1. As a result, Sd−1 is an embedded submanifold

of Rd of dimension n = d − 1. Furthermore, its tangent spaces are given by

TxSd−1 = ker Dh(x) = {v ∈ Rd : x⊤v = 0}.

Example 3.19. Let Sym(2)1 denote the set of symmetric matrices of size two

and rank one, that is,

Sym(2)1 =

{
X =

[
x1 x2
x2 x3

]
: rankX = 1

}
.

This is a subset of Sym(2), the linear space of symmetric matrices of size two.

The rank function is not a smooth map (it is not even continuous), hence we

cannot use it as a local defining function. Nevertheless, we can construct local

defining functions for Sym(2)1. Indeed, a matrix of size 2 × 2 has rank one if

and only if it is nonzero and its determinant is zero, hence:

Sym(2)1 =

{
X =

[
x1 x2
x2 x3

]
: x1x3 − x22 = 0 and X ̸= 0

}
.

Let U = Sym(2)\{0} be the open subset of Sym(2) obtained by removing the zero

matrix. Consider h : U → R defined by h(X) = x1x3 − x22. Clearly, h is smooth

and h−1(0) = Sym(2)1 ∩ U = Sym(2)1. Furthermore,

Dh(X)[Ẋ] = ẋ1x3 + x1ẋ3 − 2x2ẋ2 =
[
x3 −2x2 x1

] ẋ1ẋ2
ẋ3

 ,
where Ẋ is a matrix in Sym(2): the dot is a visual indication that we should

think of Ẋ as a perturbation of X. This linear map has rank one provided X ̸= 0,

which is always the case in the domain of h. Hence, h is a defining function for

Sym(2)1 around any X in Sym(2)1. This confirms that the latter is an embedded

submanifold of Sym(2) of dimension dim Sym(2) − 1 = 3 − 1 = 2. Its tangent

space at X is given by ker Dh(X):

TXSym(2)1 =

{
Ẋ =

[
ẋ1 ẋ2
ẋ2 ẋ3

]
: ẋ1x3 + x1ẋ3 − 2x2ẋ2 = 0

}
.

Contrary to the two previous examples, this manifold is neither open nor closed

in its embedding space. It is also not connected. Visualized in R3, it corresponds

to a double, infinite elliptic cone. Indeed, X ̸= 0 is in Sym(2)1 if and only if

(x1 + x3)2 = (2x2)2 + (x1 − x3)2.

After the linear change of variables z1 = x1 − x3, z2 = 2x2 and z3 = x1 + x3,

the defining equation becomes z21 + z22 = z23 , omitting the origin.
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32 Embedded geometry: first order

We can combine manifolds to form new ones. For instance, it is an exercise to

show that Cartesian products of manifolds are manifolds.2

Proposition 3.20. LetM,M′ be embedded submanifolds of E , E ′ (respectively).

Then, M×M′ is an embedded submanifold of E × E ′ of dimension dimM +

dimM′ with tangent spaces given by:

T(x,x′)(M×M′) = TxM× Tx′M′.

For example, after showing that the sphere Sd−1 is an embedded submanifold

of Rd, it follows that Sd−1 × · · · × Sd−1 = (Sd−1)k is an embedded submanifold

of (Rd)k ≡ Rd×k: it is called the oblique manifold OB(d, k).

In closing this section, we equip embedded submanifolds of E with the topology

induced by E .3 Having a topology notably allows us to define notions such as

local optima and convergence of sequences onM. Both are useful when studying

iterative optimization algorithms.

Definition 3.21. A subset U of M is open (resp., closed) in M if U is the

intersection of M with an open (resp., closed) subset of E. This is called the

subspace topology.

Echoing the conventions laid out in Section 3.1, our neighborhoods are open.

Definition 3.22. A neighborhood of x in M is an open subset of M which

contains x. By extension, a neighborhood of a subset of M is an open set of M
which contains that subset.

It is an exercise to show that open subsets of a manifoldM are manifolds; we

call them open submanifolds of M.

Proposition 3.23. Let M be an embedded submanifold of E. Any open subset

ofM is also an embedded (but not necessarily open) submanifold of E, with same

dimension and tangent spaces as M.

Exercise 3.24. Complete the proof of Theorem 3.12.

Exercise 3.25. Give a proof of Proposition 3.20.

Exercise 3.26. Give a proof of Proposition 3.23. In particular, deduce that the

relative interior of the simplex, that is,

∆d−1
+ = {x ∈ Rd : x1 + · · ·+ xd = 1 and x1, . . . , xd > 0}, (3.25)

is an embedded submanifold of Rd. This is useful to represent non-vanishing

discrete probability distributions. See also Exercise 3.41.

2 We collect facts about product manifolds along the way: see Table 7.2 for a summary.
3 About terminology: the general definition of submanifolds allows for other topologies. The

qualifier ‘embedded’ (some say ‘regular’) indicates we use the induced topology. More on

this in Section 8.14.
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3.3 Smooth maps on embedded submanifolds 33

Exercise 3.27. Show that the cross X = {x ∈ R2 : x21 = x22} is not an embedded

submanifold. It is not sufficient to show that x 7→ x21 − x22 is not a local defining

function at the origin: it is necessary to show that no local defining function

exists at that point. Hint: proceeding by contradiction, assume there exists a local

defining function around the origin and show that its kernel is too large.

Exercise 3.28. Show that the cusp C = {x ∈ R2 : x21 = x32} is not an embedded

submanifold. Hint: argue that T0C (as defined by (3.23)) is too low-dimensional.

Exercise 3.29. Show that the double parabola P = {x ∈ R2 : x21 = x42} is not

an embedded submanifold, yet TxP as defined by (3.23) is a linear subspace of

dimension one in R2 for all x ∈ P. This example shows that Definition 3.10

is more restrictive than just requiring all sets TxP to be subspaces of the same

dimension. Hint: proceeding by contradiction, assume P is an embedded subman-

ifold and call upon Theorem 3.12 to construct a special diffeomorphism F ; then,

derive a contradiction from the fact that P around the origin does not look like

a one-dimensional curve. Specifically, you may want to use the fact that it is

impossible to have three or more disjoint open intervals of the real line sharing

a common accumulation point.

3.3 Smooth maps on embedded submanifolds

Now that we have a notion of smooth sets, we can introduce the all important

notion of smooth maps between smooth sets. It relies heavily on the classical

notion of smooth maps between (open subsets of) linear spaces. In optimization,

two examples of maps between manifolds are cost functions (M → R) and

iteration maps (M→M); more will come up.

Definition 3.30. Let M and M′ be embedded submanifolds of E and E ′ (re-

spectively). A map F : M→M′ is smooth at x ∈ M if there exists a function

F̄ : U → E ′ which is smooth on a neighborhood U of x in E and such that F and

F̄ coincide on M∩ U , that is, F (y) = F̄ (y) for all y ∈ M ∩ U . We call F̄ a

(local) smooth extension of F around x. The map F is smooth if it is smooth

at all x ∈M.

In the above definition, F̄ is a map between open subsets of linear spaces:

for it to be smooth means it is infinitely differentiable on its domain, in the

usual sense. By definition, if F̄ is any smooth map on E , andM is an embedded

submanifold of E , then the restriction F = F̄ |M is smooth onM. This still holds

if F̄ is only defined on a neighborhood of M in E , that is, on an open subset of

E which contains M.

Conversely, the following proposition states that a smooth map on M admits

a smooth extension to a neighborhood ofM: there is no need to pick a different

local smooth extension around each point. While this fact is not needed to es-

tablish results hereafter, it is convenient to shorten exposition; so much so that
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34 Embedded geometry: first order

we typically think of it as the definition of a smooth map. See Section 3.10 for a

discussion.

Proposition 3.31. Let M and M′ be embedded submanifolds of E and E ′. A

map F : M → M′ is smooth if and only if F = F̄ |M where F̄ is some smooth

map from a neighborhood of M in E to E ′.

In particular, a real-valued function f : M→ R is smooth if and only if there

exists a smooth extension f̄ : U → R defined on a neighborhood U of M in E
and which coincides with f on M.

Definition 3.32. A scalar field on a manifold M is a function f : M→ R. If f

is a smooth function, we say it is a smooth scalar field. The set of smooth scalar

fields on M is denoted by F(M).

Smoothness is preserved under composition, and also under linear combina-

tions and products of maps when those are defined: see the exercises in the next

section.

Exercise 3.33. Give an example of an embedded submanifold M in a linear

space E and a smooth function f : M → R for which there does not exist a

smooth extension f̄ : E → R smooth on all of E. Hint: use Example 3.19, or use

Proposition 3.23 and consider removing a point from a simple manifold.

3.4 The differential of a smooth map

Let F̄ : U ⊆ E → E ′ be a smooth function between two linear spaces, possibly

restricted to an open set U . The differential of F̄ at x ∈ U is a linear map

DF̄ (x) : E → E ′ defined by:

DF̄ (x)[v] = lim
t→0

F̄ (x+ tv)− F̄ (x)

t
. (3.26)

This tells us how F̄ (x) changes when we push x along v. Applying this definition

to a smooth map F : M→M′ between two embedded submanifolds is problem-

atic because x+ tv generally does not belong toM, even for tiny nonzero values

of t: F may not be defined there.

We can propose to resolve this issue in at least two ways:

1. Rely on Definition 3.14: t 7→ x+ tv is nothing but a curve in E which passes

through x with velocity v; we can use curves on M instead.

2. Rely on Definition 3.30: we can smoothly extend F and differentiate the ex-

tension instead.

As it turns out, these two approaches are equivalent. We start with the first one

because it is more geometric: it gives the right picture of how things work on

general manifolds. The second one is convenient for computation.

For any tangent vector v ∈ TxM, there exists a smooth curve c onM passing
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M
M′

F

c(t) F (c(t))

x
v

F (x)
DF (x)[v]

Figure 3.3 A smooth map F : M → M′ pushes smooth curves c on M to smooth curves
F ◦ c on M′.

through x with velocity v. Then, t 7→ F (c(t)) itself defines a curve onM′ passing

through F (x). That curve is smooth by composition. Thus, it passes through

F (x) with a certain velocity. By definition, that velocity is a tangent vector of

M′ at F (x). We call this tangent vector the differential of F at x along v, denoted

by DF (x)[v]. See Figure 3.3.

Definition 3.34. The differential of F : M → M′ at the point x ∈ M is the

linear map DF (x) : TxM→ TF (x)M′ defined by:

DF (x)[v] =
d

dt
F (c(t))

∣∣∣∣
t=0

= (F ◦ c)′(0), (3.27)

where c is a smooth curve on M passing through x at t = 0 with velocity v.

We must clarify two things: (a) that this definition does not depend on the

choice of curve c (as many may satisfy the requirements), and (b) that DF (x) is

indeed linear. To do so, we connect with the second approach.

LetM andM′ be embedded submanifolds of E and E ′. Then, the smooth map

F : M→M′ admits a smooth extension F̄ : U → E ′, where U is a neighborhood

ofM in E and F = F̄ |M. Observe that F ◦ c = F̄ ◦ c. The latter is a composition

of functions between open subsets of linear spaces, hence the usual chain rule

applies:

DF (x)[v] =
d

dt
F (c(t))

∣∣∣∣
t=0

=
d

dt
F̄ (c(t))

∣∣∣∣
t=0

= DF̄ (c(0))[c′(0)] = DF̄ (x)[v]. (3.28)

This holds for all v ∈ TxM. We summarize as follows.

Proposition 3.35. With notation as above, DF (x) = DF̄ (x)|TxM.

This proposition confirms that DF (x) is linear since DF̄ (x) is linear. It also

shows that the definition by eq. (3.27) depends on c only through c(0) and c′(0),

as required.

One may now wonder whether eq. (3.28) depends on the choice of smooth

extension F̄ . It does not: that is clear from eq. (3.27). We can also verify it
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explicitly. Let F̂ be another smooth extension of F . Then, for all smooth curves

c with c(0) = x and c′(0) = v we have

DF̄ (x)[v] = (F̄ ◦ c)′(0) = (F̂ ◦ c)′(0) = DF̂ (x)[v].

Thus, the choice of smooth extension is inconsequential.

Example 3.36. Given a real, symmetric matrix A ∈ Sym(d), the Rayleigh

quotient at a nonzero vector x ∈ Rd is given by x⊤Ax
x⊤x

. Since this quotient is

invariant under scaling of x, we may restrict our attention to unit-norm vectors.

This yields a function on the sphere:

f : Sd−1 → R : x 7→ x⊤Ax.

As we will gradually rediscover, the extreme points (maxima and minima) of f

are tightly related to extremal eigenvectors of A. The function f can be smoothly

extended to Rd by f̄(x) = x⊤Ax, hence f is smooth according to Definition 3.30.

Using this smooth extension, we can also obtain an expression for its differential.

Indeed, for all v ∈ Rd,

Df̄(x)[v] = lim
t→0

f̄(x+ tv)− f̄(x)

t

= lim
t→0

(x+ tv)⊤A(x+ tv)− x⊤Ax
t

= x⊤Av + v⊤Ax

= x⊤(A+A⊤)v = 2x⊤Av.

Hence, Proposition 3.35 yields:

Df(x)[v] = Df̄(x)[v] = 2x⊤Av

for all v ∈ TxSd−1 = {v ∈ Rd : x⊤v = 0}. Formally, Df̄(x) is defined on all of

Rd while Df(x) is only defined on TxSd−1.

Exercise 3.37. For smooth maps F1, F2 : M→ E ′ and real numbers a1, a2, show

that F : x 7→ a1F1(x) + a2F2(x) is smooth and we have linearity:

DF (x) = a1DF1(x) + a2DF2(x).

Exercise 3.38. For smooth maps f : M → R and G : M → E ′, show that

fG : x 7→ f(x)G(x) is smooth from M to E ′ and we have a product rule:

D(fG)(x)[v] = Df(x)[v] ·G(x) + f(x) ·DG(x)[v].

(The dots · are only used to clarify the factors of the product visually.)

Exercise 3.39. Let F : M→M′ and G : M′ →M′′ be smooth, where M,M′
and M′′ are embedded submanifolds of E , E ′ and E ′′, respectively. Show that

composition preserves smoothness, that is, G ◦ F : x 7→ G(F (x)) is smooth. Also

show that we have a chain rule:

D(G ◦ F )(x)[v] = DG(F (x))[DF (x)[v]]. (3.29)
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Exercise 3.40. Let M,M′,N be three manifolds, and consider a smooth map

F : M×M′ → N (see Proposition 3.20 for the product manifold.) Show that

DF (x, y)[(u, v)] = D
(
x 7→ F (x, y)

)
(x)[u] + D

(
y 7→ F (x, y)

)
(y)[v],

where (x, y) ∈ M ×M′ and (u, v) ∈ T(x,y)(M ×M′) = TxM × TyM′ are

arbitrary. The notation x 7→ F (x, y) denotes the function fromM to N obtained

by fixing the second input of F to y.

Exercise 3.41. Let M be an embedded submanifold of a linear space E, and let

N be a subset of M defined by N = g−1(0), where g : M → Rℓ is smooth and

rank Dg(x) = ℓ for all x ∈ N . Show that N is itself an embedded submanifold of

E, of dimension dimM−ℓ, with tangent spaces TxN = ker Dg(x) ⊂ TxM. Here,

we assume ℓ ≥ 1; see also Exercise 3.26. We call N an embedded submanifold

of M; see also Section 8.14.

3.5 Vector fields and the tangent bundle

A map V which associates to each point x ∈ M a tangent vector at x is called

a vector field on M. For example, the gradient of a function f : M → R (still

to be defined) is a vector field. In order to define a notion of smooth vector

field, we need to present V as a map between manifolds. Since the range of V

includes tangent vectors from all possible tangent spaces of M, the first step

is to introduce the tangent bundle: this is the disjoint union of all the tangent

spaces ofM. By “disjoint” we mean that, for each tangent vector v ∈ TxM, we

retain the pair (x, v) rather than simply v. This is important to avoid ambiguity

because some tangent vectors, seen as vectors in E , may belong to more than

one tangent space. For example, the zero vector belongs to all of them.

Definition 3.42. The tangent bundle of a manifold M is the disjoint union of

the tangent spaces of M:

TM = {(x, v) : x ∈M and v ∈ TxM}. (3.30)

With some abuse of notation, for a tangent vector v ∈ TxM, we sometimes

conflate the notions of v and (x, v). We may write (x, v) ∈ TxM, or even v ∈
TM if it is clear from context that the base of v is x.

The tangent bundle is a manifold.

Theorem 3.43. IfM is an embedded submanifold of E, the tangent bundle TM
is an embedded submanifold of E × E of dimension 2 dimM.

Proof. For open submanifolds, the claim is clear: TxM = E for each x ∈ M,

hence TM = M × E . This is an open subset of E × E , hence it is an open

submanifold of that space.

Considering the other case, pick an arbitrary point x̄ ∈M and let h : U → Rk
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be a local defining function for M at x̄, that is, U is a neighborhood of x̄ in E ,

h is smooth, M∩ U = {x ∈ U : h(x) = 0}, and Dh(x̄) : E → Rk has rank k.

If needed, restrict the domain U to secure the property rank Dh(x) = k for

all x ∈ U : this is always possible, see Lemma 3.74. Then, we can claim that

TxM = ker Dh(x) for all x ∈ M∩ U . Consequently, a pair (x, v) ∈ U × E is in

TM if and only if it satisfies the following equations:

h(x) = 0 and Dh(x)[v] = 0.

Accordingly, define the smooth function H : U × E → R2k as:

H(x, v) =

[
h(x)

Dh(x)[v]

]
.

The aim is to show that H is a local defining function for TM. We already

have that TM∩ (U × E) = H−1(0). If we establish that DH(x, v) has rank 2k

for all (x, v) ∈ TM∩ (U × E), we will have shown that TM is an embedded

submanifold of E × E . Let us compute the differential of H (we know it exists

since h is smooth):

DH(x, v)[ẋ, v̇] =

[
Dh(x)[ẋ]

L(x, v)[ẋ] + Dh(x)[v̇]

]
=

[
Dh(x) 0

L(x, v) Dh(x)

] [
ẋ

v̇

]
,

where L(x, v) : E → E is some linear map which depends on both x and v (it

involves the second derivative of h, but its specific form is irrelevant to us.) The

block triangular form of DH(x, v) allows us to conclude that rank DH(x, v) =

rank Dh(x) + rank Dh(x) = 2k, as required. Indeed, The rank is at most 2k

because H maps into R2k, and the rank is at least 2k because the two diagonal

blocks each have rank k. Since we can build such H on a neighborhood of any

point in TM, we conclude that TM is an embedded submanifold of E × E . For

the dimension, use T(x,v)TM = ker DH(x, v) and the rank-nullity theorem to

conclude that dim TM = dim T(x,v)TM = 2 dim E − 2k = 2 dimM.

The topology we choose for TM is the embedded submanifold topology, as

in Definition 3.21. This is different from the so-called disjoint union topology,

which we never use. In Lemma 4.21, we argue that T(x,0)TM = TxM× TxM.

Since TM is a manifold, we can now use Definition 3.30 to define smooth

vector fields as particular smooth maps from M to TM. Be aware that some

authors refer to smooth vector fields as vector fields.

Definition 3.44. A vector field on a manifold M is a map V : M→ TM such

that V (x) is in TxM for all x ∈M. If V is a smooth map, we say it is a smooth

vector field. The set of smooth vector fields is denoted by X(M).

A vector field on an embedded submanifold is smooth if and only if it is the

restriction of a smooth vector field on a neighborhood of M in the embedding

space.
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Proposition 3.45. For M an embedded submanifold of E, a vector field V on

M is smooth if and only if there exists a smooth vector field V̄ on a neighborhood

of M such that V = V̄ |M.

Proof. Assume V : M→ TM is a smooth vector field onM. Then, since TM is

an embedded submanifold of E ×E , by Proposition 3.31, there exists a neighbor-

hood U ofM in E and a smooth function ¯̄V : U → E×E such that V = ¯̄V |M. De-

note the two components of ¯̄V as ¯̄V (x) = ( ¯̄V1(x), ¯̄V2(x)). Of course, ¯̄V1,
¯̄V2 : U → E

are smooth. Define V̄ (x) = (x, ¯̄V2(x)): this is a smooth vector field on U such

that V = V̄ |M. The other direction is clear.

In closing, we note a useful identification for the tangent bundle of a product

manifoldM×M′ (Proposition 3.20) which amounts to reordering parameters:

T(M×M′) = {((x, x′), (v, v′)) : x ∈M, v ∈ TxM, x′ ∈M′, v′ ∈ Tx′M′}
≡ {((x, v), (x′, v′)) : x ∈M, v ∈ TxM, x′ ∈M′, v′ ∈ Tx′M′}
= TM× TM′. (3.31)

Exercise 3.46. For f ∈ F(M) and V,W ∈ X(M), verify that the vector fields

fV and V + W are smooth, where we define (fV )(x) = f(x)V (x) and also

(V + W )(x) = V (x) + W (x). For pointwise scaling, we purposefully write fV

and not V f . Later, ⋆we will give a different meaning to the notation V f (see p89).

3.6 Moving on a manifold: retractions

Given a point x ∈ M and a tangent vector v ∈ TxM, we often need to move

away from x along the direction v while remaining on the manifold: this is the

basic operation of a gradient descent algorithm, and of essentially all optimization

algorithms on manifolds. We can achieve this by following any smooth curve c on

M such that c(0) = x and c′(0) = v, but of course there exist many such curves.

A retraction picks a particular curve for each possible (x, v) ∈ TM. Furthermore,

this choice of curve depends smoothly on (x, v), in a sense we make precise using

the fact that the tangent bundle TM is a manifold.

Definition 3.47. A retraction on a manifold M is a smooth map

R: TM→M : (x, v) 7→ Rx(v)

such that each curve c(t) = Rx(tv) satisfies c(0) = x and c′(0) = v.

For M embedded in E , smoothness of R is understood in the sense of Defini-

tion 3.30 for a map from TM to M, that is, R is smooth if and only if there

exists a smooth map R from a neighborhood of TM in E × E into E such that

R = R|TM.

Let us illustrate this concept through examples. Chapter 7 has more.

Example 3.48. On a linear manifold, Rx(v) = x+ v is a retraction.
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Example 3.49. Let x be a point on the sphere Sd−1 and let v be tangent at x,

that is, x⊤v = 0. To move away from x along v while remaining on the sphere,

one way is to take the step in Rd then to project back to the sphere:

Rx(v) ≜
x+ v

∥x+ v∥
=

x+ v√
1 + ∥v∥2

. (3.32)

Consider the curve c : R→ Sd−1 defined by:

c(t) = Rx(tv) =
x+ tv√

1 + t2∥v∥2
.

Evidently, c(0) = x. Moreover, one can compute c′(0) = v, that is, locally around

x, up to first order, the retraction curve moves along v. To verify that R (3.32)

is smooth, check that Rx(v) ≜ (x + v)/
√

1 + ∥v∥2 is a smooth extension to all

of Rd × Rd. This is an example of a retraction based on metric projection: we

study them in Section 5.12.

Another reasonable choice is to move away from x along a great circle:

Rx(v) ≜ cos(∥v∥)x+
sin(∥v∥)
∥v∥

v, (3.33)

with the usual convention sin(0)/0 = 1. Indeed, the curve

c(t) = Rx(tv) = cos(t∥v∥)x+
sin(t∥v∥)
∥v∥

v

traces out the great circle on Sd−1 passing through x at t = 0 with velocity c′(0) =

v. With the right Riemannian metric (Section 3.7), such curves are geodesics

(Section 5.8) and the retraction (3.33) is the exponential map (Section 10.2).

It is also common to define retractions without referring to curves. To see how,

let Rx : TxM → M denote the restriction of a smooth map R: TM → M to

the tangent space at x. By the chain rule, each curve c(t) = Rx(tv) satisfies

c(0) = Rx(0) and c′(0) = DRx(0)[v].

Thus, R is a retraction exactly if, for all (x, v) ∈ TM, we have

1. Rx(0) = x, and

2. DRx(0) : TxM→ TxM is the identity map: DRx(0)[v] = v.

This characterization of retractions is equivalent to Definition 3.47.

Sometimes, it is convenient to relax the definition of retraction to allow maps

R that are defined only on an open subset of the tangent bundle, provided all

zero vectors belong to its domain. For example, this is the case for the manifold

of fixed-rank matrices (Section 7.5).

Exercise 3.50. Let M,M′ be equipped with retractions R,R′. Show that the

map R′′ : T(M×M′)→M×M′ defined by R′′(x,x′)(v, v
′) = (Rx(v),R′x′(v′)) is

a valid retraction for the product manifold M×M′.
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3.7 Riemannian manifolds and submanifolds

It is convenient to equip each tangent space of the manifold M with an inner

product (recall Definition 3.1). This is the key ingredient to define gradients in

the next section. Since there are now many inner products (one for each point

on the manifold), we distinguish them with a subscript. That said, it is common

to omit the subscript when it is clear from context: we do so on occasion in later

chapters.

Definition 3.51. An inner product on TxM is a bilinear, symmetric, positive

definite function ⟨·, ·⟩x : TxM× TxM→ R. It induces a norm for tangent vec-

tors: ∥u∥x =
√
⟨u, u⟩x. A metric on M is a choice of inner product ⟨·, ·⟩x for

each x ∈M.

Of particular interest are metrics which, in some sense, vary smoothly with

x. To give a precise meaning to this requirement, the following definition builds

upon the notions of smooth scalar and vector fields.

Definition 3.52. A metric ⟨·, ·⟩x on M is a Riemannian metric if it varies

smoothly with x, in the sense that for all smooth vector fields V,W on M the

function x 7→ ⟨V (x),W (x)⟩x is smooth from M to R.

Definition 3.53. A Riemannian manifold is a manifold with a Riemannian

metric.

A Euclidean space is a linear space E with an inner product ⟨·, ·⟩ (the same at

all points)—we call it the Euclidean metric. When M is an embedded subman-

ifold of a Euclidean space E , the tangent spaces of M are linear subspaces of E .

This suggests a particularly convenient way of defining an inner product on each

tangent space: simply restrict the inner product of E to each one. The resulting

metric on M is called the induced metric. As we now show, the induced metric

is a Riemannian metric, leading to the notion of Riemannian submanifold.

Proposition 3.54. LetM be an embedded submanifold of E, and let ⟨·, ·⟩ be the

Euclidean metric on E. Then, the metric on M defined at each x by restriction,

⟨u, v⟩x = ⟨u, v⟩ for u, v ∈ TxM, is a Riemannian metric.

Proof. For any two smooth vector fields V,W ∈ X(M), let V̄ , W̄ be two smooth

extensions of V,W to a neighborhood U of M in E . Then, consider g(x) =

⟨V (x),W (x)⟩x (a function on M) and let ḡ(x) = ⟨V̄ (x), W̄ (x)⟩ (a function on

U). Clearly, ḡ is smooth and g = ḡ|M. Hence, g is smooth.

Definition 3.55. Let M be an embedded submanifold of a Euclidean space E.

Equipped with the Riemannian metric obtained by restriction of the metric of E,

we call M a Riemannian submanifold of E.

This is arguably the most common type of Riemannian manifold in applica-

tions. Be mindful ⋆that a Riemannian submanifold is not merely a submanifold

with some Riemannian structure: the words single out a precise choice of metric.

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

42 Embedded geometry: first order

Example 3.56. Endow Rd with the standard metric ⟨u, v⟩ = u⊤v and consider

the sphere Sd−1 = {x ∈ Rd : ∥x∥ = 1}, embedded in Rd. With the inherited

metric ⟨u, v⟩x = ⟨u, v⟩ = u⊤v on each tangent space TxSd−1, the sphere becomes

a Riemannian submanifold of Rd.

Example 3.57. Let M,M′ be Riemannian manifolds with metrics ⟨·, ·⟩M and

⟨·, ·⟩M
′
, respectively. Recall from Proposition 3.20 that the product M×M′ is

itself a manifold. The product metric ⟨·, ·⟩ on M×M′ is defined as follows. For

(u, u′), (v, v′) in the tangent space T(x,x′)(M×M′),

⟨(u, u′), (v, v′)⟩(x,x′) = ⟨u, v⟩Mx + ⟨u′, v′⟩M
′

x′ .

It is an exercise to show that this is a Riemannian metric (see Exercise 3.73).

With this metric, we call M×M′ a Riemannian product manifold.

3.8 Riemannian gradients

LetM be a Riemannian manifold, that is, a manifold with a Riemannian metric.

Given a smooth function f : M → R, we are finally in a position to define its

gradient.

Definition 3.58. Let f : M→ R be smooth on a Riemannian manifoldM. The

Riemannian gradient of f is the vector field gradf on M uniquely defined by the

following identities:

∀(x, v) ∈ TM, Df(x)[v] = ⟨v, gradf(x)⟩x , (3.34)

where Df(x) is as in Definition 3.34 and ⟨·, ·⟩x is the Riemannian metric.

It is an exercise to show that (3.34) indeed uniquely determines gradf(x) for

each x in M, confirming gradf is well defined.

To work out the gradient of f , the preferred way is to obtain an expression for

Df(x)[v] and to manipulate it until it takes the form ⟨v, ·⟩x, where · is tangent at

x. That yields the gradient by uniqueness. We discuss this more in Section 4.7.

Alternatively, an indirect approach is through retractions as follows.

Proposition 3.59. Let f : M → R be a smooth function on a Riemannian

manifold M equipped with a retraction R. Then, for all x ∈M,

gradf(x) = grad(f ◦ Rx)(0), (3.35)

where f ◦Rx : TxM→ R is defined on a Euclidean space (the linear space TxM
with inner product ⟨·, ·⟩x), hence its gradient is a “classical” gradient. See also

Exercise 10.73 for the gradient of f ◦ Rx away from the origin.

Proof. By the chain rule, for all tangent vectors v ∈ TxM,

D(f ◦ Rx)(0)[v] = Df(Rx(0))[DRx(0)[v]] = Df(x)[v],

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

3.8 Riemannian gradients 43

since Rx(0) = x and DRx(0) is the identity map (these are the defining properties

of retractions). Using the definition of gradient for both f ◦Rx and f we conclude

that, for all v ∈ TxM,

⟨grad(f ◦ Rx)(0), v⟩x = ⟨gradf(x), v⟩x .

The claim follows by uniqueness of the gradient.

SayM is embedded in the Euclidean space E with Euclidean metric ⟨·, ·⟩ (for

now, that metric may or may not be related to the Riemannian metric on M).

Since f is smooth, it has a smooth extension f̄ defined on a neighborhood ofM
in E . The latter has a Euclidean gradient gradf̄ . Combining (3.28) with (3.34),

we find:

∀(x, v) ∈ TM, ⟨v, gradf(x)⟩x = Df(x)[v]

= Df̄(x)[v] = ⟨v, gradf̄(x)⟩. (3.36)

The core observation is: TxM is a subspace of E , and gradf̄(x) is a vector in E ;

as such, the latter can be uniquely decomposed in E as

gradf̄(x) = gradf̄(x)∥ + gradf̄(x)⊥,

with one component in TxM and the other orthogonal to TxM, orthogonality

being judged by the inner product of E . Explicitly, gradf̄(x)∥ is in TxM and

∀v ∈ TxM,
〈
v, gradf̄(x)⊥

〉
= 0.

As a result, we get from (3.36) that, for all (x, v) in TM,

⟨v, gradf(x)⟩x =
〈
v, gradf̄(x)

〉
=
〈
v, gradf̄(x)∥ + gradf̄(x)⊥

〉
=
〈
v, gradf̄(x)∥

〉
. (3.37)

This relates the Riemannian gradient of f and the Euclidean gradient of f̄ .

Now further assume that M is a Riemannian submanifold of E . Then, since

gradf̄(x)∥ is tangent at x and since the Riemannian metric is merely a restriction

of the Euclidean metric to the tangent spaces, we find:

∀(x, v) ∈ TM, ⟨v, gradf(x)⟩x = ⟨v, gradf̄(x)∥⟩x.

By identification, it follows that, for Riemannian submanifolds,

gradf(x) = gradf̄(x)∥. (3.38)

In other words: to determine gradf , first obtain an expression for the (classical)

gradient of any smooth extension of f , then orthogonally project to the tangent

spaces. This is a practical recipe because we often have access to a smooth

extension. It motivates us to introduce orthogonal projectors.

Definition 3.60. Let M be an embedded submanifold of a Euclidean space E
equipped with a Euclidean metric ⟨·, ·⟩. The orthogonal projector to TxM is the

linear map Projx : E → E characterized by the following properties:
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1. Range: im(Projx) = TxM;

2. Projector: Projx ◦ Projx = Projx;

3. Orthogonal: ⟨u− Projx(u), v⟩ = 0 for all v ∈ TxM and u ∈ E.

For an open submanifold, Projx is the identity because TxM = E . The useful

proposition below summarizes the above discussion.

Proposition 3.61. Let M be a Riemannian submanifold of E endowed with the

metric ⟨·, ·⟩ and let f : M→ R be a smooth function. The Riemannian gradient

of f is given by

gradf(x) = Projx(gradf̄(x)), (3.39)

where f̄ is any smooth extension of f to a neighborhood of M in E.

Example 3.62. We continue with the Rayleigh quotient from Example 3.36:

f(x) = x⊤Ax. Equip Rd with the standard Euclidean metric ⟨u, v⟩ = u⊤v. Then,

using A = A⊤, for all v ∈ Rd,

Df̄(x)[v] = 2x⊤Av = ⟨2Ax, v⟩ .

Hence, by identification with Definition 3.58,

gradf̄(x) = 2Ax.

To get a notion of gradient for f on Sd−1, we need to choose a Riemannian metric

for Sd−1. One convenient choice is to turn Sd−1 into a Riemannian submanifold

of Rd by endowing it with the induced Riemannian metric. In that scenario,

Proposition 3.61 suggests we should determine the orthogonal projectors of Sd−1.

For the chosen Euclidean metric,

TxSd−1 = {v ∈ Rd : x⊤v = 0} = {v ∈ Rd : ⟨x, v⟩ = 0}

is the orthogonal complement of x in Rd. Thus, orthogonal projection from Rd

to that tangent space simply removes any component aligned with x:

Projx(u) = u− (x⊤u)x = (Id − xx⊤)u. (3.40)

It follows that the Riemannian gradient of f on Sd−1 is:

gradf(x) = Projx(gradf̄(x)) = 2
(
Ax− (x⊤Ax)x

)
.

Notice something quite revealing: for x ∈ Sd−1,

gradf(x) = 0 ⇐⇒ Ax = (x⊤Ax)︸ ︷︷ ︸
some scalar

x.

In words: all points where the Riemannian gradient vanishes are eigenvectors

of A. Conversely: the gradient vanishes at all unit-norm eigenvectors of A. This

basic observation is crucial to understand the behavior of optimization algorithms

for f on Sd−1.

Orthogonal projectors are self-adjoint (Definition 3.5).
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Proposition 3.63. Let Projx be the orthogonal projector from E to a linear

subspace of E. Then, Projx is self-adjoint. Explicitly:

∀u, v ∈ E , ⟨u,Projx(v)⟩ = ⟨Projx(u), v⟩ ,

where ⟨·, ·⟩ is the Euclidean metric on E.

Proof. From the properties of orthogonal projectors, for all u, v ∈ E :

0 = ⟨u− Projx(u),Projx(v)⟩
= ⟨u,Projx(v)⟩ − ⟨Projx(u),Projx(v)⟩
= ⟨u,Projx(v)⟩ − ⟨Projx(u), v − (v − Projx(v))⟩
= ⟨u,Projx(v)⟩ − ⟨Projx(u), v⟩+ ⟨Projx(u), v − Projx(v)⟩︸ ︷︷ ︸

=0

.

This concludes the proof.

Exercise 3.64. Show that gradf(x) is uniquely defined by (3.34).

Exercise 3.65. We noted that the relative interior of the simplex, namely,

M = ∆d−1
+ =

{
x ∈ Rd : x1, . . . , xd > 0 and x1 + · · ·+ xd = 1

}
,

is an embedded submanifold of Rd (Exercise 3.26). Its tangent spaces are:

TxM =
{
v ∈ Rd : v1 + · · ·+ vd = 0

}
.

Show that ⟨u, v⟩x =
∑d

i=1
uivi
xi

defines a Riemannian metric onM. This is called

the Fisher–Rao metric. Consider a smooth function f : M → R and a smooth

extension f̄ on a neighborhood ofM in Rd (equipped with the canonical Euclidean

metric). Give an expression for gradf(x) in terms of gradf̄(x).

Note: This exercise provides an example where gradf(x) is not simply the pro-

jection of gradf̄(x) to TxM. This is because, while M is an embedded submani-

fold of Rd and it is a Riemannian manifold, it is not a Riemannian submanifold

of Rd.

Exercise 3.66. Let E be a Euclidean space, and let L(E , E) denote the set of

linear maps from E into itself: this is a linear space. If E is identified with Rd,

then L(E , E) is identified with Rd×d. ForM an embedded submanifold of E, show

that the map (recall Definition 3.60)

Proj : M→ L(E , E) : x 7→ Projx

is smooth. Deduce that, if f : M → R is a smooth function on a Riemannian

submanifold of E, then the Riemannian gradient of f is a smooth vector field.

Note: It is true in general that the Riemannian gradient of a smooth function

is smooth, but with the tools we have developed so far the proof is substantially

simpler for Riemannian submanifolds. See Section 3.9 for the more general case.
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Exercise 3.67. For a smooth function f : M ×M′ → R on a Riemannian

product manifold (see Example 3.57), show that

gradf(x, y) =
(

grad
(
x 7→ f(x, y)

)
(x), grad

(
y 7→ f(x, y)

)
(y)
)
,

where x 7→ f(x, y) is the function from M to R obtained from f by fixing the

second input to y, and similarly for y 7→ f(x, y).

3.9 Local frames*

This section introduces a technical tool which proves useful in certain proofs.

A reader focused on Riemannian submanifolds can safely skip it. We show that

embedded submanifolds admit local frames (as defined below) around all points.

As a first application, we use local frames to show that the gradient of a smooth

function is a smooth vector field. Contrast this with Exercise 3.66 which is re-

stricted to Riemannian submanifolds. The section goes on to sketch a proof of a

more general result known as the musical isomorphism.

Definition 3.68. Given a point x on a manifold M of dimension n, a lo-

cal frame around x is a set of smooth vector fields W1, . . . ,Wn defined on a

neighborhood of x in M such that, for all y in that neighborhood, the vectors

W1(y), . . . ,Wn(y) form a basis for the tangent space TyM.

Proposition 3.69. Let M be an embedded submanifold of a linear space E.

There exists a local frame around any x ∈M.

Proof. Let E have dimension d and let M have dimension n = d − k. Theo-

rem 3.12 provides us with a neighborhood U of x in E , an open set V in Rd

and a diffeomorphism F : U → V such that M ∩ U = F−1(E ∩ V ), where

E = {y ∈ Rd : yn+1 = · · · = yd = 0}. The set U =M∩ U is a neighborhood of

x on M. We aim to build a local frame on U using F . The proof echoes that of

Theorem 3.15.

Let e1, . . . , ed denote the columns of the identity matrix of size d. Fix an

arbitrary y ∈ U . The point F (y) is in E ∩ V . For each i in 1, . . . , n, consider the

curve

γi(t) = F (y) + tei.

Notice that γi(t) remains in E ∩ V for t close to zero. Therefore,

ci(t) = F−1(γi(t))

is a smooth curve which remains in U for t close to zero. In particular, ci(0) = y.

Therefore, c′i(0) is a tangent vector toM at y. As a result, we may define vector

fields W1, . . . ,Wn on U as

Wi(y) = c′i(0) =
(
t 7→ F−1(F (y) + tei)

)′
(0).
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These vector fields are smooth since F and F−1 are smooth. It remains to verify

that they form a local frame. To this end, use the chain rule to see that

Wi(y) = DF−1(γi(0))[γ′i(0)] = DF−1(F (y))[ei]. (3.41)

Since F is a diffeomorphism, we know that DF−1(F (y)) = (DF (y))−1. In par-

ticular, DF−1(F (y)) is invertible. It then follows from linear independence of

e1, . . . , en in Rd that W1(y), . . . ,Wn(y) are linearly independent in TyM. This

holds for all y in U , which is a neighborhood of x in M, concluding the proof.

(We have constructed a rather special local frame called a coordinate frame:

compare with Sections 8.3 and 8.8.)

On some manifolds, it is possible to find a global frame, that is, a set of smooth

vector fields defined on the whole manifold and which provide a basis for all

tangent spaces. Such manifolds are called parallelizable. For example, Rn and

the circle S1 are parallelizable. However, the two-dimensional sphere S2 is not.

The obstruction comes from the famous Hairy Ball Theorem, which implies that

if W is a smooth vector field on S2 then W (x) = 0 for some x. Therefore, any

pair of smooth vector fields W1,W2 on S2 fails to provide a basis for at least one

of the tangent spaces.

Proposition 3.69 allows us to prove the following statement for embedded

submanifolds equipped with a Riemannian metric.

Proposition 3.70. Let f : M → R be a smooth function on a Riemannian

manifold M. The gradient vector field gradf is a smooth vector field on M.

Proof. Pick any point x ∈M and a local frame W1, . . . ,Wn defined on a neigh-

borhood U of x inM, where dimM = n. By the properties of local frames, there

exist unique functions g1, . . . , gn : U → R such that

gradf(y) = g1(y)W1(y) + · · ·+ gn(y)Wn(y)

for all y ∈ U . If g1, . . . , gn are smooth, then gradf is smooth on U . Since U is a

neighborhood of an arbitrary point, showing so is sufficient to prove that gradf

is smooth. To show that each gi is indeed smooth, consider the following linear

system which defines them. Taking the inner product of the above identity with

each of the local frame fields against the Riemannian metric yields:⟨W1(y),W1(y)⟩y · · · ⟨Wn(y),W1(y)⟩y
...

...

⟨W1(y),Wn(y)⟩y · · · ⟨Wn(y),Wn(y)⟩y


g1(y)

...

gn(y)



=

⟨gradf(y),W1(y)⟩y
...

⟨gradf(y),Wn(y)⟩y

 =

Df(y)[W1(y)]
...

Df(y)[Wn(y)]

 .
The matrix of this system is invertible for all y in U and depends smoothly on

y. Likewise, the right-hand side depends smoothly on y (consider extensions).
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Hence, so does the solution of the system: this can be seen from Cramer’s rule

for linear systems.

This last proposition is a corollary of a far more general fact. A smooth one-

form on a manifold M is a linear map X : X(M) → F(M) which transforms a

smooth vector field V into a smooth scalar field X(V ) and such that X(gV ) =

gX(V ) for all g : M→ R (we sayX is F(M)-linear). For example, the differential

Df of a smooth function f : M→ R is a smooth one-form defined by Df(V )(x) =

Df(x)[V (x)]. If M is a Riemannian manifold with metric ⟨·, ·⟩, we can create a

smooth one-form using any smooth vector field. Indeed, given U ∈ X(M), let

X(V ) = ⟨U, V ⟩, where ⟨U, V ⟩ denotes the function x 7→ ⟨U(x), V (x)⟩x on M.

In fact, each smooth one-form corresponds to a smooth vector field in this way,

and vice versa. This correspondence through the Riemannian metric is called the

musical isomorphism. Proposition 3.70 is a corollary of that fact: it establishes

the correspondence between Df and gradf .

Proposition 3.71. Let M be a Riemannian manifold with metric ⟨·, ·⟩. If

X : X(M) → F(M) is a smooth one-form, then there exists a unique smooth

vector field U ∈ X(M) such that X(V ) = ⟨U, V ⟩ for all V ∈ X(M).

Proof sketch. Let X be a smooth one-form. It is somewhat technical to show the

following property: given x ∈M,

V (x) = 0 =⇒ X(V )(x) = 0. (3.42)

That property is a consequence of F(M)-linearity, as can be shown using local

frames and tools developed later in Section 5.6: see Proposition 5.21 in particular.

In the proof sketch here, we simply assume that (3.42) holds. As an example,

the property is clear for X = Df .

An important consequence of (3.42) is that X(V )(x) depends on V only

through V (x), that is, the dependence of X(V ) on V is pointwise. Indeed, for

some point x ∈ M, consider any two smooth vector fields V1, V2 ∈ X(M) such

that V1(x) = V2(x). Then, (V1 − V2)(x) = 0 and it follows from (3.42) and from

linearity of X that 0 = X(V1 − V2)(x) = X(V1)(x)−X(V2)(x). Thus,

V1(x) = V2(x) =⇒ X(V1)(x) = X(V2)(x),

as claimed.

Therefore, X(V )(x) depends on V only through V (x), linearly. It is then a

simple fact about linear functions on the Euclidean space TxM that there exists

a unique vector in TxM, which we denote by U(x), such that

X(V )(x) = ⟨U(x), V (x)⟩x .

As this holds for all x ∈M, we deduce that there exists a unique vector field U

on M such that

X(V ) = ⟨U, V ⟩ .
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It remains to show that U is smooth.

To show that U is smooth, we merely need to show that it is smooth around

each point. Given x ∈ M, let W1, . . . ,Wn ∈ X(U) be a local frame on a neigh-

borhood U of x, as provided by Proposition 3.69. Again using technical results

described in Section 5.6 (see Lemma 5.26 in particular), one can show that, pos-

sibly at the expense of replacing U with a smaller neighborhood of x, there exist

smooth vector fields W̃1, . . . , W̃n ∈ X(M) such that W̃i|U = Wi for all i. We need

this because we do not know how to apply X to Wi but we can apply X to W̃i.

Notice that for X = Df it is clear how to operate on locally defined vector fields,

hence this step was not needed to establish Proposition 3.70. By the properties

of local frames, there exist unique functions g1, . . . , gn : U → R such that

U |U = g1W1 + · · ·+ gnWn.

To show that U is smooth around x, it is sufficient to show that the functions

g1, . . . , gn are smooth around x. To this end, observe that

X(W̃j)|U = ⟨U, W̃j⟩|U
= ⟨U |U , W̃j |U ⟩

=

n∑
i=1

gi ⟨Wi,Wj⟩ .

Since X is a smooth one-form, we know that X(W̃j) is a smooth function on

all ofM. Therefore, it is certainly smooth when restricted to U . We can deduce

that the functions g1, . . . , gn are smooth with the same reasoning as in the proof

of Proposition 3.70. This concludes the proof sketch.

One-forms are also called cotangent vector fields. The musical isomorphism is

also called the tangent–cotangent isomorphism.

Exercise 3.72. LetM be a Riemannian manifold. Show that for all x ∈M there

exists an orthonormal local frame, that is, a local frame W1, . . . ,Wn defined on

a neighborhood U of x with the additional property that

∀y ∈ U , ⟨Wi(y),Wj(y)⟩y =

{
1 if i = j,

0 otherwise.

Hint: apply the Gram–Schmidt procedure to a local frame and check that its

smoothness is preserved.

Exercise 3.73. Verify that the product metric defined in Example 3.57 is indeed

a Riemannian metric.
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3.10 Notes and references

The main sources for this chapter are [AMS08, Lee12, Lee18, O’N83]. More

comprehensive reminders of topology, linear algebra and calculus can be found

in [Lee12, App. A, B, C].

The treatment given here is restrictive but fully compatible with the general

treatment of differential and Riemannian geometry found in those references and

also presented in Chapter 8. Explicitly:

1. Every subset M of a linear space E which we call an embedded submanifold

following Definition 3.10 is a smooth manifold in the sense of Definition 8.21,

that is,M admits a maximal atlas whose associated topology fulfills the usual

conditions.

2. There is a unique such maximal atlas whose topology matches the topology

in Definition 3.21: we always mean to use that atlas.

3. A subsetM of a linear space E is an embedded submanifold of E in the sense

of Definition 3.10 if and only if it is an embedded submanifold of E in the

general sense of Definition 8.73.

4. A map between two embedded submanifolds of linear spaces is smooth in the

sense of Definition 3.30 if and only if it is smooth in the general sense of

Definition 8.5, that is, through charts.

5. The tangent spaces in Definition 3.14 correspond to the general notion of tan-

gent spaces in Definition 8.33 through the standard identification mentioned

around eq. (8.26).

See Sections 8.3 and 8.14 for some proofs and references. All other tools con-

structed here (tangent bundles, vector fields, retractions, Riemannian metrics,

etc.) are compatible with their general counterparts constructed in the other

sections of Chapter 8.

In Definition 3.10, we require the differential of the local defining function h

around x to have rank k at x. The next lemma shows that it would be equivalent

to require Dh to have rank k at all points of the domain of h, possibly after

reducing that domain [Lee12, Prop. 4.1].

Lemma 3.74. Let U be a neighborhood of x in E. If h : U → Rk is smooth

and rank Dh(x) = k, one can always restrict the domain U to a possibly smaller

neighborhood U ′ of x such that rank Dh(x′) = k for all x′ in U ′.

Proof. The set U ′ ⊆ U of points x′ where Dh(x′) has rank k is an open set in E .

Indeed, let A(x′) ∈ Rk×d be the matrix representing Dh(x′) in some basis of E ,

with d = dim E . Consider the following function on U : g(x′) = det(A(x′)A(x′)⊤).

Notice that U ′ = U\g−1(0). We know that g−1(0) is closed because it is the

preimage of the closed set {0} for the continuous function g. Hence, U ′ is open.

By assumption, x is in U ′. Thus, it suffices to restrict the domain of h to U ′.

The rank condition in Definition 3.10 is key. Indeed, contrast this with the
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following fact: any closed subset of a linear space E is the zero-set of a smooth

function from E to R [Lee12, Thm. 2.29] (and E can be replaced by a manifold

in this statement). For example, there exists a smooth function h : R2 → R such

that h−1(0) is a square in R2. Of course, a square is not smoothly embedded

in R2 due to its corners, so we deduce that Dh must have non-maximal rank at

certain points on the square.

Moreover, it is not sufficient for the rank to be constant on the set. Here is

an example: consider h : R2 → R defined by h(x) = (x1x2)2. Its zero-set is a

cross in R2. Yet, Dh(x) = [ 2x1x
2
2, 2x

2
1x2 ] has constant rank on the cross: it is

zero everywhere. Thus, we see that in order to exclude pathological sets such as

this cross it is not sufficient to ask for the rank of Dh(x) to be constant along

the zero-set of h. However, it is sufficient to require a constant (possibly not

maximal) rank on a neighborhood of the zero-set (Proposition 8.77). The above

h fails that test.

Some embedded submanifolds of E with dimM < dim E cannot be defined

with a single defining function. Indeed, if M is the zero-set of a local defining

function h : U ⊆ E → R, thenM is orientable in E [Lee12, Prop. 15.23]. Yet, one

can construct an open Möbius band as a non-orientable embedded submanifold

of dimension two in R3. Thus, that manifold cannot be defined using a single

defining function.

Proposition 3.31 states that any smooth map between embedded submanifolds

of linear spaces can be smoothly extended to a neighborhood of its (co)domain,

and vice versa. This follows from the tubular neighborhood theorem found, for

example, in [Lee12, Thm. 6.24] and [Lee18, Thm. 5.25], as shown in Proposi-

tions 8.79 and 8.80 for the general case of embedded submanifolds of manifolds.

Thus, we could also use Proposition 3.31 as the definition of smooth maps.

This is indeed practical in many situations, and this is why we introduced that

result early on. However, adopting this as our definition would make it harder

to prove, for example, Proposition 3.70. This is because it would require one to

exhibit a smooth extension around the whole manifold, as opposed to merely

exhibiting a smooth extension around each point of the manifold.

For the special case of a smooth function f : M → R where M is embedded

and closed in E , it is also possible to smoothly extend f to all of E . Indeed,

by [Lee12, Prop. 5.5],M is properly embedded in E if and only if it is closed, and

smooth functions on properly embedded submanifolds can be globally smoothly

extended [Lee12, Lem. 5.34, Exercise 5-18]. This result (and others referenced

above) relies on partitions of unity [Lee12, pp40–47]. Importantly, this is not

generally true for manifolds that are merely embedded (Exercise 3.33).

Definition 3.55 restricts the notion of Riemannian submanifolds of E to embed-

ded submanifolds of E . This is compatible with O’Neill, who reserves the word

“submanifold” for embedded submanifolds [O’N83, pp19, 57]. Certain authors

adopt a more general definition, also allowing an immersed submanifold (Defi-

nition 8.72) to be called a Riemannian submanifold. This is the case of Lee for

example [Lee18, p15].
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52 Embedded geometry: first order

Local frames (Definition 3.68) are discussed in [Lee12, pp177–179]. Likewise,

for more on the musical isomorphism (Proposition 3.71), see [Lee12, pp341–343]

and [O’N83, Prop. 3.10].

Much of the theory in this book could be constructed with weaker smoothness

requirements. Specifically, it is possible to define embedded submanifolds of linear

spaces with local defining functions which are differentiable only p times (class

Cp instead of C∞). Likewise, we could work with functions on manifolds which

have only limited differentiability properties (see Remark 8.6). One reference

among many on this topic is the book by Borwein and Zhu [BZ05, §7].
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4 First-order optimization algorithms

In this chapter, we consider a first algorithm to solve problems of the form

min
x∈M

f(x), (4.1)

whereM is a (smooth) manifold and f : M→ R is a smooth function called the

cost function or objective function. Discussions in this chapter apply for general

manifolds: embedded submanifolds as defined in the previous chapter form one

class of examples, and we detail other kinds of manifolds in Chapters 8 and 9.

A (global) minimizer or (global) optimizer for (4.1) is a point x ∈ M such

that f(x) ≤ f(y) for all y ∈M. Defining this notion merely requires M to be a

set and f to be a function: their smoothness is irrelevant. Minimizers may not

exist, in which case it would be more appropriate to write (4.1) as infx∈M f(x).

Minimizers may also not be unique.

While it is typically our goal to compute a global minimizer, this goal is

generally out of reach. A more realistic (though still non-trivial) goal is to aim for

a local minimizer or local optimizer, that is, a point x ∈M such that f(x) ≤ f(y)

for all y in a neighborhood of x inM. In other words: a local minimizer appears

to be optimal when compared only to its immediate surroundings. Likewise, a

strict local minimizer satisfies f(x) < f(y) for all y ̸= x in some neighborhood

around x. Recall that a neighborhood of x in M is an open subset of M which

contains x. Hence, the notion of local minimizer relies on the topology ofM. For

embedded submanifolds, we defined the topology in Definition 3.21. Just as for

global minimizers, it does not rely on smoothness of either M or f .

Thus, importantly,

Our problem is defined independently of the smooth structures we impose.

Yet, smoothness plays a crucial role in helping us solve that problem. As we

discuss below, the notions of retraction and gradient afford us efficient means of

moving on the manifold while making progress toward our goal. In this sense,

the Riemannian geometry we impose on the problem is entirely ours to choose,

and an integral part of our responsibilities as algorithm designer.

Since optimization algorithms generate sequences of points onM, it is impor-

tant to define terms pertaining to convergence. These are phrased in terms of

the topology on M.
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54 First-order optimization algorithms

Definition 4.1. Consider a sequence S of points x0, x1, x2, . . . on a manifold

M. Then,

1. A point x ∈M is a limit of S if, for every neighborhood U of x in M, there

exists an integer K such that xK , xK+1, xK+2, . . . are in U . The topology of

a manifold is Hausdorff (see Section 8.2), hence a sequence has at most one

limit. If x is the limit, we write limk→∞ xk = x or xk → x and we say the

sequence converges to x.

2. A point x ∈M is an accumulation point of S if it is the limit of a subsequence

of S, that is, if every neighborhood U of x in M contains an infinite number

of elements of S.

This chapter focuses on Riemannian gradient descent. With just one additional

geometric tool, namely, the notion of vector transport or transporter introduced

in Section 10.5, a number of other first-order optimization algorithms can be

addressed, including Riemannian versions of nonlinear conjugate gradients and

BFGS: see Section 4.9 for pointers.

Exercise 4.2. Give an example of a sequence that has no limit. Give an example

of a sequence that has a single accumulation point yet no limit. Give an example

of a sequence that has two distinct accumulation points. Show that if a sequence

converges to x, then all of its accumulation points are equal to x. Now consider

the particular case of M an embedded submanifold of a linear space E. Show

that a sequence on M may have a limit in E yet no limit in M. Argue that this

cannot happen if M is closed in E.

4.1 A first-order Taylor expansion on curves

Optimization algorithms move from point to point on a manifold by following

smooth curves. In order to analyze these algorithms, we need to understand

how the cost function varies along those curves. In Rn for example, we could

be interested in how f(x + tv) varies as a function of t close to t = 0. The

tool of choice for this task is a Taylor expansion. We now apply this concept to

Riemannian manifolds.

Let c : I → M be a smooth curve on M with c(0) = x and c′(0) = v, where

I is an open interval of R around t = 0. Evaluating f along this curve yields a

real function:

g : I → R : t 7→ g(t) = f(c(t)).

Since g = f ◦c is smooth by composition and maps real numbers to real numbers,

it admits a Taylor expansion:

g(t) = g(0) + tg′(0) +O(t2).
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Clearly, g(0) = f(x). Furthermore, by the chain rule,

g′(t) = Df(c(t))[c′(t)] = ⟨gradf(c(t)), c′(t)⟩c(t)
so that g′(0) = ⟨gradf(x), v⟩x. Overall, we get this Taylor expansion:

f(c(t)) = f(x) + t ⟨gradf(x), v⟩x +O(t2). (4.2)

In particular, if the curve is obtained by retraction as c(t) = Rx(tv), then

f(Rx(tv)) = f(x) + t ⟨gradf(x), v⟩x +O(t2). (4.3)

Equivalently, we may eliminate t by introducing s = tv in TxM:

f(Rx(s)) = f(x) + ⟨gradf(x), s⟩x +O(∥s∥2x). (4.4)

The latter is a statement about the composition f ◦ R: TM → R, called the

pullback of f (by R) to the tangent spaces. It is called this way as it quite

literally pulls the cost function from the manifold back to the tangent spaces.

In particular, f ◦ Rx : TxM→ R is the pullback of f to the tangent space at x.

Importantly, this is a smooth function on a linear space: it has many uses, as we

shall soon see.

Later, in Section 5.9, we extend the above reasoning to work out second-order

Taylor expansions.

Exercise 4.3. Given a smooth curve c : [0, 1]→M with c(0) = x and c(1) = y,

check that there exists t ∈ (0, 1) such that

f(y) = f(x) + ⟨gradf(c(t)), c′(t)⟩c(t) . (4.5)

(See Exercise 5.40 for the next order.)

4.2 First-order optimality conditions

In general, checking whether a point x onM is a local minimizer for f : M→ R
is difficult. We can however identify certain simple necessary conditions for a

point x to be a local minimizer. The following definition states such a condition.

It is called the first-order necessary optimality condition, because it involves

first-order derivatives.

Definition 4.4. A point x ∈M is critical (or stationary) for a smooth function

f : M→ R if

(f ◦ c)′(0) ≥ 0

for all smooth curves c on M such that c(0) = x.

In words: it is not possible to move away from a critical point x and obtain

an initial decrease in the value of f with a linear rate. Notice that it would be

equivalent to require (f ◦ c)′(0) = 0 in the definition: simply consider the curves
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t 7→ c(t) and t 7→ c(−t) simultaneously. Still equivalently, x is critical for f

exactly if Df(x) = 0 (by the chain rule on f ◦ c).

Proposition 4.5. Any local minimizer of a smooth function f : M → R is a

critical point of f .

Proof. Let x be a local minimizer of f : there exists a neighborhood U of x in

M such that f(y) ≥ f(x) for all y ∈ U . For contradiction, assume there exists

a smooth curve c : I → M with c(0) = x and (f ◦ c)′(0) < 0. By continuity of

(f ◦ c)′, there exists δ > 0 such that (f ◦ c)′(τ) < 0 for all τ ∈ [0, δ]. This further

implies that, for all t ∈ (0, δ],

f(c(t)) = f(c(0)) +

∫ t

0

(f ◦ c)′(τ) dτ < f(x).

Yet, since c is continuous, c−1(U) = {t ∈ I : c(t) ∈ U} is open, and it contains 0

because c(0) = x ∈ U . Hence, c−1(U)∩ (0, δ] is non-empty: there exists t ∈ (0, δ]

(implying f(c(t)) < f(x)) such that c(t) is in U (implying f(c(t)) ≥ f(x)): a

contradiction.

It is easy to check that local maximizers (defined in analogy to local mini-

mizers) are also critical points. The converse of Proposition 4.5 does not hold in

general: see Chapter 11 for a special case.

On a Riemannian manifold, the critical points of a function are exactly those

points where the Riemannian gradient vanishes.

Proposition 4.6. Let f : M → R be smooth on a Riemannian manifold M.

Then, x is a critical point of f if and only if gradf(x) = 0.

Proof. Let c : I →M be any smooth curve on M with c(0) = x and c′(0) = v.

We know that

(f ◦ c)′(0) = Df(x)[v] = ⟨gradf(x), v⟩x .

If gradf(x) = 0, then x is clearly critical. The other way around, if x is critical,

then ⟨gradf(x), v⟩x ≥ 0 for all v ∈ TxM. Considering both v and −v, it follows

that ⟨gradf(x), v⟩x = 0 for all v ∈ TxM. Thus, gradf(x) = 0.

In developing optimization algorithms, one of our more modest goals is to

ensure that accumulation points of sequences generated by those algorithms are

critical points: we aim for small gradients.

4.3 Riemannian gradient descent

The standard gradient descent algorithm in Euclidean space E iterates

xk+1 = xk − αkgradf(xk), k = 0, 1, 2, . . . ,
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4.3 Riemannian gradient descent 57

starting with some x0 ∈ E and using some step-sizes αk > 0. Inspired by this, the

first algorithm we consider for optimization on manifolds is Riemannian gradient

descent (RGD): given x0 ∈M and a retraction R on M, iterate

xk+1 = Rxk
(−αkgradf(xk)), k = 0, 1, 2, . . . .

See Algorithm 4.1. Importantly, the choice of retraction is part of the algorithm

specification.

Algorithm 4.1 RGD: the Riemannian gradient descent method

Input: x0 ∈M
For k = 0, 1, 2, . . .

Pick a step-size αk > 0

xk+1 = Rxk
(sk), with step sk = −αkgradf(xk)

To complete the specification of RGD, we need an explicit procedure to pick

the step-size αk at each iteration. This is called the line-search phase, and it can

be done in various ways. Define

g(t) = f(Rxk
(−tgradf(xk))). (4.6)

Line-search is about minimizing g approximately: well enough to make progress,

yet bearing in mind that this is only a means to an end; we should not invest

too much resources into it. Three common strategies include:

1. Fixed step-size: αk = α for all k.

2. Optimal step-size: αk minimizes g(t) exactly; in rare cases, this can be done

cheaply.

3. Backtracking: starting with a guess t0 > 0, iteratively reduce it by a factor

as ti = τti−1 with τ ∈ (0, 1) until ti is deemed acceptable, and set αk = ti.

There are various techniques to pick t0.

We discuss this more in Section 4.5. For now, we focus on identifying assumptions

that lead to favorable behavior.

Our first assumption about problem (4.1) simply requires that the cost func-

tion f be globally lower-bounded. This is normally the case for a well-posed

optimization problem.

A 4.1. There exists flow ∈ R such that f(x) ≥ flow for all x ∈M.

We expect that the algorithm may converge (or at least produce interesting

points) provided it makes some progress at every iteration. This is the object

of the second assumption below. We first confirm that it is sufficient for our

purposes, and later show how to fulfill it.

Going ⋆forward in this chapter, we most often write ⟨·, ·⟩ and ∥ · ∥ instead of

⟨·, ·⟩x and ∥ · ∥x when the base point x is clear from context.
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A 4.2. At each iteration, the algorithm achieves sufficient decrease for f , in that

there exists a constant c > 0 such that, for all k,

f(xk)− f(xk+1) ≥ c∥gradf(xk)∥2. (4.7)

It is the responsibility of the line-search procedure to ensure this assumption

holds. This can be done under some conditions on f and the retraction, as we

discuss later. When both assumptions hold, it is straightforward to guarantee

that RGD produces points with small gradient. There are no conditions on the

initialization x0 ∈M.

Proposition 4.7. Let f be a smooth function satisfying A4.1 on a Riemannian

manifold M. Let x0, x1, x2, . . . be iterates satisfying A4.2 with constant c. Then,

lim
k→∞

∥gradf(xk)∥ = 0.

In particular, all accumulation points (if any) are critical points. Furthermore,

for all K ≥ 1, there exists k in 0, . . . ,K − 1 such that

∥gradf(xk)∥ ≤
√
f(x0)− flow

c

1√
K
.

Proof. The proof is based on a standard telescoping sum argument. We get the

claimed inequality for all K ≥ 1 as follows:

f(x0)− flow
A4.1
≥ f(x0)− f(xK) =

K−1∑
k=0

f(xk)− f(xk+1)

A4.2
≥ Kc min

k=0,...,K−1
∥gradf(xk)∥2.

To get the limit statement, observe that f(xk+1) ≤ f(xk) for all k by A4.2.

Then, taking K to infinity we see that

f(x0)− flow ≥
∞∑
k=0

f(xk)− f(xk+1),

where the right-hand side is a series of nonnegative numbers. The bound implies

that the summands converge to zero, thus:

0 = lim
k→∞

f(xk)− f(xk+1) ≥ c lim
k→∞

∥gradf(xk)∥2,

which confirms that ∥gradf(xk)∥ → 0. Now, let x be an accumulation point

of the sequence of iterates. By definition, there exists a subsequence of iterates

x(0), x(1), x(2), . . . which converges to x. Then, since the norm of the gradient of

f is a continuous function, it commutes with the limit and we find:

0 = lim
k→∞

∥gradf(xk)∥ = lim
k→∞

∥gradf(x(k))∥

= ∥gradf( lim
k→∞

x(k))∥ = ∥gradf(x)∥,

showing all accumulation points are critical points.
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Importantly, the limit statement does not say that the sequence of iterates

converges to a critical point. It only states that, under the prescribed conditions,

the accumulation points of the sequence of iterates (of which there may be one,

more than one, or none) are critical points. To preserve conciseness, assuming

there exists at least one accumulation point (which is often the case), this prop-

erty may be summarized as: gradient descent converges to critical points (note

the plural). See also Section 4.9.

In the next section, we explore regularity conditions to help us guarantee suffi-

cient decrease using simple line-search procedures. The condition we introduce is

inspired by the Taylor expansion of f along curves generated by the retraction.

4.4 Regularity conditions and iteration complexity

In order to guarantee sufficient decrease as per A4.2, we need to understand how

f(xk+1) compares to f(xk). Recall that xk+1 = Rxk
(sk) with a chosen tangent

vector sk. The Taylor expansion (4.4) thus states:

f(xk+1) = f(Rxk
(sk)) = f(xk) + ⟨gradf(xk), sk⟩+O(∥sk∥2).

If the quadratic remainder term stays under control during all iterations, we

may deduce a guarantee on the progress f(xk) − f(xk+1). This motivates the

following assumption on the pullback f ◦R. We provide further context for this

assumption at the end of the section, as well as much later in Corollary 10.54,

Lemma 10.57 and Exercise 10.58.

A 4.3. For a given subset S of the tangent bundle TM, there exists a constant

L > 0 such that, for all (x, s) ∈ S,

f(Rx(s)) ≤ f(x) + ⟨gradf(x), s⟩+
L

2
∥s∥2. (4.8)

Under this assumption (on an appropriate set S to be specified), there exists

a range of step-sizes that lead to sufficient decrease.

Proposition 4.8. Let f be a smooth function on a Riemannian manifold M.

For a retraction R, let f ◦ R satisfy A4.3 on a set S ⊆ TM with constant L. If

the pairs (x0, s0), (x1, s1), (x2, s2), . . . generated by Algorithm 4.1 with step-sizes

αk ∈ [αmin, αmax] ⊂ (0, 2/L)

all lie in S, then the algorithm produces sufficient decrease. Specifically, A4.2

holds with

c = min

(
αmin −

L

2
α2
min, αmax −

L

2
α2
max

)
> 0.

In particular, for αk = 1
L (constant) we have c = 1

2L .
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Proof. By assumption A4.3 on the pullback, for all k,

f(xk+1) = f(Rxk
(sk)) ≤ f(xk) + ⟨gradf(xk), sk⟩+

L

2
∥sk∥2.

Reorganizing and using sk = −αkgradf(xk) reveals

f(xk)− f(xk+1) ≥
(
αk −

L

2
α2
k

)
∥gradf(xk)∥2.

The coefficient is quadratic in αk, positive between its roots at 0 and 2/L. By

assumption on αk,

αk −
L

2
α2
k ≥ min

(
αmin −

L

2
α2
min, αmax −

L

2
α2
max

)
> 0,

which concludes the proof.

As a particular case, if a valid constant L is known beforehand, then we get

an explicit algorithm and associated guarantee as a corollary of Propositions 4.7

and 4.8.

Corollary 4.9. Let f be a smooth function satisfying A4.1 on a Riemannian

manifoldM. For a retraction R, let f◦R satisfy A4.3 on a set S ⊆ TM with con-

stant L. Let (x0, s0), (x1, s1), (x2, s2), . . . be the pairs generated by Algorithm 4.1

with constant step-size αk = 1/L. If all these pairs are in S, then

lim
k→∞

∥gradf(xk)∥ = 0.

Furthermore, for all K ≥ 1, there exists k in 0, . . . ,K − 1 such that

∥gradf(xk)∥ ≤
√

2L(f(x0)− flow)
1√
K
.

The conclusion of the above corollary can also be stated as follows: for all

ε > 0 there exists k in 0, . . . ,K − 1 such that ∥gradf(xk)∥ ≤ ε provided K ≥
2L(f(x0)− flow) 1

ε2 . Notice that the rate is independent of the dimension of M.

How reasonable is A4.3? Let us contemplate it through the Euclidean lens.

Consider f smooth on a Euclidean space E equipped with the canonical retraction

Rx(s) = x+ s. If f ◦ R satisfies A4.3 on the whole tangent bundle TE = E × E ,

then

∀x, s ∈ E , f(x+ s) ≤ f(x) + ⟨gradf(x), s⟩+
L

2
∥s∥2. (4.9)

This expresses that the difference between f and its first-order Taylor expansion

is uniformly upper-bounded by a quadratic. This property holds if the gradient

of f is Lipschitz continuous with constant L, that is, if

∀x, y ∈ E , ∥gradf(y)− gradf(x)∥ ≤ L∥y − x∥. (4.10)
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Indeed, with c(t) = x+ ts, elementary calculus provides:

f(x+ s)− f(x) = f(c(1))− f(c(0))

=

∫ 1

0

(f ◦ c)′(t) dt

=

∫ 1

0

Df(c(t))[c′(t)] dt =

∫ 1

0

⟨gradf(x+ ts), s⟩dt.

Then, under condition (4.10), by Cauchy–Schwarz we have:

|f(x+ s)− f(x)− ⟨gradf(x), s⟩| =
∣∣∣∣∫ 1

0

⟨gradf(x+ ts)− gradf(x), s⟩dt
∣∣∣∣

≤
∫ 1

0

∥gradf(x+ ts)− gradf(x)∥∥s∥ dt

≤ ∥s∥
∫ 1

0

L∥ts∥ dt

=
L

2
∥s∥2. (4.11)

Lipschitz continuity of the gradient (4.10) is a common assumption in Euclidean

optimization, valued for the upper-bounds it provides (4.11). When working on

manifolds, generalizing (4.10) requires substantial work due to the comparison of

gradients at two distinct points (hence of vectors in two distinct tangent spaces)

but it can be led to fruition: Sections 10.3, 10.4 and 10.5 provide a detailed

discussion involving a special retraction. On the other hand, generalizing (4.11)

poses no particular difficulty once a retraction is chosen. This is the reasoning

that led to A4.3, which we henceforth call a Lipschitz-type assumption. General

retractions are covered by Lemma 10.57 under compactness assumptions. In

particular, that lemma can be useful to verify regularity assumptions such as A4.3

when the sublevel sets of the cost function are compact.

Definition 4.10. A sublevel set of f is a set {x ∈M : f(x) ≤ α} for some α.

Exercise 4.11. For the cost function f(x) = 1
2x
⊤Ax on the sphere Sn−1 as

a Riemannian submanifold of Rn equipped with the retraction Rx(s) = x+s
∥x+s∥ ,

determine some L such that A4.3 holds over the whole tangent bundle.

4.5 Backtracking line-search

The simplest result in the previous section is Corollary 4.9, which assumes a

constant step-size of 1/L. In practice however, an appropriate constant L is

seldom known. Even when one is available, it may be large due to particular

behavior of f ◦R in a limited part of the domain. That seemingly forces us to take

small steps for the whole sequence of iterates, which evidently is not necessary.

Indeed, only the local behavior of the cost function around xk matters to ensure
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sufficient decrease at iteration k. Thus, we favor inexact line-search algorithms

that are adaptive.

A common adaptive strategy to pick the step-sizes αk for RGD is called the

backtracking line-search: see Algorithm 4.2. For a specified initial step-size ᾱ,

this procedure iteratively reduces the tentative step-size by a factor τ ∈ (0, 1)

(often set to 0.8 or 0.5) until the Armijo–Goldstein condition is satisfied, namely,

f(x)− f(Rx(−αgradf(x))) ≥ rα∥gradf(x)∥2, (4.12)

for some constant r ∈ (0, 1) (often set to 10−4).

Algorithm 4.2 Backtracking line-search

Parameters: τ, r ∈ (0, 1); for example, τ = 1
2 and r = 10−4

Input: x ∈M, ᾱ > 0

Set α← ᾱ

While f(x)− f(Rx(−αgradf(x))) < rα∥gradf(x)∥2
Set α← τα

Output: α

The lemma and corollary below show that, under the regularity condition A4.3,

backtracking line-search produces sufficient decrease A4.2, with a constant c

which depends on various factors. Importantly, the regularity constant L affects

the guarantee but need not be known to run the algorithm.

Lemma 4.12. Let f be a smooth function on a Riemannian manifold M. For

a retraction R, a point x ∈ M and an initial step-size ᾱ > 0, let A4.3 hold for

f ◦ R with constant L on {(x,−αgradf(x)) : α ∈ [0, ᾱ]}. Then, Algorithm 4.2

with parameters τ, r ∈ (0, 1) outputs a step-size α such that

f(x)− f(Rx(−αgradf(x))) ≥ rmin

(
ᾱ,

2τ(1− r)
L

)
∥gradf(x)∥2

after computing at most

max

(
1, 2 + logτ−1

(
ᾱL

2(1− r)

))
retractions and cost function evaluations (assuming f(x) and gradf(x) were al-

ready computed).

Proof. Consider gradf(x) ̸= 0 (otherwise, the claim is clear). For all step-sizes

α considered by Algorithm 4.2, the regularity assumption guarantees

f(x)− f(Rx(−αgradf(x))) ≥ α∥gradf(x)∥2 − L

2
α2∥gradf(x)∥2.

On the other hand, if the algorithm does not terminate for a certain value α,
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then

f(x)− f(Rx(−αgradf(x))) < rα∥gradf(x)∥2.

If both are true simultaneously, then

α >
2(1− r)

L
.

Thus, if α drops below this bound, the line-search algorithm terminates. (Of

course, it might also terminate earlier with a longer step-size: we consider the

worst case.) This happens either because ᾱ itself is smaller than 2(1−r)
L , or as

the result of a reduction of α by the factor τ . We conclude that the returned α

satisfies:

α ≥ min

(
ᾱ,

2τ(1− r)
L

)
.

Moreover, the returned α is of the form α = ᾱτn−1 where n is the number of

retractions and cost function evaluations issued by Algorithm 4.2. Hence,

n = 1 + logτ

(α
ᾱ

)
= 1 + logτ−1

( ᾱ
α

)
≤ 1 + max

(
0, logτ−1

(
ᾱL

2τ(1− r)

))
,

which concludes the proof.

When used in conjunction with RGD, one may want to pick the initial step-

size ᾱ dynamically as ᾱk at iteration k. As long as the initializations ᾱk remain

bounded away from zero, we retain our convergence result.

Corollary 4.13. Let f be a smooth function satisfying A4.1 on a Riemannian

manifold M. For a retraction R, let f ◦ R satisfy A4.3 on a set S ⊆ TM with

constant L. Let x0, x1, x2, . . . be the iterates generated by RGD (Algorithm 4.1)

with backtracking line-search (Algorithm 4.2) using fixed parameters τ, r ∈ (0, 1)

and initial step-sizes ᾱ0, ᾱ1, ᾱ2, . . . If for every k the set {(xk,−αgradf(xk)) :

α ∈ [0, ᾱk]} is in S and if lim infk→∞ ᾱk > 0, then

lim
k→∞

∥gradf(xk)∥ = 0.

Furthermore, for all K ≥ 1, there exists k in 0, . . . ,K − 1 such that

∥gradf(xk)∥ ≤

√√√√ f(x0)− flow
rmin

(
ᾱ0, . . . , ᾱK−1,

2τ(1−r)
L

) 1√
K
.

The amount of work per iteration is controlled as in Lemma 4.12.

Proof. By Lemma 4.12, backtracking line-search guarantees decrease in the form

f(xk)− f(xk+1) ≥ ck∥gradf(xk)∥2, with ck = rmin

(
ᾱk,

2τ(1− r)
L

)
.

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

64 First-order optimization algorithms

Following the same proof as for Proposition 4.7,

f(x0)− flow ≥
K−1∑
k=0

f(xk)− f(xk+1) ≥
K−1∑
k=0

ck∥gradf(xk)∥2

≥ K · min
k=0,...,K−1

ck · min
k=0,...,K−1

∥gradf(xk)∥2.

This establishes the first claim. For the limit statement, observe that taking

K →∞ on the first line above shows that

lim
k→∞

ck∥gradf(xk)∥2 = 0.

Since lim infk→∞ ck > 0, we deduce that limk→∞ ∥gradf(xk)∥2 = 0.

As a remark, consider replacing the cost function f(x) by a shifted and posi-

tively scaled version of itself, say g(x) = 8f(x) + 3. Arguably, the optimization

problem did not change, and we might expect a reasonable optimization algo-

rithm initialized at x0 to produce the same iterates to minimize f or to minimize

g. It is easily checked that the combination of Algorithms 4.1 and 4.2 has this

invariance property, provided the initial step-sizes ᾱk are chosen in such a way

that the first step considered, namely, −ᾱkgradf(xk) is invariant under positive

scaling of f . For the first iteration, this can be done for example by setting

ᾱ0 =
ℓ0

∥gradf(x0)∥

with some constant ℓ0, which is then the length of the first retracted step: it

can be set relative to the scale of the search space or to the expected distance

between x0 and a solution (this does not need to be precise). For subsequent

iterations, a useful heuristic is (see [NW06, §3.5, eq. (3.60)] for more)

ᾱk = 2
f(xk−1)− f(xk)

∥gradf(xk)∥2
, (4.13)

which also yields the desired invariance. It is common to initialize with a slightly

larger value, say, by a factor of 1/τ . One may also set ᾱk to be the maximum

between the above value and a small reference value, to ensure the first step-size

remains bounded away from zero (as required by our convergence theory).

4.6 Local convergence*

In numerical analysis, we study the behavior of sequences generated by itera-

tive algorithms. We distinguish between the local and global behavior of those

sequences. We say that a method enjoys global convergence if it generates se-

quences that converge regardless of their initialization x0. It is worth noting two

common points of confusion here:
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1. “Global” convergence is not convergence to a global optimizer. It is merely a

statement that sequences converge “somewhere” for all x0.

2. It is common to say that RGD enjoys global convergence, and indeed the

results presented in previous sections assume little about the initial point

x0. However, we have not established convergence of RGD. Rather, we have

shown that, under some assumptions, all accumulation points of RGD (if any)

are critical points.

Still, RGD usually converges to a critical point in practice, hence the habit of

calling it globally convergent. Our results in previous sections also qualify how

fast the gradient norm converges to zero in the worst case. That rate, however,

is underwhelming: it only guarantees a decrease as fast as 1/
√
k where k is the

iteration counter. While this result is correct (there exist difficult cost functions

even on Rn that lead to such poor performance), it is common to observe an

eventually exponential decrease of the gradient norm. This asymptotic behavior

of a sequence is the realm of local convergence: the study of how convergent

sequences behave once they are close enough to their limit.

The discussions in this section require tools that we have not introduced yet.

Specifically, we use:

• The Riemannian distance dist, which turns a connected Riemannian manifold

into a metric space. See Section 10.1.

• The exponential map Exp, which is a special retraction. Of relevance here, it

has the property that for v ∈ TxM small enough and y = Expx(v) we have

dist(x, y) = ∥v∥x. See Section 10.2.

• The Riemannian Hessian Hessf of a smooth function f : M → R, which

is a kind of derivative of the gradient vector field. Of relevance here, (a)

Hessf(x) is a self-adjoint linear map on TxM (hence it has real eigenval-

ues), and (b) if gradf(x) = 0 and Hessf(x) ≻ 0, then x is a strict local

minimizer of f . See Sections 5.5 and 6.1.

Local convergence rates are defined in general for sequences in metric spaces.

This applies to sequences of real numbers (tracking f(xk) or ∥gradf(xk)∥) using

the absolute value distance on R, and it also applies to sequences of points on

M using the Riemannian distance.

Definition 4.14. In a metric space with a distance dist, a sequence a0, a1, a2, . . .

converges at least linearly to a⋆ if there exist positive reals ϵ0, ϵ1, ϵ2, . . . converging

to zero such that dist(ak, a⋆) ≤ ϵk and limk→∞
ϵk+1

ϵk
= µ for some µ ∈ (0, 1).

The infimum over such µ is the linear convergence factor. If the latter is zero,

the convergence is superlinear.

The above is also called R-linear convergence, as opposed to the more restric-

tive notion of Q-linear convergence which forces ϵk = dist(ak, a⋆).

Superlinear convergence rates can be further qualified. Anticipating the needs

of Chapter 6, we already define quadratic convergence. It is straightforward to
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check that quadratic convergence implies superlinear convergence which itself

implies linear convergence.

Definition 4.15. In a metric space equipped with a distance dist, a sequence

a0, a1, a2, . . . converges at least quadratically to a⋆ if there exists a sequence

of positive reals ϵ0, ϵ1, ϵ2, . . . converging to zero such that dist(ak, a⋆) ≤ ϵk and

limk→∞
ϵk+1

ϵ2k
= µ for some finite µ ≥ 0.

In the remainder of this section, we build up toward a local convergence result

for RGD with constant step-size. To this end, we first secure a broader statement

called the local contraction mapping theorem: it will serve us again to study the

Riemannian Newton method in Section 6.2.

An important tool below is the observation that retractions provide local pa-

rameterizations of manifolds. More explicitly, Rx provides a diffeomorphism (re-

call Definition 3.11) between a neighborhood of the origin in TxM (a linear

space) and a neighborhood of x inM. This fact is a direct consequence of a gen-

eralization of the inverse function theorem, stated now with a couple of relevant

corollaries. Note: in the theorem below,M and N could also be open subsets of

manifolds, as such sets are manifolds too.

Theorem 4.16 (Inverse function theorem on manifolds). Let F : M→N be a

smooth map between two manifolds. If DF (x) is invertible at some point x ∈M,

then there exist neighborhoods U ⊆ M of x and V ⊆ N of F (x) such that

F |U : U → V is a diffeomorphism.

Proof sketch. The idea is to reduce the claim to Theorem 3.13. This is best done

through charts. For submanifolds, these charts can be built via Theorem 3.12,

as in Section 8.3. Details in [Lee12, Thm. 4.5].

Corollary 4.17. Let R be a retraction on a manifold M. For each x, there

exists a neighborhood U of the origin of TxM such that Rx|U : U → U is a

diffeomorphism, where U = Rx(U) is a neighborhood of x on M.

Proof. The map Rx : TxM → M satisfies the assumptions of Theorem 4.16

around the origin of TxM since DRx(0) is invertible.

Corollary 4.18. Continuing from Corollary 4.17, if M is Riemannian then we

can choose U as an open ball of some radius r > 0 around the origin in TxM,

that is, U = B(x, r) = {v ∈ TxM : ∥v∥x < r}.

Some simple algorithms come down to the repeated application of a smooth

iteration map F : M → M, so that x1 = F (x0), x2 = F (x1) = F (F (x0)),

etc. The following theorem provides insight into the local convergence of such

algorithms near special points.

Theorem 4.19 (Local contraction mapping). Let F : M→M be a smooth map

to and from a Riemannian manifold M. Given x0 ∈ M, consider the sequence
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defined by

xk+1 = F (xk) for k = 0, 1, 2, . . .

If x⋆ ∈M is a fixed point (i.e., F (x⋆) = x⋆) and ∥DF (x⋆)∥ < 1 (i.e., all singular

values of DF (x⋆) are strictly smaller than one), then there exists a neighborhood

U of x⋆ such that, if the sequence enters U , it stays in U and converges to x⋆ at

least linearly with a linear convergence factor which is at most ∥DF (x⋆)∥.
Explicitly, with R an arbitrary retraction on M we have

lim
k→∞

∥ξk+1∥
∥ξk∥

≤ ∥DF (x⋆)∥,

where ξk is well defined by Rx⋆
(ξk) = xk for k large enough. The conclusion

follows by letting R = Exp, in which case ∥ξk∥ = dist(xk, x⋆) for large k.

Additionally,

1. If ∥DF (x⋆)∥ = 0, the convergence is at least quadratic.

2. All claims still hold if F is only smoothly defined in a neighborhood of x⋆.

Proof. Owing to Corollary 4.18, we can choose a radius r > 0 such that Rx⋆
is a

diffeomorphism from B(x⋆, r) to U = Rx⋆
(B(x⋆, r)): we now tacitly restrict Rx⋆

to those domains. Consider the set F−1(U) (where it is understood that we first

restrict F to the neighborhood of x⋆ where it is smooth, if need be): it is open

(because F is continuous and U is open) and it contains x⋆ (because F (x⋆) = x⋆
and x⋆ ∈ U). Thus, F−1(U) is a neighborhood of x⋆. It follows that we can select

r′ ∈ (0, r] such that

U ′ ≜ Rx⋆(B(x⋆, r
′)) ⊆ F−1(U) and U ′ ⊆ U .

Assume xk is in U ′. Then, xk+1 = F (xk) is in F (U ′), which is included in

F (F−1(U)), that is, xk+1 ∈ U . Thus, the vectors ξk, ξk+1 ∈ Tx⋆
M are well

defined by

xk = Rx⋆
(ξk), xk+1 = Rx⋆

(ξk+1).

Consider the following map restricted to open sets in Tx⋆M:

F̃ : B(x⋆, r
′)→ B(x⋆, r), F̃ = R−1x⋆

◦ F ◦ Rx⋆
.

It is defined such that ξk+1 = F̃ (ξk). Since F̃ is smooth, we can use a standard

Taylor expansion on Tx⋆
M (a Euclidean space) to claim that

F̃ (v) = F̃ (0) + DF̃ (0)[v] + E(v)

where ∥E(v)∥ ≤ c∥v∥2 for some constant c, valid for all v ∈ B(x⋆, r
′). Notice

that F̃ (0) = 0. Moreover, DF̃ (0) = DF (x⋆): that is due to the chain rule and the

fact that DRx⋆
(0) is the identity on Tx⋆

M so that DR−1x⋆
(x⋆) is also the identity.

It follows that

ξk+1 = F̃ (ξk) = DF (x⋆)[ξk] + E(ξk).
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Taking norms on both sides, we find

∥ξk+1∥ ≤ ∥DF (x⋆)[ξk]∥+ ∥E(ξk)∥ ≤ (∥DF (x⋆)∥+ c∥ξk∥) ∥ξk∥. (4.14)

Recall that ∥ξk∥ < r′. If need be, replace r′ by a smaller positive constant

such that ∥DF (x⋆)∥ + cr′ < 1: this is possible owing to our assumption that

∥DF (x⋆)∥ < 1. Doing so, we ensure ∥ξk+1∥ ≤ ∥ξk∥. In particular, xk ∈ U ′ =⇒
xk+1 ∈ U ′. By induction, we can now define ξK through xK = Rx⋆

(ξK) ∈ U ′ for

all K ≥ k. Moreover, we have that ∥ξK∥ converges to zero at least linearly. The

linear convergence factor is controlled by:

lim
K→∞

∥ξK+1∥
∥ξK∥

≤ lim
K→∞

∥DF (x⋆)∥+ c∥ξK∥ = ∥DF (x⋆)∥.

Now that convergence is established, we can return to (4.14) and notice that, if

DF (x⋆) = 0, then we also have

lim
K→∞

∥ξK+1∥
∥ξK∥2

≤ c.

Thus, in that case, the sequence converges at least quadratically.

We now apply the above theorem to RGD with constant step-size, as this in-

deed corresponds to the iterative application of a smooth map. More realistically,

we would use a backtracking line-search procedure. However, that leads to an

iteration map that may lack smoothness as the selected step-size may depend

on x discontinuously. With different tools, it is still possible to establish linear

convergence of RGD with a line-search, see [AMS08, Thm. 4.5.6]. It is important

to note that the retraction used in RGD is unrelated to the retraction used in

the proof of the local contraction mapping theorem—For the latter, it makes the

most sense to use the exponential retraction.

Theorem 4.20. Let M be a Riemannian manifold with a retraction R. Let

f : M→ R be a smooth function. Assume x⋆ ∈M satisfies

gradf(x⋆) = 0 and Hessf(x⋆) ≻ 0.

Let 0 < λmin ≤ λmax be the smallest and largest eigenvalues of Hessf(x⋆), and

let κ = λmax

λmin
denote the condition number of Hessf(x⋆). Set L > 1

2λmax. Given

x0 ∈M, constant step-size Riemannian gradient descent iterates

xk+1 = F (xk), with F (x) = Rx

(
− 1

L
gradf(x)

)
.

There exists a neighborhood of x⋆ such that, if the above sequence enters the

neighborhood, then it stays in that neighborhood and it converges to x⋆ at least

linearly. If L = λmax, the linear convergence factor is at most 1− 1/κ.

Proof. Let us check the assumptions of Theorem 4.19. First, it is clear that
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F (x⋆) = x⋆. Second, let us investigate DF (x⋆) : Tx⋆
M→ Tx⋆

M. In particular,

we need to differentiate through R: TM→M:

DF (x)[v] = D(x 7→ R(x,G(x)))(x)[v] = DR(x,G(x))[(v,DG(x)[v])] ,

with G(x) = − 1
Lgradf(x). This simplifies at x = x⋆ since G(x⋆) = 0. Indeed,

Lemma 4.21 below justifies the following:

DF (x⋆)[v] = DR(x⋆, 0)[(v,DG(x⋆)[v])] = v + DG(x⋆)[v].

Anticipating concepts from Chapter 5, the property G(x⋆) = 0 also implies via

Proposition 5.3 that

DG(x⋆)[v] = ∇vG = − 1

L
Hessf(x⋆)[v] (4.15)

for all v ∈ Tx⋆
M, where ∇ is the Riemannian connection on M. Thus,

DF (x⋆) = Id− 1

L
Hessf(x⋆), (4.16)

where Id is the identity map on Tx⋆
M. Since both Id and Hessf(x⋆) are self-

adjoint (Proposition 5.15), we find that DF (x⋆) is self-adjoint. Its eigenvalues

(all real) are given by

1− λ1
L
≤ · · · ≤ 1− λn

L
,

where λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of Hessf(x⋆). It follows that the

operator norm of DF (x⋆) is

∥DF (x⋆)∥ = max

(∣∣∣∣1− λ1
L

∣∣∣∣ , ∣∣∣∣1− λn
L

∣∣∣∣) . (4.17)

Under our assumption on L, it is easy to check that ∥DF (x⋆)∥ < 1. All conclu-

sions now follow from Theorem 4.19.

Lemma 4.21. For each point x on a manifold M, we have

T(x,0)TM = TxM× TxM. (4.18)

Let R: TM → M be a retraction on M. Given x ∈ M, the differential of R

at (x, 0) is a linear map DR(x, 0) : T(x,0)TM→ TR(x,0)M. Equivalently, it is a

linear map DR(x, 0) : TxM× TxM→ TxM. For all u, v ∈ TxM, it holds

DR(x, 0)[(u, v)] = u+ v. (4.19)

Proof. To verify (4.18), note the following:

1. For each u ∈ TxM, we can pick a smooth curve c onM such that c(0) = x and

c′(0) = u; then, γ(t) = (c(t), 0) is a smooth curve on TM and γ′(0) = (u, 0)

is tangent to TM at γ(0) = (x, 0).

2. For each v ∈ TxM, the curve γ(t) = (x, tv) is smooth on TM and γ′(0) =

(0, v) is tangent to TM at γ(0) = (x, 0).

3. By linearity, T(x,0)TM contains all pairs (u, v) ∈ TxM× TxM.
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4. The two sets are in fact the same since they are linear spaces of the same

dimension.

Let us establish (4.19). By linearity of differentials, we have

DR(x, 0)[(u, v)] = DR(x, 0)[(u, 0)] + DR(x, 0)[(0, v)].

For the first term, pick a smooth curve c onM such that c(0) = x and c′(0) = u.

Then,

DR(x, 0)[(u, 0)] =
d

dt
R(c(t), 0)

∣∣∣∣
t=0

=
d

dt
c(t)

∣∣∣∣
t=0

= c′(0) = u.

For the second term, we have

DR(x, 0)[(0, v)] =
d

dt
R(x, tv)

∣∣∣∣
t=0

=
d

dt
Rx(tv)

∣∣∣∣
t=0

= v.

This concludes the proof. We used both defining properties of R.

The following lemma connects the regularity assumption A4.3 from Section 4.4

to the Hessian of f at x⋆ as needed in Theorem 4.20.

Lemma 4.22. Let R be a retraction on a Riemannian manifold M. If A4.3

holds for f : M→ R with constant L on TM and x⋆ ∈M is critical, then

∀v ∈ Tx⋆M, ⟨v,Hessf(x⋆)[v]⟩x⋆
≤ L∥v∥2x⋆

.

In particular, L is valid for Theorem 4.20 since L ≥ λmax(Hessf(x⋆)).

Proof. We only need A4.3 for all pairs (x⋆, v) ∈ TM; that provides:

f(Rx⋆(tv)) ≤ f(x⋆) + L
t2

2
∥v∥2x⋆

.

Anticipating results from Chapter 5, we deduce from (5.28) that

f(Rx⋆(tv)) = f(x⋆) +
t2

2
⟨v,Hessf(x⋆)[v]⟩x⋆

+O(t3).

The two combine to yield ⟨v,Hessf(x⋆)[v]⟩x⋆
≤ L∥v∥2x⋆

+ O(t). Take t → 0 to

conclude.

Theorem 4.20 above provides circumstances for iterates xk of RGD to converge

to a local minimizer x⋆ at least linearly. We remark in closing that, using tools

from Section 10.4, it is easily argued that the gradient norm ∥gradf(xk)∥ also

converges to zero, and likewise the cost function value f(xk) converges to f(x⋆),

both at least linearly. Specifically, this is done with Corollaries 10.48 and 10.54

by arguing that the gradient of f is Lipschitz continuous in a neighborhood of

x⋆.

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

4.7 Computing gradients* 71

4.7 Computing gradients*

This section provides some guidance on how to obtain an expression for the

gradient of a function. It can be skipped safely. The reader may find it helpful

to return to this section when working on particular applications.

The gradient of a function f : M → R on a Riemannian manifold (recall

Definition 3.58 or 8.57) is defined in full generality as the unique vector field

gradf on M such that, for all points x ∈M and all tangent vectors v ∈ TxM,

Df(x)[v] = ⟨gradf(x), v⟩x , (4.20)

where ⟨·, ·⟩x is the inner product on TxM (the Riemannian metric at x). This

suggests a general strategy to obtain a formula for gradf(x):

1. Determine an expression for the directional derivative Df(x)[v], and

2. Re-arrange it until it is of the form ⟨g, v⟩x, with some g ∈ TxM.

At this point, we get the gradient by identification: gradf(x) = g. This requires

essentially two steps: first, to write out Df(x)[v] somewhat explicitly as an inner

product between two quantities; second, to use the notion of adjoint of a linear

map (recall Definition 3.4) to isolate v.

In working out directional derivatives, three rules get most of the work done

(it is an exercise to verify them):

1. The chain rule: as for (3.29), let F : M→M′ and G : M′ →M′′ be smooth

maps between manifolds M,M′,M′′. The composition H = G ◦ F defined

by H(x) = G(F (x)) is smooth with differential:

DH(x)[v] = DG(F (x))[DF (x)[v]]. (4.21)

2. The product rule: let F,G be two smooth maps from a manifoldM to matrix

spaces such that F (x) and G(x) can be matrix-multiplied to form the product

map H = FG defined by H(x) = F (x)G(x). For example, F mapsM to Rn×k

and G maps M to Rk×d. Then, H is smooth with differential:

DH(x)[v] = DF (x)[v]G(x) + F (x)DG(x)[v]. (4.22)

This rule holds for any type of product. For example, with the entrywise

product H(x) = F (x)⊙G(x), we have

DH(x)[v] = DF (x)[v]⊙G(x) + F (x)⊙DG(x)[v]. (4.23)

Likewise, with the Kronecker product H(x) = F (x)⊗G(x),

DH(x)[v] = DF (x)[v]⊗G(x) + F (x)⊗DG(x)[v]. (4.24)

3. Inner product rule: let F,G : M → E be two smooth maps from a manifold

M to a linear space E equipped with an inner product ⟨·, ·⟩. Then, the scalar

function h(x) = ⟨F (x), G(x)⟩ is smooth with differential:

Dh(x)[v] = ⟨DF (x)[v], G(x)⟩+ ⟨F (x),DG(x)[v]⟩ . (4.25)
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(To differentiate inner products of two smooth vector fields on a manifold, we

need more tools: see Sections 5.4 and 5.7, specifically Theorems 5.6 and 5.29.)

Then, to see how the notion of adjoint comes up, consider the common example

of a cost function f : M→ R with

f(x) = ∥F (x)∥2E = ⟨F (x), F (x)⟩E , (4.26)

where F : M → E is a map from a Riemannian manifold to a Euclidean space

(e.g., a matrix space) endowed with an inner product ⟨·, ·⟩E and associated norm

∥ · ∥E . From (4.25), we know that

Df(x)[v] = ⟨DF (x)[v], F (x)⟩E + ⟨F (x),DF (x)[v]⟩E = 2 ⟨F (x),DF (x)[v]⟩E .

The linear map DF (x) : TxM → E has an adjoint with respect to the inner

products on TxM and E ; we denote it by DF (x)∗ : E → TxM. It follows by

definition that

Df(x)[v] = 2 ⟨DF (x)∗[F (x)], v⟩x .

This holds for all v ∈ TxM, thus by identification with (4.20) we find:

gradf(x) = 2 DF (x)∗[F (x)]. (4.27)

This highlights the importance of computing adjoints of linear maps in obtaining

gradients. Formulas (3.15) and (3.18) are particularly helpful in this respect. We

further illustrate the computation of adjoints in examples below.

In many cases, it is sufficient to work out the gradient of a function defined

on a Euclidean space, then to use a rule to convert it to a Riemannian gradient.

For example, Proposition 3.61 shows how to obtain the Riemannian gradient of

a function f defined on a Riemannian submanifold of a Euclidean space E by

orthogonal projection to tangent spaces. Thus, below we focus on the Euclidean

case.

Example 4.23. Consider F : Rn×n → Rn×n defined by F (X) = Xk for some

positive integer k. Using the product rule repeatedly, it is easy to see that

DF (X)[U ] = UXk−1 +XUXk−2 +X2UXk−3 + · · ·+Xk−2UX +Xk−1U

=

k∑
ℓ=1

Xℓ−1UXk−ℓ. (4.28)

Equipping Rn×n with the usual trace inner product, we find that the adjoint is

simply DF (X)∗ = DF (X⊤). Indeed, for all U, V ∈ Rn×n, using (3.15),

⟨DF (X)[U ], V ⟩ =

k∑
ℓ=1

〈
Xℓ−1UXk−ℓ, V

〉
=

k∑
ℓ=1

〈
U, (X⊤)ℓ−1V (X⊤)k−ℓ

〉
=
〈
U,DF (X⊤)[V ]

〉
. (4.29)
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Similarly, for F (X) = Xk defined on Cn×n equipped with the usual inner prod-

uct (3.17), the expression for DF (X) is unchanged, and DF (X)∗ = DF (X∗).

Example 4.24. Consider F (X) = X−1 defined on the (open) set of invertible

matrices (real or complex). One can show that F is smooth on that domain. By

definition,

F (X)X = I

for all X in the domain of F . Differentiating that identity at X along U on both

sides, the product rule yields

DF (X)[U ]X + F (X)U = 0.

Hence, we get the following useful expression:

DF (X)[U ] = −X−1UX−1. (4.30)

Equipping Rn×n or Cn×n with its usual inner product, the adjoint DF (X)∗ is

DF (X⊤) or DF (X∗), as in the previous example.

Example 4.25. Consider a differentiable scalar function g : R → R, and let

g̃ : Rn×m → Rn×m denote its entrywise application to matrices so that g̃(X)ij =

g(Xij). Then, with g′ the derivative of g,

∀i, j, (Dg̃(X)[U ])ij = Dg(Xij)[Uij ] = g′(Xij)Uij .

Letting g̃′ : Rn×m → Rn×m denote the entrywise application of g′ to matrices,

we can summarize this as

Dg̃(X)[U ] = g̃′(X)⊙ U. (4.31)

This differential is self-adjoint with respect to the usual inner product, that is,

Dg̃(X)∗ = Dg̃(X), since for all U, V ∈ Rn×m, using (3.15), we have

⟨Dg̃(X)[U ], V ⟩ = ⟨g̃′(X)⊙ U, V ⟩ = ⟨U, g̃′(X)⊙ V ⟩ = ⟨U,Dg̃(X)[V ]⟩ .

There does not always exist a complex equivalent because for g : C → C, even

if Dg(x)[u] is well defined, there may not exist a function g′ : C → C such that

Dg(x)[u] = g′(x)u, i.e., g is not necessarily complex differentiable. Fortunately,

this is not an obstacle to computing directional derivatives: it merely means there

may not exist as simple an expression as above.

Example 4.26. Consider a function g from R to R or from C to C with a

convergent Taylor series, that is,

g(x) =

∞∑
k=0

akx
k

for some coefficients a0, a1, . . ., with x possibly restricted to a particular domain.
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Such functions can be extended to matrix functions, that is, to functions from

Rn×n to Rn×n or from Cn×n to Cn×n, simply by defining

G(X) =

∞∑
k=0

akX
k. (4.32)

We can gain insight into this definition by considering the ubiquitous special

case where X is diagonalizable, that is, X = V DV −1 for some diagonal matrix

D = diag(λ1, . . . , λn) containing the eigenvalues of X and some invertible matrix

V containing its eigenvectors. Indeed, in this case,

G(X) =

∞∑
k=0

ak(V DV −1)k

= V

( ∞∑
k=0

akD
k

)
V −1 = V diag(g(λ1), . . . , g(λn))V −1.

Thus, G is well defined at X provided the eigenvalues of X belong to the domain

of definition of g. In this case, the matrix function G transforms the eigenvalues

through g.

Important examples include the matrix exponential, matrix logarithm and ma-

trix square root functions. In Matlab, these are available as expm, logm and

sqrtm, respectively. In Manopt, their differentials are available as dexpm, dlogm

and dsqrtm.

This view of matrix functions is sufficient for our discussion but it has its

limitations. In particular, the Taylor series expansion does not make it imme-

diately clear why the matrix logarithm and matrix square root can be defined

for all matrices whose real eigenvalues (if any) are positive. For a more formal

discussion of matrix functions—including definitions that allow us to go beyond

Taylor series and diagonalizable matrices—as well as details regarding domains

of definition and numerical computation, see [Hig08]. Generalized matrix func-

tions (which apply to non-square matrices) and their differentials are discussed

in [Nof17].

Provided one can compute the matrix function, a theorem by Mathias offers a

convenient way to compute its directional derivatives (also called Gâteaux and,

under stronger conditions, Fréchet derivative) [Mat96], [Hig08, §3.2, Thm. 3.6,

3.8, eq. (3.16)]: if g is 2n − 1 times continuously differentiable on some open

domain in R or C and the eigenvalues of X belong to this domain, then,

G

([
X U

0 X

])
=

[
G(X) DG(X)[U ]

0 G(X)

]
. (4.33)

Thus, for the cost of one matrix function computation on a matrix of size 2n×2n,

we get G(X) and DG(X)[U ]. This is useful, though we should bear in mind

that computing matrix functions is usually easier for symmetric or Hermitian

matrices: here, even if X is favorable in that regard, the structure is lost by

forming the block matrix. If the matrices are large or poorly conditioned, it may
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help to explore alternatives [AMH09], [Hig08, §10.6, §11.8]. If an eigenvalue

decomposition of X is available, there exists an explicit expression for DG(X)[U ]

involving Loewner matrices [Hig08, Cor. 3.12].

We can gain insight into the adjoint of the directional derivative of a matrix

function through (4.32) and Example 4.23. Indeed,

DG(X)[U ] =

∞∑
k=0

akD
(
X 7→ Xk

)
(X)[U ]

=

∞∑
k=0

ak

k∑
ℓ=1

Xℓ−1UXk−ℓ. (4.34)

Assume the Taylor expansion coefficients ak are real: this holds for the matrix

exponential, logarithm and square root. It is then straightforward to see that the

adjoint with respect to the usual inner product obeys

DG(X)∗ = DG(X∗). (4.35)

Indeed,

⟨DG(X)[U ], V ⟩ =

〈 ∞∑
k=0

ak

k∑
ℓ=1

Xℓ−1UXk−ℓ, V

〉

=

∞∑
k=0

ak

k∑
ℓ=1

〈
Xℓ−1UXk−ℓ, V

〉
=

∞∑
k=0

ak

k∑
ℓ=1

〈
U, (X∗)ℓ−1V (X∗)k−ℓ

〉
= ⟨U,DG(X∗)[V ]⟩ . (4.36)

Of course, X∗ = X⊤ in the real case.

Example 4.27. Formulas for the directional derivatives of factors of certain

matrix factorizations are known, including QR, LU, Cholesky, polar factoriza-

tion, eigenvalue decomposition and SVD. See [Deh95, §3.1], [DMV99, DE99,

Fep17, FL19, BZA20] and [AMS08, Ex. 8.1.5] among others.

Example 4.28. The directional derivative of g(X) = log(det(X)) is given by

Dg(X)[U ] = Tr(X−1U), provided that det(X) is positive if it is real. Indeed,

using det(AB) = det(A) det(B) and log(ab) = log(a) + log(b),

log(det(X + tU)) = log(det(X(In + tX−1U)))

= log(det(X)) + log(det(In + tX−1U))

= log(det(X)) + tTr(X−1U) +O(t2), (4.37)

where we used det(In + tA) = 1 + tTr(A) +O(t2) then log(1 + λt) = λt+O(t2).

For the former claim, check that if λ1, . . . , λn denote the eigenvalues of A then

det(In + tA) =
∏n

i=1(1 +λit). In particular, if we restrict g to the set of positive
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definite matrices, then g is real valued and we conclude that gradg(X) = X−1

with respect to the usual inner product. The related function

h(X) = log(det(X−1)) = log(1/det(X)) = − log(det(X)) = −g(X)

has derivatives Dh(X)[U ] = −Tr(X−1U) and gradh(X) = −X−1.

Example 4.29. We now work out a gradient as a full example. Consider the

following function which maps a pair of square matrices (X,Y ) to a real number,

with A and B two given real matrices (A,B,X, Y are all in Rn×n):

f(X,Y ) =
1

2
∥A⊙ exp(X−1B)Y ∥2.

Here, exp denotes the matrix exponential and ⊙ denotes entrywise multiplication.

See Exercise 3.67 for pointers regarding gradients on a product manifold. Define

Q(X,Y ) = A⊙
[
exp(X−1B)Y

]
, so that

f(X,Y ) =
1

2
∥Q(X,Y )∥2 =

1

2
⟨Q(X,Y ), Q(X,Y )⟩ .

Then, using the product rule on the inner product ⟨·, ·⟩, we get the directional

derivative of f at (X,Y ) along the direction (Ẋ, Ẏ ) (a pair of matrices of the

same size as (X,Y )):

Df(X,Y )[Ẋ, Ẏ ] =
〈

DQ(X,Y )[Ẋ, Ẏ ], Q(X,Y )
〉
.

We focus on the differential of Q for now. Using that A is constant, the product

rule on exp(·)Y and the chain rule on exp, we get:

DQ(X,Y )[Ẋ, Ẏ ] = A⊙
[
Dexp(X−1B)[U ]Y + exp(X−1B)Ẏ

]
,

where Dexp is the differential of the matrix exponential, and U is the differen-

tial of (X,Y ) 7→ X−1B at (X,Y ) along (Ẋ, Ẏ ), that is, U = −X−1ẊX−1B.

Combining and writing W = X−1B for short, we find

Df(X,Y )[Ẋ, Ẏ ] =
〈
A⊙

[
Dexp(W )[−X−1ẊW ]Y + exp(W )Ẏ

]
, Q(X,Y )

〉
.

We re-arrange the terms in this expression to reach the form ⟨Ẋ, ·⟩+ ⟨Ẏ , ·⟩. This

mostly requires using the notion of adjoint of linear maps: recall Section 3.1.

First using the adjoint of entrywise multiplication with respect to the usual inner

product as in (3.15), then linearity of the inner product, we find:

Df(X,Y )[Ẋ, Ẏ ] =
〈

Dexp(W )[−X−1ẊW ]Y ,A⊙Q(X,Y )
〉

+
〈

exp(W )Ẏ , A⊙Q(X,Y )
〉
.

Let Z = A ⊙ Q(X,Y ) for short; using the adjoint of matrix multiplication for

both terms:

Df(X,Y )[Ẋ, Ẏ ] =
〈

Dexp(W )[−X−1ẊW ], ZY ⊤
〉

+
〈
Ẏ , exp(W )⊤Z

〉
.
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The gradient with respect to Y is readily apparent from the second term. We focus

on the first term. Using the adjoint of the differential of the matrix exponential

at X−1B (denoted by a star), we get:

〈
Dexp(W )[−X−1ẊW ], ZY ⊤

〉
=
〈
−X−1ẊW,Dexp(W )∗[ZY ⊤]

〉
=
〈
Ẋ,−(X−1)⊤Dexp(W )∗[ZY ⊤]W⊤

〉
.

This reveals the gradient of f with respect to X. We can go one step further

using the fact that Dexp(W )∗ = Dexp(W⊤). To summarize:

gradf(X,Y ) =
(
− (X−1)⊤Dexp(W⊤)[ZY ⊤]W⊤, exp(W )⊤Z

)
.

Considering that W, exp(W ) and Q must be computed in order to evaluate f , it

is clear that computing gradf is not significantly more expensive, and much of

the computations can be reused.

If A,B,X, Y are in Cn×n and we use the real inner product over complex

matrices (3.17) as in Section 3.1, gradf takes on the same expression except all

transposes are replaced by conjugate-transposes, and Z = A⊙Q(X,Y ). See also

Example 4.30.

Example 4.30. Consider the function f : Cn → R defined by

f(x) =

m∑
i=1

|x∗Aix− bi|2,

where A1, . . . , Am ∈ Cn×n and b ∈ Cm are given. This is a real-valued function

of a complex vector. As in Section 3.1, we consider Cn to be a real vector space of

dimension 2n. We further equip Cn with the (real) inner product ⟨u, v⟩ = ℜ{u∗v}
as in (3.16). To work out the gradient of f , as usual, we first work out its

directional derivatives. Define z = z(x) in Cm with zi(x) = x∗Aix− bi; observe

that f(x) =
∑m

i=1 |zi|2 and:

Dzi(x)[u] = u∗Aix+ x∗Aiu.

Above, we have used the convenient fact that complex conjugation is a linear

map on the real vector space Cn; as such, the differential of the conjugate is the

conjugate of the differential. With the identities |a|2 = aa and ab+ ba = 2ℜ{ab},
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we find:

Df(x)[u] =

m∑
i=1

zi ·Dzi(x)[u] + Dzi(x)[u] · zi

= 2

m∑
i=1

ℜ{zi · (u∗Aix+ x∗Aiu)}

= 2ℜ

{
m∑
i=1

zi · (u∗Aix)

}
+ 2ℜ

{
m∑
i=1

zi · (x∗Aiu)

}

= 2

〈
u,

m∑
i=1

zi ·Aix

〉
+ 2

〈
m∑
i=1

zi ·A∗i x, u

〉
.

By identification in the definition ⟨gradf(x), u⟩ = Df(x)[u], we deduce:

gradf(x) = 2

(
m∑
i=1

ziAi + ziA
∗
i

)
x.

In the particular case where Ai = A∗i and (as one might expect in that case)

where b is real, we also have that z is real and the gradient further simplifies to

gradf(x) = 4 (
∑m

i=1 ziAi)x.

The cheap gradient principle [GW08, p88] asserts that, for a wide class of

functions f , computing the gradient of f at a point requires no more than a

multiple (often five or less) of the number of arithmetic operations required to

evaluate f itself at that point. Furthermore, much of the computations required

to evaluate the cost function can be reused to evaluate its gradient at the same

point. Thus, if it appears that computing the gradient takes inordinately more

time than it takes to evaluate the cost, chances are the code can be improved.

Anticipating the introduction of Hessians, we note that a similar fact holds for

Hessian-vector products [Pea94].

The latter principle is at the heart of automatic differentiation (AD): algo-

rithms that automatically compute the derivatives of a function, based simply

on code to compute that function. AD can significantly speed up development

time. Packages such as Manopt offer AD for optimization on manifolds.

Exercise 4.31. Prove rules (4.21), (4.22), (4.23), (4.24) and (4.25).

Exercise 4.32. The (principal) matrix square root function F (X) = X1/2 is

well defined provided real eigenvalues of X are positive [Hig08, Thm. 1.29]. Show

that DF (X)[U ] = E, where E is the matrix which solves the Sylvester equation

EX1/2 +X1/2E = U . Hint: consider G(X) = X2 and F = G−1.

Exercise 4.33. For a matrix function whose Taylor expansion coefficients are

real, show that DF (X)[U∗] = (DF (X∗)[U ])
∗
. Combining with (4.36), this yields:

DF (X)∗[U ] = DF (X∗)[U ] = (DF (X)[U∗])
∗
.
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4.8 Numerically checking a gradient*

After writing code to evaluate a cost function f(x) and its Riemannian gradient

gradf(x), it is often helpful to run numerical tests to catch possible mistakes

early. This section describes such tests. In the Matlab toolbox Manopt, they are

implemented as checkgradient.

The first thing to test is that gradf(x) is indeed in the tangent space at x.

This being secured, consider the Taylor expansion (4.3):

f(Rx(tv)) = f(x) + t ⟨gradf(x), v⟩x +O(t2).

This says that, for all x ∈M and v ∈ TxM, with all retractions,

E(t) ≜ |f(Rx(tv))− f(x)− t ⟨gradf(x), v⟩x| = O(t2). (4.38)

Taking the logarithm on both sides, we find that log(E(t)) must grow approxi-

mately linearly in log(t), with a slope of two (or more1) when t is small:

log(E(t)) ≈ 2 log(t) + constant.

This suggests a procedure to check the gradient numerically:

1. Generate a random point x ∈M;

2. Generate a random tangent vector v ∈ TxM with ∥v∥x = 1;

3. Compute f(x) and gradf(x). Check that gradf(x) is in TxM, and compute

⟨gradf(x), v⟩x;

4. Compute E(t) for several values of t logarithmically spaced on the interval

[10−8, 100];

5. Plot E(t) as a function of t, in a log–log plot;

6. Check that the plot exhibits a slope of two (or more) over several orders of

magnitude.

We do not expect to see a slope of two over the whole range. On the one hand,

for large t, the Taylor approximation may be poor. On the other hand, for small

t, floating-point arithmetic strongly affects the computation of E(t) (see also the

discussion in Section 6.4.6). Still, we do expect to see a range of values of t for

which the numerical computation is accurate and the Taylor expansion is valid.

If the curve does not exhibit a slope of two over at least one or two orders of

magnitude, this is a strong sign that there is a mistake in the computation of

the gradient (or the cost function, or the retraction, or the inner product).

Example 4.34. With some symmetric matrix A and size n, recall the cost func-

tion f(X) = − 1
2 Tr(X⊤AX) defined on the Stiefel manifold St(n, p). Its gradient

is the orthogonal projection of −AX to the tangent space at X. Figure 4.1 plots

the numerical gradient check described above, obtained first with an incorrect gra-

dient (the minus sign was forgotten), then with the correct gradient. Notice how

1 If the Taylor remainder happens to be O(tk) with k > 2, we should get a slope of k. This is

good but rare.
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Wrong gradient

Dashed line:
slope 2

Correct gradient

Dashed line:
slope 2

Figure 4.1 Example 4.34 illustrates a numerical procedure to check gradient computa-
tion code. The dashed lines have a slope of two: this serves as a visual reference. The
solid curves represent the function E(t) (4.38) in a log–log plot. Part of each solid curve
is overlaid with a thicker line. The (average) slopes of those thick lines are nearly one
(left) and two (right), strongly suggesting the left gradient is incorrect, and suggesting
the right gradient is correct (as is indeed the case).

for the incorrect gradient the solid curve has (mostly) a slope of one, whereas for

the correct gradient it has (mostly) a slope of two. This figure is obtained with

the following Matlab code, using Manopt.

n = 50;

A = randn(n, n);

A = A + A';

inner = @(U, V) U(:) '*V(:); % = trace(U'*V)

St = stiefelfactory(n, 3);

problem.M = St;

problem.cost = @(X) -0.5* inner(X, A*X);

problem.grad = @(X) St.proj(X, A*X); % Oops , forgot -

checkgradient(problem); % First panel

problem.grad = @(X) St.proj(X, -A*X); % This is better

checkgradient(problem); % Second panel

X = steepestdescent(problem); % Call to RGD

X = trustregions(problem); % Call to RTR (Chapter 6)

4.9 Notes and references

Absil et al. give a thorough treatment and history of Riemannian gradient de-

scent in [AMS08, §4], with references going back to [Lue72, Gab82, Smi94,
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Udr94, HM96, Rap97, EAS98]. Gabay [Gab82] details the important work of

Lichnewsky [Lic79], who generalized Luenberger’s pioneering paper [Lue72] from

Riemannian submanifolds of Euclidean space to general manifolds, and designed

a Riemannian nonlinear conjugate gradients method for nonlinear eigenvalue

problems.

The first iteration complexity analyses in the Riemannian setting appear about

the same time on public repositories in [ZS16, BAC18, BFM17], under various

related models. The analysis presented here is largely based on [BAC18]. Be-

fore that, analyses with similar ingredients including Lipschitz-type assumptions

(but phrased as asymptotic convergence results) appear notably in [dCNdLO98,

Thm. 5.1].

Several first-order optimization algorithms on Riemannian manifolds are avail-

able, including nonlinear conjugate gradients [AMS08, SI15, Sat16] (pioneered

by Lichnewsky), BFGS [BM06, QGA10b, RW12, HGA15, HAG16] (pioneered

by Gabay) and (variance reduced) stochastic gradients [Bon13, ZRS16, KSM18,

SKM19]. See also the book by Sato [Sat21] which provides a general introduc-

tion to Riemannian optimization and an in depth treatment of the nonlinear

conjugate gradients method. Quadratic convergence results for the latter appear

in [Smi94, §5]. Regarding stochastic methods, Hosseini and Sra propose a survey

in [HS20].

There is also recent work focused on nonsmooth cost functions on smooth

manifolds, including proximal point methods and subgradient methods [BFM17,

CMSZ20], gradient sampling [HU17] and ADMM-type algorithms [KGB16].

Many of these more advanced algorithms require transporters or vector trans-

ports, which we cover in Section 10.5: these are tools to transport tangent vectors

and linear maps from one tangent space to another.

In (4.11), we considered the standard proof that Lipschitz continuity of the

gradient of f (in the Euclidean case) implies uniform bounds on the truncation

error of first-order Taylor expansions of f . If f is twice continuously differentiable,

it is not difficult to show that the converse also holds because the gradient is

Lipschitz continuous if and only if the Hessian is bounded. See [BAJN20, Cor. 5.1]

for a more general discussion assuming Hölder continuity of the gradient.

See [BH19] for first-order necessary optimality conditions when x, in addi-

tion to living on a manifold M, may be further restricted by equality and in-

equality constraints. Second-order optimality conditions are also investigated in

Section 6.1 and in [YZS14].

After Proposition 4.7, we observed that (under the stated conditions) the

statement guarantees all accumulation points of RGD are critical points, but it

does not guarantee convergence of the iterates: there could be more than one

accumulation point. This type of behavior is undesirable, and by all accounts

uncommon. The local convergence results outlined in Section 4.6 exclude such

pathological cases near critical points where the Riemannian Hessian (intro-

duced in Section 5.5) is positive definite. For more general conditions based on

analyticity, see notably [AK06]. See [Lag07] and [BH15, Thm. 4.1, Cor. 4.2] for
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connections to optimization on manifolds. At their core, these results rely on

the Kurdyka– Lojasiewicz inequality for real analytic functions [ Loj65]. See also

Lemma 11.28 and Theorem 11.29 for the geodesically strongly convex case via

the Polyak– Lojasiewicz inequality.

The superlinear convergence claim in Theorem 4.19 also appears with a dis-

tinction regarding the degree of differentiability of the iteration map in [AMS08,

Thm. 4.5.3].
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5 Embedded geometry: second order

In previous chapters, we developed a notion of gradient for smooth functions on

manifolds. We explored how this notion is useful both to analyze optimization

problems and to design algorithms for them. In particular, we found that local

minimizers are critical points, that is, the gradient vanishes there. Furthermore,

we showed under a regularity condition that following the negative gradient

allows us to find critical points.

A tool of choice in those developments has been a type of first-order Taylor

expansion of the cost function along a curve. Concretely, for a smooth curve c

on M passing through x at t = 0 with velocity c′(0) = v, we considered the

composition g = f ◦ c (a smooth function from reals to reals), and its truncated

Taylor expansion

g(t) = g(0) + tg′(0) +O(t2) = f(x) + t ⟨gradf(x), v⟩x +O(t2).

To gain further control over g, it is natural to ask what happens if we truncate

the expansion one term later, that is, if we write

g(t) = f(x) + t ⟨gradf(x), v⟩x +
t2

2
g′′(0) +O(t3).

In the Euclidean case, with the straight curve c(t) = x + tv, we would find the

well-known formula

g(t) = f(x+ tv) = f(x) + t ⟨gradf(x), v⟩+
t2

2
⟨Hessf(x)[v], v⟩+O(t3),

where Hessf(x) is the Hessian of f at x.

This leads us to ponder: can we define an equivalent of the Hessian of a function

on a Riemannian manifold? To make progress on this question, we first review

how Hessians are defined on Euclidean spaces.

Recall from Section 3.1 the definition of the gradient and Hessian of a smooth

function f : E → R on a Euclidean space E with inner product ⟨·, ·⟩. The gradient

of f is the map gradf : E → E which satisfies ⟨gradf(x), v⟩ = Df(x)[v] for all

x, v ∈ E . The Hessian of f at x is the linear map Hessf(x) : E → E defined by

Hessf(x)[v] = D(gradf)(x)[v] = lim
t→0

gradf(x+ tv)− gradf(x)

t
.

Thus, Hessf(x)[v] tells us how much the gradient changes if x is perturbed along

v, up to first order.
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For the special case where E = Rn is equipped with the standard inner product

⟨u, v⟩ = u⊤v, we already reasoned that the gradient is the vector of partial

derivatives of f . In that case, we also recover a familiar form of the Hessian as

the symmetric matrix of second-order partial derivatives:

gradf(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 , Hessf(x) =


∂2f

∂x1∂x1
(x) · · · ∂2f

∂xn∂x1
(x)

...
...

∂2f
∂x1∂xn

(x) · · · ∂2f
∂xn∂xn

(x)

 .
Indeed, we can confirm this by working out the directional derivative of the

gradient vector field gradf at x along v ∈ Rn:

D(gradf)(x)[v] =


D
(

∂f
∂x1

)
(x)[v]

...

D
(

∂f
∂xn

)
(x)[v]



=


∂2f

∂x1∂x1
(x)v1 + · · ·+ ∂2f

∂xn∂x1
(x)vn

...
∂2f

∂x1∂xn
(x)v1 + · · ·+ ∂2f

∂xn∂xn
(x)vn



=


∂2f

∂x1∂x1
(x) · · · ∂2f

∂xn∂x1
(x)

...
...

∂2f
∂x1∂xn

(x) · · · ∂2f
∂xn∂xn

(x)


v1...
vn

 = Hessf(x)[v].

While this special case is important, the general definition of the Hessian as the

derivative of the gradient vector field is more relevant: it leads the way forward.

Accordingly, to extend the concept of Hessian to Riemannian manifolds, we

need a good notion of derivative of vector fields. As we shall see, the derivative

we already have (Definition 3.34) is not appropriate. To overcome this, we intro-

duce a new notion of derivative for vector fields called a connection or covariant

derivative. That naturally leads to a notion of covariant derivative of a vector

field along a curve. With a particularly apt choice of connection called the Rie-

mannian connection or Levi-Civita connection, we will be able to complete the

Taylor expansion above as follows:

f(c(t)) = f(x) + t ⟨gradf(x), v⟩x +
t2

2
⟨Hessf(x)[v], v⟩x

+
t2

2
⟨gradf(x), c′′(0)⟩x +O(t3).

Here, Hessf(x) is the Riemannian Hessian of f at x we are about to define, and

c′′(t) is the acceleration along c: the covariant derivative of its velocity vector

field c′(t). Importantly, Hessf(x) retains familiar properties. For example, it is

symmetric as a linear map from TxM to TxM, that is, it is self-adjoint with

respect to the Riemannian metric ⟨·, ·⟩x. For Riemannian submanifolds (a special
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5.1 The case for another derivative of vector fields 85

case), we derive a practical expression for Hessf(x)[v] as a type of finite difference

approximation based on gradf : see Example 5.32. These considerations occupy

us for most of this chapter.

We already encountered the Riemannian Hessian in studying the local con-

vergence behavior of gradient descent in Section 4.6. In Chapter 6, we use the

notion of Riemannian Hessian and the extended Taylor expansion to develop

so-called second-order optimization algorithms.

5.1 The case for another derivative of vector fields

Consider the unit sphere Sd−1 as a Riemannian submanifold of Rd with the

canonical inner product ⟨u, v⟩ = u⊤v. For a given symmetric matrix A of size

d, let f(x) = 1
2x
⊤Ax be defined on Sd−1. We know from Example 3.62 that the

Riemannian gradient of f is the following smooth vector field on Sd−1:

V (x) = gradf(x) = Ax− (x⊤Ax)x.

Since V is a smooth map from Sd−1 to its tangent bundle (two manifolds), we

already have a notion of differential for V provided by Definition 3.34. We can

compute the latter via (3.28). Explicitly, with the smooth extension

V̄ (x) = Ax− (x⊤Ax)x

defined on all of Rd, we have for all tangent vectors u ∈ TxSd−1:

DV (x)[u] = DV̄ (x)[u] = Au− (x⊤Ax)u− (u⊤Ax+ x⊤Au)x

= Projx(Au)− (x⊤Ax)u− (u⊤Ax)x, (5.1)

where Projx(v) = v − (x⊤v)x is the orthogonal projector from Rd to TxSd−1.

Evidently, DV (x)[u] is not always tangent to Sd−1 at x: the first two terms

in (5.1) are tangent, but the third one is not whenever u⊤Ax ̸= 0. Thus, if we were

to use that notion of derivative of gradient vector fields to define Hessians, we

would find ourselves in the uncomfortable situation where Hessf(x)[u], defined as

D(gradf)(x)[u], might not be a tangent vector at x. As a result, Hessf(x) would

not be a linear map to and from TxSd−1, and terms such as ⟨Hessf(x)[u], u⟩x
would make no sense. We need a new derivative for vector fields.

5.2 Another look at differentials of vector fields in linear spaces

We aim to define a new derivative for vector fields on manifolds. In so doing, we

follow the axiomatic approach, that is, we prescribe properties we would like that

derivative to have, and later we show there exists a unique operator that satisfies

them. Of course, the classical derivative of vector fields on linear spaces should

qualify: let us have a look at some of its elementary properties for inspiration.
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Let E be a linear space. Recall that the differential of a smooth vector field

V ∈ X(E) at a point x along u is given by:

DV (x)[u] = lim
t→0

V (x+ tu)− V (x)

t
. (5.2)

Given three smooth vector fields U, V,W ∈ X(E), two vectors u,w ∈ E (we think

of them as being “tangent at x”), two real numbers a, b ∈ R and a smooth

function f ∈ F(E), we know from classical calculus that the following properties

hold:

1. DV (x)[au+ bw] = aDV (x)[u] + bDV (x)[w];

2. D(aV + bW )(x)[u] = aDV (x)[u] + bDW (x)[u]; and

3. D(fV )(x)[u] = Df(x)[u] · V (x) + f(x)DV (x)[u].

Furthermore, the map x 7→ DV (x)[U(x)] is smooth since U and V are smooth,

and it defines a vector field on E . This constitutes a first set of properties we

look to preserve on manifolds.

5.3 Differentiating vector fields on manifolds: connections

Our new notion of derivative for vector fields on manifolds is called a connec-

tion (or affine connection), traditionally denoted by ∇ (read: “nabla”). Given a

tangent vector u ∈ TxM and a vector field V , we think of ∇uV as a derivative

of V at x along u. Formally,⋆ we should write ∇(x,u)V , but the base point x is

typically clear from context. Note that we do not need a Riemannian metric yet.

Definition 5.1. A connection on a manifold M is an operator

∇ : TM× X(M)→ TM : (u, V ) 7→ ∇uV

such that ∇uV is in TxM whenever u is in TxM and which satisfies four prop-

erties for all U, V,W ∈ X(M), u,w ∈ TxM and a, b ∈ R:

0. Smoothness: (∇UV )(x) ≜ ∇U(x)V defines a smooth vector field ∇UV ;

1. Linearity in u: ∇au+bwV = a∇uV + b∇wV ;

2. Linearity in V : ∇u(aV + bW ) = a∇uV + b∇uW ; and

3. Leibniz rule: ∇u(fV ) = Df(x)[u] · V (x) + f(x)∇uV .

The field ∇UV is the covariant derivative of V along U with respect to ∇.

See Section 5.6 for a more common (and equivalent) definition.

There exist many connections. For example, on a linear space E ,

∇uV = DV (x)[u] (5.3)

is a connection by design. More interestingly, there exist connections on mani-

folds. Here is an example forM embedded in a Euclidean space E : based on the

discussion in Section 5.1, one may surmise that a possible fix for the standard
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notion of derivative of vector fields is to project the result to tangent spaces.

This can be done as follows:

∇uV = Projx
(
DV̄ (x)[u]

)
, (5.4)

where Projx is the projector from E to TxM—orthogonal with respect to the

Euclidean metric on E—and V̄ is any smooth extension of V . That is indeed a

valid connection.

Theorem 5.2. Let M be an embedded submanifold of a Euclidean space E. The

operator ∇ defined by (5.4) is a connection on M.

Proof. It is helpful to denote the connection (5.3) on E by ∇̄. Then,

∇uV = Projx
(
∇̄uV̄

)
. (5.5)

IfM is an open submanifold of E , the claim is clear since Projx is identity and we

may take V̄ = V . We now handle M not open in E . Consider U, V,W ∈ X(M)

together with smooth extensions Ū , V̄ , W̄ ∈ X(O) defined on a neighborhood

O of M in E . As we just argued, ∇̄ is a connection on O since O is an open

submanifold of E . Also consider a, b ∈ R and u,w ∈ TxM. Using consecutively

that ∇̄ is a connection and that Projx is linear, it is straightforward to verify

linearity in the first argument:

∇au+bwV = Projx
(
∇̄au+bwV̄

)
= Projx

(
a∇̄uV̄ + b∇̄wV̄

)
= a∇uV + b∇wV.

Likewise, linearity in the second argument holds since:

∇u(aV + bW ) = Projx
(
∇̄u(aV̄ + bW̄ )

)
= Projx

(
a∇̄uV̄ + b∇̄uW̄

)
= a∇uV + b∇uW.

To verify the Leibniz rule, consider an arbitrary f ∈ F(M) and smooth extension

f̄ ∈ F(O). Then, using that f̄ V̄ is a smooth extension for fV on O, it follows

that

∇u(fV ) = Projx
(
∇̄u(f̄ V̄ )

)
= Projx

(
Df̄(x)[u] · V̄ (x) + f̄(x)∇̄uV̄

)
= Df(x)[u] · V (x) + f(x)∇uV,

as desired. Finally, we see that ∇UV is smooth as per Exercise 3.66.

Not only do connections exist, but actually: there exist infinitely many of them

on any manifold M. For instance, we can consider (5.4) with other projectors.

As a result, the connection (5.4) may seem arbitrary. In the next section, we

show that, among all connections, exactly one satisfies two additional properties

once we add a Riemannian structure onM. As it turns out, the connection (5.4)
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satisfies those additional properties if M is a Riemannian submanifold of E . If

we endow M with a different Riemannian metric, there still exists a preferred

connection for M but it may differ from (5.4).

We close this section with an observation: all connections coincide at critical

points of a vector field. For optimization, we will see manifestations of this fact

when applied to the gradient vector field at a critical point of a cost function f .

The proof relies on local frames: it can safely be skipped.

Proposition 5.3. Let M be a manifold with arbitrary connection ∇. Given a

smooth vector field V ∈ X(M) and a point x ∈M, if V (x) = 0 then

∇uV = DV (x)[u]

for all u ∈ TxM. In particular, DV (x)[u] is tangent at x.

Proof. Expand V in a local frame W1, . . . ,Wn ∈ X(U) on some neighborhood U
of x on M (Proposition 3.69):

V |U = g1W1 + · · ·+ gnWn,

where g1, . . . , gn : U → R are smooth. Given u ∈ TxM, the properties of connec-

tions allow us to write the following (see Section 5.6 for a technical point about

why it makes sense to say ∇uV = ∇u(V |U )):

∇uV =
∑
i

∇u(giWi) =
∑
i

Dgi(x)[u] ·Wi(x) + gi(x)∇uWi.

Moreover, a direct computation reveals

DV (x)[u] =
∑
i

D(giWi)(x)[u] =
∑
i

Dgi(x)[u] ·Wi(x) + gi(x)DWi(x)[u].

Since V (x) = 0, we know gi(x) = 0 for all i, hence

∇uV =
∑
i

Dgi(x)[u] ·Wi(x) = DV (x)[u].

This concludes the proof.

Exercise 5.4. Let M1 and M2 be two manifolds, respectively equipped with

connections ∇(1) and ∇(2). Consider the product manifold M = M1 × M2.

Show that the map ∇ : TM× X(M)→ TM defined by

∇(u1,u2)(V1, V2) =
(
∇(1)

u1
V1(·, x2) + DV1(x1, ·)(x2)[u2],

∇(2)
u2
V2(x1, ·) + DV2(·, x2)(x1)[u1]

)
(5.6)

for all (u1, u2) tangent to M at (x1, x2) is a connection on M—we call it the

product connection. Notation such as V1(·, x2) represents the map obtained from

V1 : M1 ×M2 → TM1 by fixing the second input to x2. In particular, V1(·, x2)

is a vector field on M1, while V1(x1, ·) is a map from M2 to the linear space

Tx1
M1.
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5.4 Riemannian connections

There exist many connections on a manifold, which means we have leeway to

be more demanding. Upon equipping the manifold with a Riemannian metric,

we require two further properties so that the connection and the metric interact

nicely. This is the object of our next theorem, called the fundamental theorem

of Riemannian geometry. In particular, the two additional properties ensure the

Hessian as defined later in this chapter is a self-adjoint map on each tangent

space.

In order to state the desired properties, we need to introduce a few notational

definitions. Mind the difference between Uf and fU . ⋆

Definition 5.5. For U, V ∈ X(M) and f ∈ F(U) with U open in M, define:

• Uf ∈ F(U) such that (Uf)(x) = Df(x)[U(x)];

• [U, V ] : F(U)→ F(U) such that [U, V ]f = U(V f)− V (Uf); and

• ⟨U, V ⟩ ∈ F(M) such that ⟨U, V ⟩(x) = ⟨U(x), V (x)⟩x.

The notation Uf captures the action of a smooth vector field U on a smooth

function f through derivation, transforming f into another smooth function. The

commutator [U, V ] of such action is called the Lie bracket. Even in linear spaces

[U, V ]f is nonzero in general.1 Notice that

Uf = ⟨gradf, U⟩ , (5.7)

owing to the definitions of Uf , ⟨V,U⟩ and gradf .

Theorem 5.6. On a Riemannian manifoldM, there exists a unique connection

∇ which satisfies two additional properties for all U, V,W ∈ X(M):

4. Symmetry: [U, V ]f = (∇UV −∇V U)f for all f ∈ F(M); and

5. Compatibility with the metric: U⟨V,W ⟩ = ⟨∇UV ,W ⟩+ ⟨V,∇UW ⟩.

This connection is called the Levi-Civita or Riemannian connection.

A connection which satisfies the symmetry property is a symmetric connec-

tion (also called torsion-free)—this is defined independently of the Riemannian

structure. Compatibility with the Riemannian metric is a type of product rule

for differentiation through inner products. Unless otherwise stated, we always

equip a Riemannian manifold with its Riemannian connection.

Before we prove Theorem 5.6, let us check its statement against the connections

we know. As expected, the Riemannian connection on Euclidean spaces is nothing

but classical vector field differentiation (5.3).

Theorem 5.7. The Riemannian connection on a Euclidean space E with any

Euclidean metric ⟨·, ·⟩ is ∇uV = DV (x)[u]: the canonical Euclidean connection.

1 In R2, consider U(x) = (1, 0), V (x) = (0, x1x2) and f(x) = x2. Then, [U, V ]f = f .

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

90 Embedded geometry: second order

Proof. We first establish compatibility with the metric, as it will be useful to

prove symmetry. To this end, we go back to the definition of derivatives as

limits. Consider three vector fields U, V,W ∈ X(E). Owing to smoothness of the

latter and to the definition of ∇,

V (x+ tU(x)) = V (x) + tDV (x)[U(x)] +O(t2)

= V (x) + t(∇UV )(x) +O(t2).

Define the function f = ⟨V,W ⟩. Using bilinearity of the metric,

(Uf)(x) = Df(x)[U(x)]

= lim
t→0

⟨V (x+ tU(x)),W (x+ tU(x))⟩ − ⟨V (x),W (x)⟩
t

= lim
t→0

⟨V (x) + t(∇UV )(x),W (x) + t(∇UW )(x)⟩ − ⟨V (x),W (x)⟩
t

=
(
⟨∇UV ,W ⟩+ ⟨V,∇UW ⟩

)
(x)

for all x, as desired.

To establish symmetry, we develop the left-hand side first. Recall the definition

of Lie bracket: [U, V ]f = U(V f)− V (Uf). Focusing on the first term, note that

(V f)(x) = Df(x)[V (x)] = ⟨gradf(x), V (x)⟩x .

We can now use compatibility with the metric:

U(V f) = U⟨gradf, V ⟩ = ⟨∇U (gradf), V ⟩+ ⟨gradf,∇UV ⟩ .

Consider the term ∇U (gradf): this is the derivative of the gradient vector field

of f along U . By definition, this is the (Euclidean) Hessian of f along U . We

write ∇U (gradf) = Hessf [U ], with the understanding that (Hessf [U ])(x) =

Hessf(x)[U(x)] = ∇U(x)(gradf). Overall,

U(V f) = ⟨Hessf [U ], V ⟩+ ⟨gradf,∇UV ⟩ .

Likewise for the other term,

V (Uf) = ⟨Hessf [V ], U⟩+ ⟨gradf,∇V U⟩ .

It is a standard fact from multivariate calculus that the Euclidean Hessian is self-

adjoint, that is, ⟨Hessf [U ], V ⟩ = ⟨Hessf [V ], U⟩. (This is the Clairaut–Schwarz

theorem, which you may remember as the fact that partial derivatives in Rn

commute.) Hence,

[U, V ]f = U(V f)− V (Uf)

= ⟨gradf,∇UV −∇V U⟩
= (∇UV −∇V U)f,

concluding the proof.
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For M an embedded submanifold of a Euclidean space E , the connection

∇ (5.4) we defined by projection to tangent spaces is always symmetric, re-

gardless of any Riemannian structure on M. To show this, it is convenient to

introduce notation in analogy with (5.5):

∇UV = Proj
(
∇̄Ū V̄

)
, (5.8)

where ∇̄ is the canonical Euclidean connection on E ; Ū , V̄ are smooth extensions

of U, V ; and Proj takes as input a smooth vector field on a neighborhood of M
in E and returns a smooth vector field on M obtained by orthogonal projection

at each point. Thus,

∇U(x)V = (∇UV )(x) = Projx
(
(∇̄Ū V̄ )(x)

)
= Projx(∇̄Ū(x)V̄ )

are all equivalent notations.

Theorem 5.8. Let M be an embedded submanifold of a Euclidean space E. The

connection ∇ defined by (5.4) is symmetric on M.

Proof. Let ∇̄ denote the canonical Euclidean connection on E . If M is an open

submanifold of E , the claim is clear since ∇ is then nothing but ∇̄ with restricted

domains. We now consider M not open in E . To establish symmetry of ∇, we

rely heavily on the fact that ∇̄ is itself symmetric on (any open subset of) the

embedding space E .

Consider U, V ∈ X(M) and f ∈ F(M) together with smooth extensions Ū , V̄ ∈
X(O) and f̄ ∈ F(O) to a neighborhood O of M in E . We use the identity

Uf = (Ū f̄)|M repeatedly, then the fact that ∇̄ is symmetric on O:

[U, V ]f = U(V f)− V (Uf)

= U
(
(V̄ f̄)|M

)
− V

(
(Ū f̄)|M

)
=
(
Ū(V̄ f̄)

)
|M −

(
V̄ (Ū f̄)

)
|M

=
(
[Ū , V̄ ]f̄

)
|M

=
(
(∇̄Ū V̄ − ∇̄V̄ Ū)f̄

)
|M

= (W̄ f̄)|M, (5.9)

where we defined W̄ = ∇̄Ū V̄ −∇̄V̄ Ū ∈ X(O). We know from Section 5.1 that the

individual vector fields ∇̄Ū V̄ and ∇̄V̄ Ū need not be tangent along M. Yet, we

are about to show that their difference is. Assume this for now, that is, assume

W̄ is a smooth extension of a vector field W on M. Then,

W = W̄ |M = Proj(W̄ ) = Proj
(
∇̄Ū V̄ − ∇̄V̄ Ū

)
= ∇UV −∇V U.

Furthermore, (W̄ f̄)|M = Wf , so that continuing from (5.9) we find:

[U, V ]f = (W̄ f̄)|M = Wf = (∇UV −∇V U)f,

which is exactly what we want. Thus, it only remains to show that W̄ (x) is

indeed tangent to M for all x ∈M.

To this end, let x ∈ M be arbitrary and let h̄ : O′ → Rk be a local defining



Published text defines f, g and their extensions, but g was unused. It has been removed here. (Comment added on Aug. 30, 2023.)
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function for M around x so that M ∩ O′ = h̄−1(0), and we ensure O′ ⊆ O.

Consider the restriction h = h̄|M∩O′ : of course, h is nothing but the zero function.

Applying (5.9) to h, we find:

0 = [U, V ]h = (W̄ h̄)|M∩O′ .

Evaluate this at x:

0 = (W̄ h̄)(x) = Dh̄(x)
[
W̄ (x)

]
.

In words: W̄ (x) is in the kernel of Dh̄(x), meaning it is in the tangent space at

x. This concludes the proof.

In the special case whereM inherits the metric from its embedding Euclidean

space, ∇ as defined above is the Riemannian connection.

Theorem 5.9. Let M be a Riemannian submanifold of a Euclidean space. The

connection ∇ defined by (5.4) is the Riemannian connection on M.

Proof. In light of Theorem 5.8, it remains to check compatibility with the metric,

that is, property 5 in Theorem 5.6. Consider U, V,W ∈ X(M) together with

smooth extensions Ū , V̄ , W̄ ∈ X(O) defined on a neighborhood O of M in E .

Let ⟨·, ·⟩ denote the metric on the embedding space E (whichM inherits). Since

⟨V,W ⟩ = ⟨V̄ , W̄ ⟩|M and Uf = (Ū f̄)|M, setting f = ⟨V,W ⟩ and f̄ = ⟨V̄ , W̄ ⟩ we

find that U⟨V,W ⟩ = (Ū⟨V̄ , W̄ ⟩)|M. Using compatibility of ∇̄ with the metric:

U⟨V,W ⟩ =
(
Ū⟨V̄ , W̄ ⟩

)
|M =

( 〈
∇̄Ū V̄ , W̄

〉
+
〈
V̄ , ∇̄ŪW̄

〉 )∣∣∣
M
. (5.10)

Pick x ∈ M. Then, W̄ (x) = W (x) = Projx(W (x)). Recall that Projx is self-

adjoint (Proposition 3.63), that is, ⟨u,Projx(v)⟩ = ⟨Projx(u), v⟩ for all u, v ∈ E .

Consequently, 〈
∇̄Ū V̄ , W̄

〉
(x) =

〈
(∇̄Ū V̄ )(x),Projx(W (x))

〉
=
〈
Projx

(
(∇̄Ū V̄ )(x)

)
,W (x)

〉
x

= ⟨∇UV ,W ⟩(x).

Combining twice with (5.10), we find indeed that

U⟨V,W ⟩ = ⟨∇UV ,W ⟩+ ⟨V,∇UW ⟩ .

This concludes the proof.

The previous theorem gives a conveniently clear picture of how to differentiate

vector fields on a Riemannian submanifold M embedded in a Euclidean space:

first differentiate the vector field in the linear space (a classical derivative), then

orthogonally project the result to the tangent spaces ofM. More generally, ifM
is not a Riemannian submanifold, then this procedure still defines a symmetric

connection, but it may not be the Riemannian connection.

We now return to Theorem 5.6. To provide the missing proof, we need a

technical observation: a Lie bracket “is” a smooth vector field.



The argument is applied to the individual components h1, …, hk separately. (Noted by Liane Xu.) (Comment added on Aug. 30, 2023.)
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Proposition 5.10. Let U, V be two smooth vector fields on a manifold M.

There exists a unique smooth vector field W on M such that [U, V ]f = Wf

for all f ∈ F(M). Therefore, we identify [U, V ] with that smooth vector field.

Explicitly, if ∇ is any symmetric connection, then [U, V ] = ∇UV −∇V U .

Proof. Say M is embedded in the Euclidean space E . In Theorem 5.8 we have

shown that ∇ as defined by (5.4) is a symmetric connection for M. Thus,

[U, V ]f = Wf for all f ∈ F(M) with W = ∇UV − ∇V U . That vector field is

unique because two vector fields W1,W2 ∈ X(M) such that W1f = W2f for all

f ∈ F(M) are necessarily equal. Indeed, for contradiction, assume W1f = W2f

for all f ∈ F(M) yet W3 = W1 − W2 ̸= 0: there exists x̃ ∈ M such that

W3(x̃) ̸= 0. Consider the linear function f̄(x) = ⟨x,W3(x̃)⟩ and its restriction

f = f̄ |M; we have

(W1f)(x̃)− (W2f)(x̃) = (W3f)(x̃) = Df(x̃)[W3(x̃)] = ∥W3(x̃)∥2 ̸= 0,

which is a contradiction. (Here, ⟨·, ·⟩ and ∥ · ∥ come from E .)

A comment is in order. Note that [U, V ] is defined irrespective of any con-

nection. The above proof shows that [U, V ] is equivalent to ∇UV − ∇V U for

any symmetric connection ∇, and relies on Theorem 5.8 for the existence of a

symmetric connection. Because of that, the proof here is limited to manifolds

embedded in a Euclidean space. In Section 8.10, we see a proof that holds for

manifolds in general.

Proof sketch of Theorem 5.6. It is easy to verify uniqueness. Indeed, assume ∇
is a symmetric connection which is also compatible with the metric. For all

U, V,W ∈ X(M), compatibility with the metric implies

U⟨V,W ⟩ = ⟨∇UV ,W ⟩+ ⟨V,∇UW ⟩,
V ⟨W,U⟩ = ⟨∇VW,U⟩+ ⟨W,∇V U⟩,
W ⟨U, V ⟩ = ⟨∇WU, V ⟩+ ⟨U,∇WV ⟩.

Add the first two lines and subtract the third: owing to Proposition 5.10 and

symmetry of ∇, we find after some reorganizing that

2 ⟨∇UV ,W ⟩ = U⟨V,W ⟩+ V ⟨W,U⟩ −W ⟨U, V ⟩
− ⟨U, [V,W ]⟩+ ⟨V, [W,U ]⟩+ ⟨W, [U, V ]⟩. (5.11)

This is the Koszul formula. Notice that the right-hand side is independent of

∇. For fixed U, V , the fact that this identity holds for all W implies that ∇UV

is uniquely determined. To see this, consider for each x ∈ M a set of vector

fields W1, . . . ,Wn ∈ X(M) such that W1(x), . . . ,Wn(x) form a basis of TxM:

this uniquely determines (∇UV )(x). Thus, there can be at most one Riemannian

connection.

To prove existence, we also rely on the Koszul formula but we need more

advanced tools. Let U, V ∈ X(M) be arbitrary (fixed). We can verify that the
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right-hand side of (5.11) defines a smooth one-form X : X(M) → F(M) (recall

the definition in Section 3.9). Indeed,

X(W ) = U⟨V,W ⟩+ V ⟨W,U⟩ −W ⟨U, V ⟩
− ⟨U, [V,W ]⟩+ ⟨V, [W,U ]⟩+ ⟨W, [U, V ]⟩

linearly maps a smooth vector field W to a smooth scalar field X(W ) with

the property that X(fW ) = fX(W ) for all W ∈ X(M) and f ∈ F(M). This

can be verified through direct computation using [U, fV ] = f [U, V ] + (Uf) ·V as

follows from Proposition 5.10. Then, the musical isomorphism (Proposition 3.71)

implies that there exists a unique smooth vector field Z ∈ X(M) such that

X(W ) = ⟨Z,W ⟩. We use this to define an operator ∇ : X(M)×X(M)→ X(M)

as ∇UV = 1
2Z. It then remains to verify that ∇ is a symmetric connection which

is compatible with the metric—some details require Section 5.6.

A comment is in order. In Section 3.9 we only sketched the proof of the musical

isomorphism. The sketched parts were clear or unnecessary for one-forms such

as Df . Likewise, one could verify this for the one-form X defined above, though

this can be lengthy. It is similarly technical but more instructive to study the

missing details outlined later in Section 5.6. For readers who are only interested

in Riemannian submanifolds, the situation is rather simpler: we already proved

existence of the Riemannian connection as a pointwise operator (constructively)

in Theorem 5.9, and uniqueness is ensured above.

Exercise 5.11. A derivation on M is a map D : F(M)→ F(M) such that, for

all f, g ∈ F(M) and a, b ∈ R, we have:

1. Linearity: D(af + bg) = aD(f) + bD(g), and

2. Leibniz rule: D(fg) = gD(f) + fD(g).

Show that the action of a smooth vector field on a smooth function (as per Defi-

nition 5.5) is a derivation. (See Section 5.13 for context.)

Exercise 5.12. Show that the Lie bracket [U, V ] of two smooth vector fields

U, V ∈ X(M) is a derivation, as per the definition in the previous exercise. It is

instructive to do so without using connections or Proposition 5.10.

Exercise 5.13. Continuing from Exercise 5.4, show that if ∇(1),∇(2) are the

Riemannian connections on M1,M2 (respectively), then the product connection

defined by (5.6) is the Riemannian connection on the Riemannian product man-

ifold M1 ×M2 whose metric is defined in Example 3.57. (Concepts from later

sections may help; specifically, Proposition 5.15 and Theorem 5.29.)

5.5 Riemannian Hessians

The Riemannian Hessian of a function is defined as the covariant derivative of

its gradient vector field with respect to the Riemannian connection ∇, which we
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defined in Theorem 5.6. At any point x on the manifold M, the Hessian defines

a linear map from the tangent space TxM into itself.

Definition 5.14. Let M be a Riemannian manifold with its Riemannian con-

nection ∇. The Riemannian Hessian of f ∈ F(M) at x ∈ M is the linear map

Hessf(x) : TxM→ TxM defined as follows:

Hessf(x)[u] = ∇ugradf.

Equivalently, Hessf maps X(M) to X(M) as Hessf [U ] = ∇Ugradf .

The two special properties of the Riemannian connection together lead to

symmetry of the Hessian. By the spectral theorem, this implies that the dimM
eigenvalues of Hessf(x) are real, and that corresponding eigenvectors may be

chosen to form a basis of TxM orthonormal with respect to ⟨·, ·⟩x (see Theo-

rem 3.6).

Proposition 5.15. The Riemannian Hessian is self-adjoint with respect to the

Riemannian metric. That is, for all x ∈M and u, v ∈ TxM,

⟨Hessf(x)[u], v⟩x = ⟨u,Hessf(x)[v]⟩x .

Proof. Pick any two vector fields U, V ∈ X(M) such that U(x) = u and V (x) =

v. Recalling the notation for vector fields acting on functions as derivations

(Definition 5.5) and using compatibility of the Riemannian connection with the

Riemannian metric, we find:

⟨Hessf [U ], V ⟩ = ⟨∇Ugradf, V ⟩
= U⟨gradf, V ⟩ − ⟨gradf,∇UV ⟩
= U(V f)− (∇UV )f.

Similarly,

⟨U,Hessf [V ]⟩ = V (Uf)− (∇V U)f.

Thus, recalling the definition of Lie bracket, we get

⟨Hessf [U ], V ⟩ − ⟨U,Hessf [V ]⟩ = U(V f)− V (Uf)− (∇UV )f + (∇V U)f

= [U, V ]f − (∇UV −∇V U)f

= 0,

where we were able to conclude owing to symmetry of the connection.

To compute the Riemannian Hessian, we must compute the Riemannian con-

nection. For the particular case of a Riemannian submanifold of a Euclidean

space, we know how to do this from Theorem 5.9. In practical terms, we simply

need to consider a smooth extension of the Riemannian gradient vector field,

differentiate it in the classical sense, then orthogonally project the result to the

tangent spaces.
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Corollary 5.16. Let M be a Riemannian submanifold of a Euclidean space.

Consider a smooth function f : M→ R. Let Ḡ be a smooth extension of gradf—

that is, Ḡ is any smooth vector field defined on a neighborhood of M in the

embedding space such that Ḡ(x) = gradf(x) for all x ∈M. Then,

Hessf(x)[u] = Projx
(
DḠ(x)[u]

)
.

More can be said about the important special case of Riemannian subman-

ifolds: see Section 5.11. The following example illustrates how to use Corol-

lary 5.16 in practice.

Example 5.17. Consider the cost function f̄(x) = 1
2x
⊤Ax for some symmetric

matrix A ∈ Rd×d and its restriction f = f̄ |Sd−1 to the sphere Sd−1 as a Rieman-

nian submanifold of Rd. We already determined the Euclidean and Riemannian

gradients of f̄ and f , respectively:

gradf̄(x) = Ax,

gradf(x) = Projx(gradf̄(x)) = (Id − xx⊤)Ax = Ax− (x⊤Ax)x.

To obtain the Riemannian Hessian of f , we must differentiate a smooth exten-

sion of gradf in Rd and project the result to the tangent spaces of Sd−1. As

is typical, the analytic expression of gradf provides a natural candidate for a

smooth extension; we simply pick:

Ḡ(x) = Ax− (x⊤Ax)x.

The differential of Ḡ follows from the product rule (see also Section 4.7):

DḠ(x)[u] = Au− (u⊤Ax+ x⊤Au)x− (x⊤Ax)u.

Orthogonally project to the tangent space at x to reveal the Hessian:

Hessf(x)[u] = Projx
(
DḠ(x)[u]

)
= Projx(Au)− (x⊤Ax)u

= Au− (x⊤Au)x− (x⊤Ax)u.

This linear map is formally defined only on TxSd−1 (not on all of Rd).

Exercise 5.18. Continuing Example 5.17, show that if gradf(x) is zero and

Hessf(x) is positive semidefinite (i.e., ⟨u,Hessf(x)[u]⟩x ≥ 0 for all u ∈ TxSd−1),

then x is a global minimizer of f , that is, x is an eigenvector of A associated

to its smallest (left-most) eigenvalue. This is an unusual property: we do not

normally expect to be able to certify global optimality based on local conditions

alone. See also Exercise 9.51.

Example 5.19. Let us derive an expression for the Riemannian Hessian of a

smooth function f : M1 ×M2 → R on a Riemannian product manifold. Fix a

point x = (x1, x2) ∈M1 ×M2. With f(·, x2) : M1 → R, we denote the function

obtained from f by fixing its second input to x2; likewise for f(x1, ·) : M2 → R.
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From Exercise 3.67, the Riemannian gradient of f at x is given by

gradf(x1, x2) =
(
G1(x1, x2), G2(x1, x2)

)
with G1(x1, x2) = gradf(·, x2)(x1),

G2(x1, x2) = gradf(x1, ·)(x2).

Then, the Riemannian Hessian of f at x along any tangent vector u = (u1, u2)

at x follows from Exercise 5.13 as:

Hessf(x1, x2)[u1, u2] =
(
Hessf(·, x2)(x1)[u1] + DG1(x1, ·)(x2)[u2],

Hessf(x1, ·)(x2)[u2] + DG2(·, x2)(x1)[u1]
)
. (5.12)

Above, G1(x1, ·) : M2 → Tx1
M1 denotes the map obtained from G1 by fixing its

first input to x1, and likewise for G2(·, x2) : M1 → Tx2M2.

As a side note, if M1,M2 are both Riemannian submanifolds of respective

embedding spaces E1, E2, then the product manifold M1 ×M2 is a Riemannian

submanifold of E1 × E2. In that case, Corollary 5.16 and Section 5.11 provide

other ways to get to the Hessian of f .

5.6 Connections as pointwise derivatives*

Definition 5.1 is not standard: the standard definition follows. In this section, we

argue that they are equivalent. A reader focused on Riemannian submanifolds

can safely skip this section.

Definition 5.20. A connection on a manifold M is an operator

∇ : X(M)× X(M)→ X(M) : (U, V ) 7→ ∇UV

which has three properties for all U, V,W ∈ X(M), f, g ∈ F(M) and a, b ∈ R:

1. F(M)-linearity in U : ∇fU+gWV = f∇UV + g∇WV ;

2. R-linearity in V : ∇U (aV + bW ) = a∇UV + b∇UW ; and

3. Leibniz rule: ∇U (fV ) = (Uf)V + f∇UV .

The field ∇UV is the covariant derivative of V along U with respect to ∇.

It is clear that if ∇ is a connection as per Definition 5.1 then it is also a

connection as per Definition 5.20, with (∇UV )(x) ≜ ∇U(x)V . The other way

around is less clear.

Specifically, we must show that a connection in the sense of Definition 5.20

acts pointwise with respect to U , that is, (∇UV )(x) depends on U only through

U(x). This gives meaning to the notation ∇uV as being equal to (∇UV )(x) for

arbitrary U ∈ X(M) such that U(x) = u.

That is the object of the following proposition. It is a consequence of F(M)-

linearity in U . Note that dependence on V is through more than just V (x) (and

indeed, connections are not F(M)-linear in V ). The main tool of the proof is the

existence of local frames, as introduced in Section 3.9. Furthermore, a technical

point requires some extra work, which we defer until after the proof.
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In the remainder of this section, the word ‘connection’ refers to Definition 5.20.

By the end of the section, we will have established that this is equivalent to

Definition 5.1.

Proposition 5.21. For any connection ∇ and smooth vector fields U, V on a

manifold M, the vector field ∇UV at x depends on U only through U(x).

Proof. It is sufficient to show that if U(x) = 0 then (∇UV )(x) = 0. Indeed, let

U1, U2 ∈ X(M) be two vector fields with U1(x) = U2(x). Then, using the claim,

(∇U1
V )(x)− (∇U2

V )(x) = (∇U1
V −∇U2

V )(x) = (∇U1−U2
V )(x) = 0.

To prove the claim, consider a local frame W1, . . . ,Wn on a neighborhood U of

x inM (Proposition 3.69). Given a vector field U ∈ X(M) with U(x) = 0, there

exist unique smooth functions g1, . . . , gn ∈ F(U) such that

U |U = g1W1 + · · ·+ gnWn.

Clearly, U(x) = 0 implies g1(x) = · · · = gn(x) = 0. By a technical lemma given

hereafter (Lemma 5.27), it is legitimate to write:

(∇UV )(x) = (∇g1W1+···+gnWn
V )(x)

= g1(x)(∇W1
V )(x) + · · ·+ gn(x)(∇Wn

V )(x) = 0, (5.13)

which concludes the proof.

In the proof above, it is not immediately clear why (5.13) holds, because

∇U |UV is not formally defined: normally, ∇ is fed two smooth vector fields on

all ofM. To support this notation and the claim that ∇UV and ∇U |UV coincide

at x, we work through a number of lemmas. The first one concerns the existence

of bump functions in linear spaces. It is an exercise in analysis to build such

functions [Lee12, Lem. 2.22].

Lemma 5.22. Given any real numbers 0 < r1 < r2 and any point x in a

Euclidean space E with norm ∥ · ∥, there exists a smooth function b : E → R such

that b(y) = 1 if ∥y − x∥ ≤ r1, b(y) = 0 if ∥y − x∥ ≥ r2, and b(y) ∈ (0, 1) if

∥y − x∥ ∈ (r1, r2).

Using bump functions, we can show that (∇UV )(x) depends on U and V only

through their values in a neighborhood around x. This is the object of the two

following lemmas.

Lemma 5.23. Let V1, V2 be smooth vector fields on a manifoldM equipped with

a connection ∇. If V1|U = V2|U on some open set U of M, then (∇UV1)|U =

(∇UV2)|U for all U ∈ X(M).

Proof. Pick x ∈ U . For M an embedded submanifold of a Euclidean space E ,

there exists an open set O in E such that U =M∩O. Furthermore, there exist

0 < r1 < r2 such that B̄(x, r2)—the closed ball of radius r2 around x in E—is

included in O. Hence, by Lemma 5.22 there exists a smooth function b̄ ∈ F(E)
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which is constantly equal to 1 on B̄(x, r1) and constantly equal to 0 outside of

B̄(x, r2). With b = b̄|M ∈ F(M), it follows that the vector field V = b · (V1−V2)

is the zero vector field onM. Hence, ∇UV = 0. Using R-linearity of ∇ in V and

the Leibniz rule:

0 = ∇UV = ∇U (b (V1 − V2)) = (Ub)(V1 − V2) + b (∇UV1 −∇UV2) .

Evaluating this at x using V1(x) = V2(x) and b(x) = 1, we find (∇UV1)(x) =

(∇UV2)(x). Repeat for all x ∈ U .

Lemma 5.24. Let U1, U2 be smooth vector fields on a manifoldM equipped with

a connection ∇. If U1|U = U2|U on some open set U of M, then (∇U1V )|U =

(∇U2
V )|U for all V ∈ X(M).

Proof. Construct b ∈ F(M) as in the proof of Lemma 5.23. Then, U = b·(U1−U2)

is the zero vector field on M. By F(M)-linearity of ∇ in U ,

0 = ∇UV = ∇b (U1−U2)V = b · (∇U1
V −∇U2

V ).

Evaluating this at x and using b(x) = 1 yields the result.

We now use bump functions to show that a smooth function defined on a

neighborhood of a point x on a manifold can always be extended into a smooth

function defined on the whole manifold, in such a way that its value at and

around x is unaffected. This is a weak version of a result known as the extension

lemma [Lee12, Lem. 2.26].

Lemma 5.25. Let U be a neighborhood of a point x on a manifold M. Given

a smooth function f ∈ F(U), there exists a smooth function g ∈ F(M) and a

neighborhood U ′ ⊆ U of x such that g|U ′ = f |U ′ .

Proof. For M an embedded submanifold of a Euclidean space E , we know from

Proposition 3.23 that U itself is an embedded submanifold of E . Hence, there

exists a smooth extension f̄ of f defined on a neighborhood O of x in E . For this

O, construct b̄ ∈ F(E) as in the proof of Lemma 5.23, with 0 < r1 < r2 such that

B̄(x, r2) ⊂ O. Consider ḡ : E → R defined by

ḡ(y) =

{
b̄(y)f̄(y) if ∥y − x∥ ≤ r2,
0 otherwise.

It is an exercise in real analysis to verify that ḡ is smooth in E ; hence, g = ḡ|M
is smooth onM. Furthermore, ḡ is equal to f̄ on B̄(x, r1). Set U ′ = U ∩B(x, r1),

where B(x, r1) is the open ball of radius r1 around x in E . This is a neighborhood

of x on M such that g|U ′ = f |U ′ .

Likewise, there is a smooth extension lemma for vector fields, and we state

a weak version of it here. The proof is essentially the same as for the previous

lemma [Lee12, Lem. 8.6].
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Lemma 5.26. Let U be a neighborhood of a point x on a manifold M. Given a

smooth vector field U ∈ X(U), there exists a smooth vector field V ∈ X(M) and

a neighborhood U ′ ⊆ U of x such that V |U ′ = U |U ′ .

Equipped with the last three lemmas, we can finally state the technical result

necessary to support the proof of Proposition 5.21.

Lemma 5.27. Let U, V be two smooth vector fields on a manifold M equipped

with a connection ∇. Further let U be a neighborhood of x ∈M such that U |U =

g1W1 + · · ·+ gnWn for some g1, . . . , gn ∈ F(U) and W1, . . . ,Wn ∈ X(U). Then,

(∇UV )(x) = g1(x)(∇W1V )(x) + · · ·+ gn(x)(∇WnV )(x),

where each vector (∇WiV )(x) is understood to mean (∇W̃i
V )(x) with W̃i any

smooth extension of Wi to M around x.

Proof. Combining Lemmas 5.25 and 5.26, we know there exist smooth extensions

g̃1, . . . , g̃n ∈ F(M) and W̃1, . . . , W̃n ∈ X(M) that coincide with g1, . . . , gn and

W1, . . . ,Wn on a neighborhood U ′ ⊆ U of x, so that Ũ = g̃1W̃1 + · · ·+ g̃nW̃n is

a smooth vector field on M which agrees with U locally: U |U ′ = Ũ |U ′ . Thus, by

Lemma 5.24,

(∇UV )(x) = (∇ŨV )(x)

= (∇g̃1W̃1+···+g̃nW̃n
V )(x)

= g̃1(x)(∇W̃1
V )(x) + · · ·+ g̃n(x)(∇W̃n

V )(x)

= g1(x)(∇W1V )(x) + · · ·+ gn(x)(∇WnV )(x).

The stated definition of (∇Wi
V )(x) is independent of the choice of smooth ex-

tension owing to Lemma 5.24.

In the proofs above, the most important feature of (U, V ) 7→ ∇UV we have

used is that it is F(M)-linear in U . With that in mind, it is easy to revisit those

proofs and fill in the missing parts for the proof of Proposition 3.71.

Anticipating our needs for Section 5.7, we note that Lemmas 5.23, 5.25 and 5.26

also allow us to make sense of the notation

(∇u(gW ))(x) = Dg(x)[u] ·W (x) + g(x) · (∇uW )(x), (5.14)

where g ∈ F(U) and W ∈ X(U) are merely defined on a neighborhood U of x.

Specifically, (∇uW )(x) represents (∇uW̃ )(x) where W̃ ∈ X(M) is any smooth

extension of W around x, as justified by Lemmas 5.23 and 5.26.

5.7 Differentiating vector fields on curves

Recall that one of our goals in this chapter is to develop second-order Taylor

expansions for g = f ◦ c with a smooth cost function f : M→ R evaluated along
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a smooth curve c : I →M defined on some interval I. We already determined in

Section 4.1 that the first derivative of g is

g′(t) = ⟨gradf(c(t)), c′(t)⟩c(t) .

To obtain a second-order expansion of g, we must differentiate g′.

A connection∇ does not, in a direct way, tell us how to compute this derivative,

since (gradf)◦c and c′ are not vector fields onM. Rather, for all t in the domain

of c, these maps each provide a tangent vector at c(t), smoothly varying with

t: they are called smooth vector fields on c. We expect that g′′ should involve a

kind of derivative of these vector fields on c, through a kind of product rule. In

short: we need a derivative for vector fields on c.

Fortunately, a connection ∇ on a manifoldM induces a notion of derivative of

vector fields along curves, with natural properties. The proof of that statement

below involves local frames, which we discussed in Section 3.9. Readers who

skipped that section may want to consider Proposition 5.31 instead: that one is

limited to Riemannian submanifolds but its proof does not require local frames.

Definition 5.28. Let c : I → M be a smooth curve on M defined on an open

interval I. A map Z : I → TM is a vector field on c if Z(t) is in Tc(t)M for all

t ∈ I. Moreover, Z is a smooth vector field on c if it is also smooth as a map

from I to TM. The set of smooth vector fields on c is denoted by X(c).

Theorem 5.29. Let c : I →M be a smooth curve on a manifold equipped with

a connection ∇. There exists a unique operator D
dt : X(c)→ X(c) which satisfies

the following properties for all Y, Z ∈ X(c), U ∈ X(M), g ∈ F(I), and a, b ∈ R:

1. R-linearity: D
dt (aY + bZ) = a D

dtY + b D
dtZ;

2. Leibniz rule: D
dt (gZ) = g′Z + g D

dtZ;

3. Chain rule:
(
D
dt (U ◦ c)

)
(t) = ∇c′(t)U for all t ∈ I.

We call D
dt the induced covariant derivative (induced by ∇). If moreover M is a

Riemannian manifold and ∇ is compatible with its metric ⟨·, ·⟩ (e.g., if ∇ is the

Riemannian connection), then the induced covariant derivative also satisfies:

4. Product rule: d
dt ⟨Y,Z⟩ =

〈
D
dtY , Z

〉
+
〈
Y, D

dtZ
〉
,

where ⟨Y,Z⟩ ∈ F(I) is defined by ⟨Y,Z⟩(t) = ⟨Y (t), Z(t)⟩c(t).

Before moving on to the proof, a comment is in order. In light of the chain

rule (property 3), one may wonder why we need to define D
dt at all: can it not

always be computed through an application of ∇? The key is that not all vector

fields Z ∈ X(c) are of the form U ◦ c for some U ∈ X(M). Indeed, consider a

smooth curve c such that c(t1) = c(t2) = x (it crosses itself). It could well be

that Z(t1) ̸= Z(t2). Then, we would not know how to define U(x): should it be

equal to Z(t1) or Z(t2)? For that reason, we really do need to introduce D
dt as a

separate concept.

Proof of Theorem 5.29. We first prove uniqueness under properties 1–3. Pick an
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arbitrary t̄ ∈ I. There exists a local frame W1, . . . ,Wn ∈ X(U) defined on a

neighborhood U of c(t̄) in M (see Proposition 3.69). Since c is continuous, J =

c−1(U) is an open subset of I which contains t̄. Furthermore, by the properties

of local frames, there exist unique smooth functions g1, . . . , gn : J → R such that

∀t ∈ J, Z(t) = g1(t)W1(c(t)) + · · ·+ gn(t)Wn(c(t)).

Using the first two properties of the covariant derivative D
dt , we get

∀t ∈ J, D

dt
Z(t) =

n∑
i=1

g′i(t)Wi(c(t)) + gi(t)
D

dt
(Wi ◦ c)(t).

Now using the third property, we find

∀t ∈ J, D

dt
Z(t) =

n∑
i=1

g′i(t)Wi(c(t)) + gi(t)∇c′(t)Wi. (5.15)

(As a technicality, see the discussion around eq. (5.14) for how to interpret

∇c′(t)Wi, considering Wi is only defined locally around c(t).) Expression (5.15)

is fully determined by the connection ∇. Since this argument can be repeated

on a neighborhood of each t̄ in I, it follows that D
dt is uniquely determined by

the connection ∇ and the three stated properties.

To prove existence, simply consider (5.15) as the definition of an operator D
dt

on a neighborhood of each t̄. It is an exercise to verify that this definition satisfies

properties 1–3. Since we have uniqueness, it is clear that definitions obtained on

overlapping domains J and J ′ are compatible, so that (5.15) prescribes a smooth

vector field on all of c.

Now consider the case whereM is a Riemannian manifold and ∇ is compatible

with the Riemannian metric. We prove the 4th property. To this end, expand Y

in the local frame:

∀t ∈ J, Y (t) = f1(t)W1(c(t)) + · · ·+ fn(t)Wn(c(t)).

Using also the expansion of Z, we have the following identity on J :

⟨Y,Z⟩ =

n∑
i,j=1

figj ⟨Wi ◦ c,Wj ◦ c⟩ .

Differentiate this with respect to t:

d

dt
⟨Y, Z⟩ =

n∑
i,j=1

(f ′igj + fig
′
j) ⟨Wi ◦ c,Wj ◦ c⟩+ figj

d

dt
⟨Wi ◦ c,Wj ◦ c⟩ . (5.16)

On the other hand, by uniqueness we know that (5.15) is a valid expression for
D
dtZ so that〈

Y,
D

dt
Z

〉
=

n∑
i,j=1

fig
′
j ⟨Wi ◦ c,Wj ◦ c⟩+ figj ⟨Wi ◦ c,∇c′Wj⟩ .
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Similarly,〈
D

dt
Y , Z

〉
=

n∑
i,j=1

f ′igj ⟨Wi ◦ c,Wj ◦ c⟩+ figj ⟨∇c′Wi,Wj ◦ c⟩ .

Summing up these identities and comparing to (5.16), we find that property 4

holds if

d

dt
⟨Wi ◦ c,Wj ◦ c⟩ = ⟨∇c′Wi,Wj ◦ c⟩+ ⟨Wi ◦ c,∇c′Wj⟩ .

This is indeed the case owing to compatibility of ∇ with the metric, since

d

dt

(
⟨Wi,Wj⟩ ◦ c

)
(t)

is the directional derivative of ⟨Wi,Wj⟩ at c(t) along c′(t).

Example 5.30. Let f be a smooth function on a Riemannian manifold M
equipped with the Riemannian connection ∇ and induced covariant derivative
D
dt . Applying the chain rule property of Theorem 5.29 to Definition 5.14 for the

Riemannian Hessian, we get the following expression:

Hessf(x)[u] = ∇ugradf =
D

dt
gradf(c(t))

∣∣∣∣
t=0

, (5.17)

where c : I →M is any smooth curve such that c(0) = x and c′(0) = u. This is

true in particular with c(t) = Rx(tu) for any retraction R on M.

For the special case where ∇ is the connection defined by (5.4) on a manifold

M embedded in a Euclidean space E , the induced covariant derivative admits a

particularly nice expression. Consider a smooth curve c : I → M. We can also

think of it as a smooth curve c : I → E . Thus, a vector field Z along c on M is

smooth exactly if it is smooth as a vector field along c in E . As a result, it makes

sense to write d
dtZ to denote the classical (or extrinsic) derivative of Z in the

embedding space E . We are about to show that the operator D
dt : X(c) → X(c)

defined by

D

dt
Z(t) = Projc(t)

(
d

dt
Z(t)

)
(5.18)

is the covariant derivative induced by ∇. Thus, similarly to ∇ (5.4), it suffices

to take a classical derivative in the embedding space, followed by an orthogonal

projection to the tangent spaces. In particular, if M is (an open subset of) a

linear space, then D
dtZ = d

dtZ, as expected.

Proposition 5.31. Let M be an embedded submanifold of a Euclidean space E
with connection ∇ as in (5.4). The operator D

dt defined by (5.18) is the induced

covariant derivative, that is, it satisfies properties 1–3 in Theorem 5.29. If M is

a Riemannian submanifold of E, then D
dt also satisfies property 4 in that same

theorem.
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Proof. Properties 1 and 2 follow directly from linearity of projectors. For the

chain rule, consider U ∈ X(M) with smooth extension Ū , and Z(t) = U(c(t)) =

Ū(c(t)). Then, d
dtZ(t) = DŪ(c(t))[c′(t)] = ∇̄c′(t)Ū with ∇̄ the Riemannian con-

nection on E . It follows from (5.5) that

D

dt
Z(t) = Projc(t)

(
∇̄c′(t)Ū

)
= ∇c′(t)U,

as desired for property 3.

Property 4 follows as a consequence of Theorem 5.29, but we verify it explicitly

anyway because this is an important special case and because the proof below

does not require local frames. Let ⟨·, ·⟩ be the Euclidean metric. Consider two

vector fields Y,Z ∈ X(c). Differentiate the function t 7→ ⟨Y (t), Z(t)⟩ treating

Y, Z as vector fields along c in E :

d

dt
⟨Y, Z⟩ =

〈
d

dt
Y , Z

〉
+

〈
Y,

d

dt
Z

〉
.

Since Z is tangent to M, Z = ProjcZ (and similarly for Y ). Now using that

Proj is self-adjoint, we have

d

dt
⟨Y, Z⟩ =

〈
d

dt
Y ,ProjcZ

〉
+

〈
ProjcY ,

d

dt
Z

〉
=

〈
Projc

d

dt
Y , Z

〉
+

〈
Y,Projc

d

dt
Z

〉
=

〈
D

dt
Y , Z

〉
+

〈
Y,

D

dt
Z

〉
.

Conclude using that ⟨·, ·⟩ is the metric both in the embedding space and on M
since M is a Riemannian submanifold of E .

Example 5.32. For a smooth function f on a Riemannian submanifold M of

a Euclidean space E, we can apply (5.18) to (5.17) to find

Hessf(x)[u] = Projx

(
lim
t→0

gradf(c(t))− gradf(c(0))

t

)
= lim

t→0

Projx(gradf(c(t)))− gradf(x)

t
, (5.19)

where the subtraction makes sense because gradf(c(t)) is an element of the linear

embedding space E for all t. This holds for any smooth curve c such that c(0) = x

and c′(0) = u. Picking a retraction curve for example, this justifies the claim that,

for some aptly chosen t̄ > 0,

Hessf(x)[u] ≈ Projx(gradf(Rx(t̄u)))− gradf(x)

t̄
. (5.20)

This is a finite difference approximation of the Hessian. Assuming gradf(x) is

readily available, it affords us a straightforward way to approximate Hessf(x)[u]

for the computational cost of one retraction, one gradient evaluation, and one

projection. The parameter t̄ should be small enough for the mathematical approx-

imation to be accurate, yet large enough to avoid catastrophic numerical errors.

We revisit this concept in more generality in Section 10.6.
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Exercise 5.33. In the proof of Theorem 5.29, show that the operator (5.15)

satisfies properties 1–3.

Exercise 5.34. Continuing from Exercise 5.4, show that if ∇(1),∇(2) are con-

nections onM1,M2 with induced covariant derivatives D
dt

(1)
, D
dt

(2)
(respectively),

then the covariant derivative D
dt induced on M1×M2 by the product connection

∇ (5.6) is given simply by:

D

dt
Z(t) =

(
D

dt

(1)

Z1(t),
D

dt

(2)

Z2(t)

)
, (5.21)

where Z = (Z1, Z2) is a smooth vector field along a curve c = (c1, c2) on M1 ×
M2, so that Z1, Z2 are smooth vector fields along c1, c2 onM1,M2, respectively.

In order to verify the chain rule property with a smooth vector field U = (U1, U2)

on M1 ×M2, it is helpful first to establish that

D

dt

(1)

(U1 ◦ c)(t) = ∇(1)
c′1(t)

U1(·, c2(t)) + DU1(c1(t), ·)(c2(t))[c′2(t)]. (5.22)

(Likewise for U2.) Hint: expand U1 in a local frame and use Exercise 3.40.

Exercise 5.35. For Z ∈ X(c), show that D
dt (Z ◦ϕ)(t) = ϕ′(t)

(
D
dtZ

)
(ϕ(t)) where

ϕ : R→ I is any smooth reparameterization of c : I →M.

5.8 Acceleration and geodesics

If the manifold M is equipped with a covariant derivative D
dt , we can use it to

define the notion of acceleration along a curve on M.

Definition 5.36. Let c : I → M be a smooth curve. Its velocity is the vector

field c′ ∈ X(c). The acceleration of c is the smooth vector field c′′ ∈ X(c) defined

by:

c′′ =
D

dt
c′.

We also call c′′ the intrinsic acceleration of c.

When M is embedded in a linear space E , a curve c on M is also a curve in

E . It is then convenient to distinguish notationally between the acceleration of

c on the manifold (as defined above) and the classical acceleration of c in the

embedding space. We write

c̈ =
d2

dt2
c

for the classical or extrinsic acceleration. In that spirit, we use notations c′ and

ċ interchangeably for velocity since the two notions coincide.

WhenM is a Riemannian submanifold of E (with the associated Riemannian
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connection), the induced covariant derivative takes on a convenient form (5.18),

so that

c′′(t) = Projc(t)(c̈(t)). (5.23)

We also state this as c′′ = Projc(c̈) for short. In words: on a Riemannian subman-

ifold, the acceleration of a curve is the tangential part of its extrinsic acceleration

in the embedding space. See Section 5.11 for a discussion of the normal part.

Example 5.37. Consider the sphere Sd−1 = {x ∈ Rd : x⊤x = 1} equipped with

the Riemannian submanifold geometry of Rd with the canonical metric. For a

given x ∈ Sd−1 and v ∈ TxSd−1 (nonzero), consider the curve

c(t) = cos(t∥v∥)x+
sin(t∥v∥)
∥v∥

v,

which traces a so-called great circle on the sphere. The (extrinsic) velocity and

acceleration of c in Rd are easily derived:

ċ(t) = −∥v∥ sin(t∥v∥)x+ cos(t∥v∥)v,
c̈(t) = −∥v∥2 cos(t∥v∥)x− ∥v∥ sin(t∥v∥)v = −∥v∥2c(t).

The velocity c′(t) matches ċ(t). Owing to (5.23), to get the (intrinsic) acceleration

of c on Sd−1, we project:

c′′(t) = Projc(t)c̈(t) = (Id − c(t)c(t)⊤)c̈(t) = 0.

Thus, c is a curve with zero acceleration on the sphere (even though its acceler-

ation in Rd is nonzero).

Curves with zero acceleration play a particular role in geometry, as they pro-

vide a natural generalization of the concept of straight lines t 7→ x + tv from

linear spaces to manifolds. Reading the definition below, recall that by default

we equip a Riemannian manifold with its Riemannian connection ∇, which in-

duces a covariant derivative D
dt : it is with the latter that c′′ is to be interpreted.

Definition 5.38. On a Riemannian manifold M, a geodesic is a smooth curve

c : I →M such that c′′(t) = 0 for all t ∈ I, where I is an open interval of R.

Owing to (5.23), a curve c on a Riemannian submanifoldM is a geodesic if and

only if its extrinsic acceleration c̈ is everywhere normal toM. Geodesics are fur-

ther discussed in Section 10.2—they play a minor role in practical optimization

algorithms.

Exercise 5.39. Let c(t) = (c1(t), c2(t)) be a smooth curve on the product man-

ifold M = M1 ×M2. Its velocity is given by c′(t) = (c′1(t), c′2(t)). Equip M1

and M2 with Riemannian structures, and let M be their Riemannian product

as in Example 3.57. Argue that c′′(t) = (c′′1(t), c′′2(t)), where accelerations are

defined with respect to the Riemannian connections. Deduce that c is a geodesic

on M1 ×M2 if and only if c1, c2 are geodesics on M1,M2, respectively.
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5.9 A second-order Taylor expansion on curves

On a Riemannian manifold M, consider a smooth function f : M → R and a

smooth curve c : I → M passing through x at t = 0 with velocity v. In this

section, we build a second-order Taylor expansion for the function g = f ◦ c, as

announced in the introduction of this chapter.

Since g is a smooth function from I ⊆ R to R, it has a Taylor expansion:

f(c(t)) = g(t) = g(0) + tg′(0) +
t2

2
g′′(0) +O(t3).

We have the tools necessary to investigate the derivatives of g. Indeed,

g′(t) = Df(c(t))[c′(t)] = ⟨gradf(c(t)), c′(t)⟩c(t) ,

so that

(f ◦ c)′(0) = g′(0) = ⟨gradf(x), v⟩x . (5.24)

Moreover, using in turn properties 4 and 3 of Theorem 5.29 regarding the co-

variant derivative D
dt induced by the Riemannian connection ∇, followed by Def-

inition 5.14 for the Hessian, we compute:

g′′(t) =
d

dt
⟨gradf(c(t)), c′(t)⟩c(t)

(property 4) =

〈
D

dt
(gradf ◦ c)(t), c′(t)

〉
c(t)

+

〈
gradf(c(t)),

D

dt
c′(t)

〉
c(t)

(property 3) =
〈
∇c′(t)gradf, c′(t)

〉
c(t)

+ ⟨gradf(c(t)), c′′(t)⟩c(t)
= ⟨Hessf(c(t))[c′(t)], c′(t)⟩c(t) + ⟨gradf(c(t)), c′′(t)⟩c(t) .

Evaluating g′′(t) at t = 0 yields:

(f ◦ c)′′(0) = g′′(0) = ⟨Hessf(x)[v], v⟩x + ⟨gradf(x), c′′(0)⟩x . (5.25)

These all combine to form:

f(c(t)) = f(x) + t ⟨gradf(x), v⟩x +
t2

2
⟨Hessf(x)[v], v⟩x

+
t2

2
⟨gradf(x), c′′(0)⟩x +O(t3). (5.26)

To be clear, formula (5.26) holds for all smooth curves c satisfying c(0) = x and

c′(0) = v. Of particular interest for optimization is the Taylor expansion of f

along a retraction curve. That is the topic of Section 5.10.

Exercise 5.40. For a smooth curve c : [0, 1] → M on a Riemannian manifold

M with c(0) = x and c(1) = y, show that there exists t ∈ (0, 1) such that

f(y) = f(x) + ⟨gradf(x), c′(0)⟩x +
1

2
⟨Hessf(c(t))[c′(t)], c′(t)⟩c(t)

+
1

2
⟨gradf(c(t)), c′′(t)⟩c(t) . (5.27)
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(Hint: use the mean value theorem.) Show that the speed ∥c′(t)∥c(t) of the curve

c is constant if c is a geodesic. Deduce a proof of Lemma 5.41 below.

Lemma 5.41. Let c(t) be a geodesic connecting x = c(0) to y = c(1), and

assume Hessf(c(t)) ⪰ µ Id for some µ ∈ R and all t ∈ [0, 1]. Then,

f(y) ≥ f(x) + ⟨gradf(x), v⟩x +
µ

2
∥v∥2x.

Here is some context for Lemma 5.41. If x ∈M is such that gradf(x) = 0 and

Hessf(x) ⪰ µ′ Id for some µ′ > 0, then by continuity of eigenvalues there exists

a neighborhood U of x in which Hessf(z) ⪰ µ Id for all z ∈ U and some µ > 0. If

U is appropriately chosen, the lemma implies that x is the unique critical point

in U , and it is the global minimizer in that set (hence an isolated local minimizer

for f on all ofM). This is relevant in connection with Chapter 11 about geodesic

convexity : the neighborhood can be chosen to be a geodesically convex geodesic

ball, and f restricted to that ball is µ-strongly convex, in a geodesic sense. This

can ease the study of the local convergence behavior of optimization algorithms

near isolated local minimizers by paralleling Section 11.5.

5.10 Second-order retractions

Continuing from the Taylor expansion (5.26) established above, we consider the

important case where c is a retraction curve, that is,

c(t) = Rx(tv)

for a point x ∈M and a vector v ∈ TxM. A direct application of (5.26) yields

f(Rx(tv)) = f(x) + t ⟨gradf(x), v⟩x +
t2

2
⟨Hessf(x)[v], v⟩x

+
t2

2
⟨gradf(x), c′′(0)⟩x +O(t3). (5.28)

The last term involving the acceleration of c at t = 0 is undesirable, as it is of

order t2 and depends on the retraction. Fortunately, it vanishes if gradf(x) = 0

or c′′(0) = 0. The latter happens in particular if c is a geodesic. Retractions whose

curves are geodesics are studied later in Section 10.2: they are called exponential

maps. More generally though, notice that we only need the acceleration to vanish

at t = 0. This suggests the following definition.

Definition 5.42. A second-order retraction R on a Riemannian manifold M is

a retraction such that, for all x ∈M and all v ∈ TxM, the curve c(t) = Rx(tv)

has zero acceleration at t = 0, that is, c′′(0) = 0.

Second-order retractions are not hard to come by: see Section 5.12 for a com-

mon construction that works on Riemannian submanifolds. The following exam-

ple illustrates that construction on the sphere.
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Example 5.43. Consider the following retraction on the sphere Sd−1:

Rx(v) =
x+ v

∥x+ v∥
.

That retraction is second order. Indeed, with c(t) = Rx(tv):

c(t) =
x+ tv√

1 + t2∥v∥2
=

(
1− 1

2
∥v∥2t2 +O(t4)

)
(x+ tv),

ċ(t) = −∥v∥2t(x+ tv) +

(
1− 1

2
∥v∥2t2

)
v +O(t3),

c̈(t) = −∥v∥2(x+ tv)− ∥v∥2tv − ∥v∥2tv +O(t2)

= −∥v∥2(x+ 3tv) +O(t2).

Of course, c′(0) = ċ(0) = v. As for acceleration, c̈(0) = −∥v∥2x, so that

c′′(0) = Projx(c̈(0)) = 0,

as announced.

We summarize two important particular cases of the Taylor expansion (5.28)

into a useful statement regarding the pullback f ◦ Rx.

Proposition 5.44. Consider a Riemannian manifold M equipped with any re-

traction R, and a smooth function f : M→ R. If x is a critical point of f (that

is, if gradf(x) = 0), then

f(Rx(s)) = f(x) +
1

2
⟨Hessf(x)[s], s⟩x +O(∥s∥3x). (5.29)

Also, if R is a second-order retraction, then for all points x ∈M we have

f(Rx(s)) = f(x) + ⟨gradf(x), s⟩x +
1

2
⟨Hessf(x)[s], s⟩x +O(∥s∥3x). (5.30)

Proof. Simply rewrite (5.28) with s = tv.

That the first identity holds for all retractions is useful to study the behavior

of optimization algorithms at or close to critical points.

Proposition 5.44 suggests an alternative way to compute the Riemannian Hes-

sian. Indeed, the direct way is to use the definition as we did in Example 5.17.

This requires computing with the Riemannian connection, which may not be

straightforward for general manifolds. If a second-order retraction is on hand or

if we are only interested in the Hessian at critical points, an alternative is to

use the next result. In practical terms, it suggests to compose f with Rx (which

yields a smooth function from a linear space to the reals), then to compute the

Hessian of the latter in the usual way. This echoes Proposition 3.59 stating that

gradf(x) = grad(f ◦ Rx)(0).

Proposition 5.45. If the retraction is second order or if gradf(x) = 0, then

Hessf(x) = Hess(f ◦ Rx)(0),
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110 Embedded geometry: second order

where the right-hand side is the Hessian of f ◦ Rx : TxM → R at 0 ∈ TxM.

The latter is a “classical” Hessian since TxM is a Euclidean space. See also

Exercise 10.73 for the Hessian of f ◦ Rx away from the origin.

Proof. If R is second order, expand f̂x(s) = f(Rx(s)) using (5.30):

f̂x(s) = f(x) + ⟨gradf(x), s⟩x +
1

2
⟨Hessf(x)[s], s⟩x +O(∥s∥3x).

The gradient and Hessian of f̂x : TxM→ R with respect to s follow easily, using

the fact that Hessf(x) is self-adjoint:

gradf̂x(s) = gradf(x) + Hessf(x)[s] +O(∥s∥2x), and

Hessf̂x(s)[ṡ] = Hessf(x)[ṡ] +O(∥s∥x∥ṡ∥x).

Evaluating at s = 0 yields Hessf̂x(0) = Hessf(x), as announced. The proof is

similar if x is a critical point, starting with (5.29).

We close this section with a remark. Recall that critical points of a function

and (first-order) retractions are defined on a manifold M independently of any

Riemannian structure on M. Proposition 5.45 further tells us that, at a critical

point x, the Riemannian Hessian of a function onM depends on the Riemannian

metric only through the inner product on TxM. In particular, the signature of

the Hessian at x, that is, the number of positive, zero and negative eigenvalues,

is independent of the Riemannian structure.

Exercise 5.46. Let R be a retraction on a manifoldM, and fix x ∈M. Consider

a smooth curve w : I → TxM in the tangent space at x such that w(0) = 0. This

induces a smooth curve c(t) = Rx(w(t)) on M. Of course, c(0) = x. It is also

easy to confirm that c′(0) = w′(0).

Show that if M is Riemannian and R is a second-order retraction, then we

also have c′′(0) = w′′(0). Hint: expand the differential DRx(v) for v close to the

origin using a local frame around x, for example, as provided by Exercise 3.72.

Then use the properties of D
dt and ∇ to compute c′′(t) and work out c′′(0).

Here is one take-away: for all u, v ∈ TxM we can create a curve c on M such

that c′(0) = u and c′′(0) = v as c(t) = Rx

(
tu+ t2

2 v
)

. This is always doable since

the exponential map is a second-order retraction (Section 10.2).

5.11 Special case: Riemannian submanifolds*

The special case where M is a Riemannian submanifold of a Euclidean space

E merits further attention. Consider a smooth function f : M→ R and a point

x ∈M together with a tangent vector u ∈ TxM. Let f̄ be a smooth extension of

f to a neighborhood of M in E , and let c be any smooth curve on M satisfying

c(0) = x and c′(0) = u. We know from Proposition 3.61 that

gradf(c(t)) = Projc(t)(gradf̄(c(t))), (5.31)
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where Projx is the orthogonal projector from E to TxM. We know from Exer-

cise 3.66 that x 7→ Projx is smooth. Starting from here, formulas (5.17) and (5.18)

combine to yield:

Hessf(x)[u] =
D

dt
gradf(c(t))

∣∣∣∣
t=0

= Projx

(
d

dt
Projc(t)(gradf̄(c(t)))

∣∣∣∣
t=0

)
= Projx

(
d

dt
Projc(t)

∣∣∣∣
t=0

(gradf̄(x))

)
+ Projx

(
Projx

(
d

dt
gradf̄(c(t))

∣∣∣∣
t=0

))
. (5.32)

This simplifies noting that Projx ◦ Projx = Projx. Let us introduce notation for

the differentials of the projector, based on Definition 3.34:

Pu ≜ D(x 7→ Projx)(x)[u] =
d

dt
Projc(t)

∣∣∣∣
t=0

. (5.33)

Intuitively, that differential measures how the tangent spaces of M vary, that

is, how M “bends” in its embedding space. Plugging this notation in (5.32), we

can write the Riemannian Hessian as follows:

Hessf(x)[u] = Projx
(
Pu(gradf̄(x))

)
+ Projx

(
Hessf̄(x)[u]

)
. (5.34)

It is instructive to investigate Pu more closely. To this end, let P (t) = Projc(t). In

particular, P (0) = Projx and P ′(0) = Pu. By definition of projectors, P (t)P (t) =

P (t) for all t. Differentiate with respect to t to find that P ′(t)P (t) +P (t)P ′(t) =

P ′(t) for all t. At t = 0, this reveals a useful identity:

Pu = Pu ◦ Projx + Projx ◦ Pu. (5.35)

Let Proj⊥x = Id−Projx denote the orthogonal projector to the normal space

NxM, that is, the orthogonal complement of TxM in E . Then, the identity

above can be reorganized in two ways to find:

Pu ◦ Proj⊥x = Projx ◦ Pu and Pu ◦ Projx = Proj⊥x ◦ Pu. (5.36)

Combining (5.34) and (5.36) warrants the following statement.

Corollary 5.47. Let M be a Riemannian submanifold of a Euclidean space E.

For a smooth function f : M→ R with smooth extension f̄ to a neighborhood of

M in E, the Riemannian Hessian of f is given by:

Hessf(x)[u] = Projx(Hessf̄(x)[u]) + Pu(Proj⊥x (gradf̄(x))),

where Pu is the differential of x 7→ Projx at x along u and Proj⊥x = Id−Projx.

This casts the Riemannian Hessian as the projected Euclidean Hessian of a

smooth extension, plus a correction term which depends on that extension only

through the normal part of its Euclidean gradient.
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Evidently, the differential of the projector captures important aspects of the

geometry of M as judged by the embedding space E . We introduce two new

objects that contain the relevant information.

From (5.36), we find that if v ∈ TxM is a tangent vector at x, then v =

Projx(v) so that

Pu(v) = Pu(Projx(v)) = Proj⊥x (Pu(v)).

Notice how if v is tangent at x then Pu(v) is normal at x. Likewise, if w ∈ NxM
is a normal vector at x, then w = Proj⊥x (w) so that

Pu(w) = Pu(Proj⊥x (w)) = Projx(Pu(w)).

The output is necessarily a tangent vector at x. These considerations motivate

us to define two special bilinear maps.

Definition 5.48. Let M be a Riemannian submanifold of a Euclidean space

E. At a point x ∈ M, the normal space NxM is the orthogonal complement of

TxM in E. The second fundamental form at x is the map:

II : TxM× TxM→ NxM : (u, v) 7→ II(u, v) = Pu(v). (5.37)

(Read “two” for II.) The Weingarten map at x is the map:

W : TxM×NxM→ TxM : (u,w) 7→ W(u,w) = Pu(w). (5.38)

For both, the map Pu : E → E is defined by (5.33).

These two objects describe Pu fully. Indeed, for all z ∈ E we can decompose

Pu(z) as follows:

Pu(z) = II(u,Projx(z)) +W(u,Proj⊥x (z)). (5.39)

The maps II and W are further related through the inner product ⟨·, ·⟩, which

denotes both the Euclidean inner product and the Riemannian metric at x since

M is a Riemannian submanifold of E . Indeed, for all u, v ∈ TxM and w ∈ NxM
it holds that

⟨II(u, v), w⟩ = ⟨Pu(v), w⟩ = ⟨v,Pu(w)⟩ = ⟨v,W(u,w)⟩ . (5.40)

The middle equality above uses that Pu is self-adjoint on E .

Going back to Corollary 5.47, we get an identity for the Hessian:

Hessf(x)[u] = Projx(Hessf̄(x)[u]) +W(u,Proj⊥x (gradf̄(x))). (5.41)

In bilinear form on TxM, combining with (5.40) we also have

⟨v,Hessf(x)[u]⟩ =
〈
v,Hessf̄(x)[u]

〉
+ ⟨v,W(u,Proj⊥x (gradf̄(x)))⟩

=
〈
v,Hessf̄(x)[u]

〉
+ ⟨II(u, v), gradf̄(x)⟩. (5.42)

In this last identity, it is still clear that only the normal part of gradf̄(x) plays

a role since II(u, v) is normal at x.

While it is not obvious from the definition (5.37), we may surmise from (5.42)
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that II is symmetric in its inputs. This is indeed the case, as we show through a

couple of lemmas.

Lemma 5.49. Let U, V be two smooth vector fields on a manifold M embedded

in E. Let Ū , V̄ be smooth extensions of U, V to a neighborhood O of M. Then,

[Ū , V̄ ] is a smooth extension of [U, V ] to the same neighborhood O.

Proof. This is a by-product of the proof of Theorem 5.8, with the hindsight that

the Lie bracket of two vector fields is a vector field (Proposition 5.10).

Lemma 5.50 (Gauss formula). Let M be a Riemannian submanifold of E,

respectively endowed with their Riemannian connections ∇ and ∇̄. Let V be a

smooth vector field on M with smooth extension V̄ . For all (x, u) ∈ TM, the

vector ∇̄uV̄ splits in a tangent and a normal part to M at x as:

∇̄uV̄ = Projx(∇̄uV̄ ) + Proj⊥x (∇̄uV̄ ) = ∇uV + II(u, v),

where v = V (x) = V̄ (x).

Proof. We already know that Projx(∇̄uV̄ ) = ∇uV (Theorem 5.9). It remains to

show that Proj⊥x (∇̄uV̄ ) = II(u, v). This is clear from the following computation,

where we let P (t) = Projc(t) along a smooth curve c on M with c(0) = x and

c′(0) = u:

Proj⊥x (∇̄uV̄ ) = Proj⊥x

(
d

dt
V̄ (c(t))

∣∣∣∣
t=0

)
= Proj⊥x

(
d

dt
P (t)(V̄ (c(t)))

∣∣∣∣
t=0

)
= Proj⊥x

(
Pu(v) + Projx(∇̄uV̄ )

)
= Pu(Projx(v)))

= II(u, v).

In the second to last step, we used (5.36) and Proj⊥x ◦ Projx = 0.

Proposition 5.51. For all u, v ∈ TxM it holds that II(u, v) = II(v, u).

Proof. Pick U, V ∈ X(M) such that U(x) = u and V (x) = v; for example, let

U(y) = Projy(u) and V (y) = Projy(v). Let Ū , V̄ be two smooth extensions for

them. Lemma 5.50 yields

II(u, v)− II(v, u) = Proj⊥x (∇̄uV̄ − ∇̄vŪ) = Proj⊥x ([Ū , V̄ ](x)).

Conclude with Lemma 5.49 which tells us [Ū , V̄ ](x) is tangent at x.

Lemma 5.50 has a counter-part for the covariant derivatives of a smooth vector

field Z along a curve c onM. The derivative of Z in the embedding space splits

in a tangent and a normal part:

d

dt
Z(t) =

D

dt
Z(t) + II(c′(t), Z(t)). (5.43)
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Particularized to Z = c′, it follows that the extrinsic acceleration of c (denoted

by c̈) and the intrinsic acceleration of c (denoted by c′′) satisfy

c̈(t) = c′′(t) + II(c′(t), c′(t)). (5.44)

This splits c̈ into tangent and normal parts. In particular, it makes clear the fact

that c is a geodesic (that is, c′′ is identically zero) if and only if c̈ is normal at

all times. For a geodesic γ on M satisfying γ(0) = x and γ′(0) = u we know

that γ′′(0) = 0 so that γ̈(0) = II(u, u). This gives meaning to II(u, u) as the

extrinsic acceleration of the geodesic γ, in the embedding space. This informs us

regarding extrinsic curvature of M in its embedding space, and may be useful

to interpret (5.42).

Exercise 5.52. Give a proof for formula (5.43).

5.12 Special case: metric projection retractions*

Let E be a Euclidean space with the inner product ⟨·, ·⟩ and associated norm

∥ · ∥. For an embedded submanifoldM, it is natural to consider the following as

a tentative retraction, with (x, v) ∈ TM:

Rx(v) = arg min
x′∈M

∥x′ − (x+ v)∥. (5.45)

In fact, several of the retractions discussed in Chapter 7 are of that form. In this

section, we argue that (5.45) indeed defines a retraction (albeit not necessarily

on the whole tangent bundle) and that this retraction is second order if M is a

Riemannian submanifold of E .

Let distM : E → R denote the distance from a point of E to M:

distM(y) = inf
x∈M

∥x− y∥. (5.46)

For a given y ∈ E the set

PM(y) = {x ∈M : ∥x− y∥ = distM(y)}

is the metric projection or nonlinear orthogonal projection of y toM. It may be

empty, or it may contain one or more points.

Let A ⊆ E be the set of points y ∈ E for which PM(y) is a singleton, that is, for

which there exists a unique point x ∈ M which is closest to y. It is an exercise

to show that A may be neither open nor closed. However, strong properties hold

on the interior of A, that is, on the largest subset of A which is open in E . We

state the following theorem without proof: see Section 5.13 for references.

Theorem 5.53. Let M be an embedded submanifold of E. Let A ⊆ E be the

domain where PM is single-valued, and let Ω denote the interior of A.

1. For y ∈ A and x = PM(y), we have that y − x is orthogonal to TxM and

{x+ t(y − x) : t ∈ [0, 1)} ⊂ Ω. In particular, M⊂ Ω.
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2. Ω is dense in A; if M is closed in E, then the closure of Ω equals E.

3. The restriction PM : Ω→M is smooth, and DPM(x) = Projx for all x ∈M
(the orthogonal projector from E to TxM).

Now consider the following subset of the tangent bundle of M:

O = {(x, v) ∈ TM : x+ v ∈ Ω}. (5.47)

It is open since the map (x, v) 7→ x+ v is continuous (in fact, smooth) from TM
to E . Moreover, O contains all pairs (x, 0) ∈ TM since M is included in Ω. We

now argue that formula (5.45) defines a retraction on O.

Proposition 5.54. On an embedded submanifoldM of a Euclidean space E with

norm ∥ · ∥, metric projection induces a retraction (5.45) as:

R: O →M : (x, v) 7→ R(x, v) = Rx(v) = PM(x+ v).

This is called the metric projection retraction.

Proof. Clearly, Rx(0) = PM(x) = x for all x ∈ M. From Theorem 5.53, we see

that R is smooth on its domain by composition. By the same theorem, for all

(x, v) ∈ TM it holds that

DRx(0)[v] = DPM(x)[v] = Projx(v) = v.

This confirms that DRx(0) is the identity on TxM, as needed.

Absil and Malick show that this retraction is part of a large family of second-

order retractions (recall Definition 5.42) [AM12, Ex. 23]. For the case at hand,

Razvan-Octavian Radu shared the short proof below.

Proposition 5.55. If M is a Riemannian submanifold of E, the retraction in

Proposition 5.54 is second order.

Proof. For an arbitrary (x, v) ∈ TM, consider the retraction curve c(t) =

Rx(tv) = PM(x+ tv). From Theorem 5.53, we know that x+ tv− c(t) is orthog-

onal to Tc(t)M for all t. (We could also see this by noting that c(t) is a critical

point of x′ 7→ ∥x′ − (x+ tv)∥2 on M.) This is all we need for our purpose.

Let P (t) = Projc(t) denote orthogonal projection to Tc(t)M: this is smooth in

t (see Exercise 3.66). Since x + tv − c(t) is orthogonal to Tc(t)M for all t, we

have that

g(t) = P (t)(x+ tv − c(t))

is identically zero as a function from I ⊆ R (the domain of c) to E . Thus, the

(classical) derivative g′(t) is also identically zero from I to E :

g′(t) = P ′(t)(x+ tv − c(t)) + P (t)(v − c′(t)) ≡ 0.

At t = 0, we can use c(0) = x to see that 0 = g′(0) = Projx(v−c′(0)). Since v and

c′(0) are both tangent vectors at x, this simply recovers the fact that c′(0) = v.
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Differentiating once more, we have that g′′(t) is also identically zero from I to

E :

g′′(t) = P ′′(t)(x+ tv − c(t)) + 2P ′(t)(v − c′(t))− P (t)
d

dt
c′(t) ≡ 0.

At t = 0, we use c(0) = x and c′(0) = v to see that

0 = −g′′(0) = Projx

(
d

dt
c′(0)

)
=

D

dt
c′(0) = c′′(0),

where the last two equalities follow (5.23): this is where we use that M is a

Riemannian submanifold of E .

The domain of Rx is the open subset Ox = {v ∈ TxM : (x, v) ∈ O}. Clearly,

Ox contains the origin, hence it also contains an open ball around the origin.

However, Ox itself is not necessarily star-shaped with respect to the origin, that

is, it is not true that v ∈ Ox implies tv ∈ Ox for all t ∈ [0, 1]. Indeed, consider

metric projection to the set of matrices of fixed rank Rm×n
r as defined by (7.49).

Given X ∈ Rm×n
r , let Ẋ = −X: this is a tangent vector to Rm×n

r at X. Consider

the line t 7→ X+tẊ: projection of X+tẊ to Rm×n
r is well defined for all t except

t = 1. It is an exercise to show that the same issue can arise with an embedded

submanifold which is a closed set as well.

For an embedded submanifold M in E , the domain A of PM is all of E if and

only if M is an affine subspace of E . However, even if A (and a fortiori Ω) is

not all of E , it can be the case that O = TM. This happens in particular when

M is the boundary of a non-empty, closed, convex set, as then the sets of the

form x+ TxM are supporting hyperplanes of the convex hull of M: projecting

an element of x + TxM to M is the same as projecting to the convex hull

of M, which is globally defined. One example of this is metric projection onto

the sphere (7.9), which is the boundary of the unit Euclidean ball. The metric

projection retraction (7.24) for the Stiefel manifold St(n, p) with p < n is also

defined on the whole tangent bundle. This extends to SO(n) and (with some care

regarding its two components) to O(n) (Section 7.4).

In Section 10.7, we define third-order retractions. Metric projection retractions

are not third order in general: see Exercise 10.88.

Exercise 5.56. Show that A may be neither open nor closed. Hint: consider

M = {(t, t2) : t ∈ R} in R2 and show that A = R2\{(0, t) : t > 1/2}.

Exercise 5.57. Show that Ox (the domain of the metric projection retraction

restricted to TxM) can fail to be star-shaped even if M is closed in E. Hint:

consider M = {(t, cos(t)) : t ∈ R} ⊂ R2.

5.13 Notes and references

Definition 5.1 for connections is not standard. As explained in Section 5.6, the

usual approach is to define ∇ as an operator mapping two smooth vector fields
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to a smooth vector field, then to prove that this operator acts pointwise in its

first argument. The latter point confirms that the two definitions are equivalent,

but it is technical. Leading with Definition 5.1 makes it possible to skip these

technicalities at first.

The pointwise dependence of ∇ in its first argument is a consequence of F(M)-

linearity, and holds more generally for all tensor fields (see Section 10.7): most

references give the proof at that level of generality. See for example [Lee12,

Lem. 12.24], [Lee18, Prop. 4.5] or the remark after Def. 3.9 as well as Prop. 2.2

and Cor. 2.3 in [O’N83]. In the same vein, ∇uV depends on V only locally

through the values of V in a neighborhood of x (as in Lemma 5.23) or along

any smooth curve passing through x with velocity u (owing to the chain rule

property in Theorem 5.29)—see also [Lee18, Prop. 4.26].

Existence and uniqueness of the Riemannian connection is proved in most Rie-

mannian geometry textbooks, e.g., [Lee18, Thm. 5.10] and [O’N83, Thm. 3.11].

Likewise, for existence and uniqueness of the covariant derivative of vector fields

along curves, see [Lee18, Thm. 4.24 and Prop. 5.5] and [O’N83, Prop. 3.18].

We showed that the Riemannian connection for a Euclidean space corre-

sponds to the usual directional derivative, and that the Riemannian connection

on a Riemannian submanifold is obtained through orthogonal projection of the

Riemannian connection in the embedding space [Lee18, Prop. 5.12], [AMS08,

Prop. 5.3.2]. As part of that proof, we show symmetry in Theorem 5.8. This

involves showing that if Ū , V̄ (smooth vector fields in the embedding space) are

tangent to a submanifold, then their Lie bracket is also tangent to that subman-

ifold: a similar statement appears as [Lee12, Cor. 8.32].

In the proof of Theorem 5.6, we use the fact that the Lie bracket [U, V ] of

two smooth vector fields U, V ∈ X(M) is itself a smooth vector field (Proposi-

tion 5.10). Our proof is non-standard and restricted to embedded submanifolds.

We provide a general proof in Section 8.10. In the meantime, we get some insight

along these lines: Exercise 5.11 introduces derivations, and claims smooth vector

fields are derivations. In fact, the converse is true as well: smooth vector fields

are one-to-one with derivations [Lee12, Prop. 8.15]. Then, Exercise 5.12 claims

Lie brackets are derivations, so that Lie brackets are indeed smooth vector fields.

The proof in Section 8.10 follows yet another path.

We follow the definition of Riemannian Hessian in Absil et al. [AMS08, §5.5].

The definition of second-order retractions and Proposition 5.45 follow that refer-

ence too. Absil et al. readily stress the importance of the fact that, at a critical

point, it does not matter whether the retraction is second order. A broader dis-

cussion of various types of Hessians and second covariant derivatives of smooth

functions is presented in [AMS08, §5.6]. See also Section 10.7.

The extension lemmas (Lemmas 5.25 and 5.26) hold for general manifolds.

They are stated here to provide extensions in a neighborhood around a single

point. More generally, these hold to obtain extensions around any closed set. This

can be shown using partitions of unity [Lee12, Lem. 2.26, 8.6]. On this topic,

bump functions on Euclidean spaces (Lemma 5.22) can be used to construct
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partitions of unity, which in turn can be used to construct bump functions on

any manifold [Lee12, Lem. 2.22, Thm. 2.23, Prop. 2.25].

Definitions (5.37) and (5.38) for the second fundamental form and the Wein-

garten map are not standard but they are equivalent to the standard ones given

in [Lee18, pp225–230]. Moreover, both maps (and their properties as laid out

in Section 5.11) extend as is to the more general situation of a Riemannian

submanifold of a Riemannian manifold, as defined in Section 8.14. The Hessian

formula (5.41) involving the Weingarten map—and its construction—appear first

in [AMT13].

Here are a few additional references for Section 5.11: The Gauss formula

(Lemma 5.50) is discussed in [Lee18, Thm. 8.2], symmetry of II (Proposition 5.51)

is stated in [Lee18, Prop. 8.1], the way covariant derivatives split on submani-

folds appears in [O’N83, Prop. 4.8], the implications of the latter for geodesics

on submanifolds is spelled out in [Lee18, Cor. 5.2] and [O’N83, Cor. 4.10], and

the relation to extrinsic curvature is pointed out in [Lee18, Prop. 8.10].

Absil and Malick study metric projection retractions under the name projective

retraction: they prove Propositions 5.54 and 5.55, and extend the discussion to

broad classes of retractions [AM12, §3.1,§4.3]. Our proof of Proposition 5.55 is

different. Moreover, the statements here are more specific regarding the domain of

definition of the retractions, building on Theorem 5.53 which is a particular case

of results presented by Dudek and Holly [DH94, Thms 3.8 and 3.13, Cor. 3.14,

Thm. 4.1]. The discussion of when the domain of the metric projection retraction

is the whole tangent bundle relies on certain basic facts which appear in [DH94,

Thm. 5.1, 5.3, 6.4]. The two exercises of Section 5.12 parallel [DH94, Ex. 6.1,

6.4].

From Theorem 5.53 it is fairly direct to build a so-called tubular neighborhood

for M in E [Lee18, Thm. 5.25]. The other way around, the proof of Proposi-

tion 5.55 generalizes easily to show that retractions built from tubular neighbor-

hoods in a natural way are second order.

Breiding and Vannieuwenhoven study the sensitivity of metric projection to

Riemannian submanifolds of Euclidean space in terms of extrinsic curvature, via

the Weingarten map [BV21].
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6 Second-order optimization
algorithms

In Chapter 4, we used the Riemannian gradient of a function to develop Rie-

mannian gradient descent: a first-order optimization algorithm. Now that we

have developed the concept of Riemannian Hessian, we are in a good position to

develop second-order optimization algorithms.

We first consider a Riemannian version of Newton’s method: a pillar of both

optimization and numerical analysis. When initialized close to certain local min-

imizers, this algorithm enjoys a quadratic local convergence rate. This is signifi-

cantly faster than gradient descent which converges only linearly to such points,

but the speedup comes at a cost:

1. Each iteration of Newton’s method involves solving a linear system of equa-

tions in a tangent space: this is more expensive than computing a gradient

step.

2. The global convergence behavior of Newton’s method is erratic: it can easily

diverge, whereas gradient descent usually converges.

To combine the best of both gradient descent and Newton’s method, we turn to

the Riemannian trust-regions method. That algorithm occupies us for most of

the chapter. It preserves the favorable global behavior of gradient descent and

keeps the per-iteration computational cost under control, while also preserving

superlinear local converge rates to favorable local minimizers. This is arguably

the most robust algorithm for smooth optimization on manifolds to date.

We open the chapter with a discussion of second-order optimality conditions.

After describing Newton’s method, we look into the conjugate gradients method:

a matrix-free algorithm to solve the type of linear systems that arise in the

computation of Newton steps. That algorithm resurfaces later in the chapter in

a truncated form that is more suitable for the trust-region method. We discuss

the latter in detail.

6.1 Second-order optimality conditions

Before we move on to discuss second-order optimization algorithms, we secure

second-order necessary optimality conditions: this is in the same spirit as the

first-order conditions developed in Section 4.2.
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Definition 6.1. A point x ∈ M is second-order critical (or second-order sta-

tionary) for a smooth function f : M→ R if

(f ◦ c)′(0) = 0 and (f ◦ c)′′(0) ≥ 0

for all smooth curves c on M such that c(0) = x.

In words: it is not possible to move away from a second-order critical point

x and obtain an initial decrease in the value of f with linear or even quadratic

rate. In particular, second-order critical points are critical points.

Proposition 6.2. Any local minimizer of a smooth function f : M → R is a

second-order critical point of f .

Proof. Let x be a local minimizer of f . We know from Proposition 4.5 that x

is critical. For contradiction, assume x is not second-order critical. Thus, there

exists a smooth curve c : I →M with c(0) = x, (f ◦c)′(0) = 0 and (f ◦c)′′(0) < 0.

By continuity of (f ◦ c)′′, there exists δ > 0 such that (f ◦ c)′′(τ) < 0 for all

τ ∈ [0, δ]. Taylor’s theorem on f ◦ c implies that, for each t ∈ [0, δ], there exists

τ ∈ [0, δ] such that

f(c(t)) = f(c(0)) + t · (f ◦ c)′(0) +
t2

2
· (f ◦ c)′′(τ).

Thus, f(c(t)) < f(x) for all t ∈ (0, δ]: a contradiction.

On a Riemannian manifold, second-order criticality is characterized by gradi-

ents and Hessians. (Recall Definition 3.7 for the symbols ⪰ and ≻.)

Proposition 6.3. Let f : M → R be smooth on a Riemannian manifold M.

Then, x is a second-order critical point of f if and only if gradf(x) = 0 and

Hessf(x) ⪰ 0.

Proof. Let c : I →M be any smooth curve onM with c(0) = x, and let v = c′(0),

u = c′′(0). We know from Section 5.9 that

(f ◦ c)′(0) = ⟨gradf(x), v⟩x and

(f ◦ c)′′(0) = ⟨gradf(x), u⟩x + ⟨Hessf(x)[v], v⟩x .

If gradf(x) = 0 and Hessf(x) ⪰ 0, then x is second-order critical. The other way

around, assume x is second-order critical. Since the above hold for all v ∈ TxM,

we first find that gradf(x) = 0, and subsequently also that Hessf(x) ⪰ 0.

It is also possible to establish sufficient conditions for local optimality by

strengthening the second-order requirements.

Definition 6.4. A point x ∈ M is strictly second-order critical (or strictly

second-order stationary) for a smooth function f : M→ R if

(f ◦ c)′(0) = 0 and (f ◦ c)′′(0) > 0

for all smooth curves c such that c(0) = x and c′(0) ̸= 0.
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6.2 Riemannian Newton’s method 121

The proof of the next proposition relies on retractions to provide local param-

eterizations of a manifold. We could also use charts directly, as in Section 8.1.

Proposition 6.5. If x is a strict second-order critical point for f : M → R,

then x is a strict local minimizer of f .

Proof. Assume we have a retraction R on M—This is not restrictive: see Sec-

tion 5.12 for embedded submanifolds or Section 10.2 for the general case. Since

DRx(0) is invertible (it is the identity map), the inverse function theorem im-

plies that Rx provides a diffeomorphism between a neighborhood of the origin of

TxM and a neighborhood of x inM: see Corollary 4.17. As a result, x is a strict

local minimizer for f on M if and only if the origin is a strict local minimizer

for f̂x = f ◦Rx on TxM. Since TxM is a linear space, we can endow it with an

inner product ⟨·, ·⟩, so that f̂x has a (Euclidean) gradient and Hessian. For some

nonzero v ∈ TxM, let c(t) = Rx(tv). Then, f̂x(tv) = f(c(t)) and therefore:

⟨gradf̂x(0), v⟩ =
d

dt
f̂x(tv)

∣∣∣∣
t=0

= (f ◦ c)′(0) = 0,

⟨Hessf̂x(0)[v], v⟩ =
d2

dt2
f̂x(tv)

∣∣∣∣
t=0

= (f ◦ c)′′(0) > 0.

The above hold for all v ̸= 0, so that gradf̂x(0) = 0 and Hessf̂x(0) ≻ 0. The

claim now follows from the Euclidean case [NW06, Thm. 2.4].

The following proposition is clear. Its proof is a slight modification of that for

Proposition 6.3.

Proposition 6.6. Let f : M → R be smooth on a Riemannian manifold M.

Then, x is a strict second-order critical point of f if and only if gradf(x) = 0

and Hessf(x) ≻ 0.

6.2 Riemannian Newton’s method

All optimization algorithms we consider are retraction based, in the sense that

they iterate

xk+1 = Rxk
(sk)

for some step sk. Thus, the change in cost function value from one iterate to the

next can be understood through the pullbacks f̂x = f ◦ Rx:

f(xk+1) = f(Rxk
(sk)) = f̂xk

(sk).

Accordingly, a strategy to design algorithms is to pick a model mxk
: Txk

M→ R
which suitably approximates f̂xk

, and to choose sk as an (approximate) mini-

mizer of mxk
. Given our work building Taylor expansions (recall equation (5.28)),
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we know that close to critical points it holds that

f̂x(s) ≈ mx(s) ≜ f(x) + ⟨gradf(x), s⟩x +
1

2
⟨Hessf(x)[s], s⟩x .

The model mx is a quadratic function of s on the linear space TxM. A minimizer

of mx, if one exists, must be a critical point of mx. To determine the gradient of

mx, we use the fact that Hessf(x) is self-adjoint to compute:

⟨gradmx(s), u⟩x = Dmx(s)[u] = ⟨gradf(x), u⟩x + ⟨Hessf(x)[s], u⟩x .

The above holds for all u ∈ TxM, hence by identification we find:

gradmx(s) = gradf(x) + Hessf(x)[s].

Thus, a tangent vector s ∈ TxM is a critical point of mx if and only if

Hessf(x)[s] = −gradf(x). (6.1)

This defines a linear system of equations called the Newton equations for the

unknown s ∈ TxM. So long as Hessf(x) is invertible, there exists a unique

solution called the Newton step: we use it to define Algorithm 6.1. It is an easy

exercise to show that if Hessf(x) is positive definite then the Newton step is the

minimizer of mx. In contrast, if the Hessian is invertible but not positive definite,

then the Newton step does not correspond to a minimizer of mx: following that

step may lead us astray.

Algorithm 6.1 Riemannian Newton’s method

Input: x0 ∈M
For k = 0, 1, 2, . . .

Solve Hessf(xk)[sk] = −gradf(xk) for sk ∈ Txk
M

xk+1 = Rxk
(sk)

Recall the various notions of local convergence rates introduced in Section 4.6.

As we now show, Newton’s method may converge locally quadratically (Def-

inition 4.15). This is much faster than the typical linear local convergence of

gradient descent, though we should bear in mind that (a) Newton steps are

more expensive to compute, and (b) the global convergence behavior of New-

ton’s method can be unwieldy. The proof below relies on the local contraction

mapping theorem from Section 4.6.

Theorem 6.7. Let f : M → R be smooth on a Riemannian manifold M. If

x⋆ ∈M is such that gradf(x⋆) = 0 and Hessf(x⋆) is invertible, then there exists

a neighborhood of x⋆ on M such that, for all x0 in that neighborhood, Newton’s

method (Algorithm 6.1) generates an infinite sequence of iterates x0, x1, x2, . . .

which converges at least quadratically to x⋆.
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Proof. Let U = {x ∈ M : det(Hessf(x)) ̸= 0} be the subset of M where the

Riemannian Hessian of f is invertible. This is a neighborhood of x⋆. Indeed, it

contains x⋆ by assumption, and it is open because its complement is closed (the

determinant of the Hessian is a continuous function). Newton’s method iterates

the map F : U →M given by

F (x) = R(x,−V (x)) with V (x) = Hessf(x)−1[gradf(x)].

At a critical point x⋆, we have V (x⋆) = 0 hence Lemma 4.21 provides the fol-

lowing for all u ∈ Tx⋆
M:

DF (x⋆)[u] = DR(x⋆, 0)[u,−DV (x⋆)[u]] = u−DV (x⋆)[u]. (6.2)

Moreover, Proposition 5.3 provides DV (x⋆)[u] = ∇uV with the Riemannian

connection ∇, and

∇uV = −
(
Hessf(x⋆)−1 ◦ ∇uHessf ◦Hessf(x⋆)−1

)
[gradf(x⋆)]

+ Hessf(x⋆)−1[∇ugradf ]

= u. (6.3)

In the intermediate expression above, the first term involves the covariant deriva-

tive of the Hessian tensor field: see Section 10.7. Its precise definition does not

matter in the end since that linear operator is applied to the vector gradf(x⋆)

which is zero. The second term evaluates to u since ∇ugradf = Hessf(x⋆)[u] by

definition. The above results combined establish that DF (x⋆) = 0. All claims

now follow from the local contraction mapping theorem (Theorem 4.19).

Notice that the above theorem does not require the retraction to be second

order. Essentially, this is due to Proposition 5.44 and the fact that x⋆ is a critical

point.

From an optimization perspective, Theorem 6.7 is only beneficial if Hessf(x⋆)

is positive definite. Indeed, by Proposition 6.2, critical points with an invertible

Hessian which is not positive definite are certainly not local minimizers (in fact,

they could be local maximizers). Yet, this theorem tells us Newton’s method

may converge to such points.

Partly because of this, given an initialization x0, it is hard to predict where

Newton’s method may converge (if it converges at all). After all, the neighbor-

hood in Theorem 6.7 may be arbitrarily small. To compensate for such issues,

we add safeguards and other enhancements to this bare algorithm in Section 6.4.

Still, owing to its fast local convergence, Newton’s method is relevant for favor-

able problems, or more generally to refine approximate solutions (for example,

obtained through gradient descent). Thus, before moving on entirely, we discuss

a practical algorithm to compute the Newton step sk in the next section. This

proves useful for the safeguarded algorithm as well.

Exercise 6.8. Let g(v) = 1
2 ⟨v,Hv⟩x−⟨b, v⟩x be a quadratic function defined on

a tangent space TxM of a Riemannian manifold. Assume H is positive definite
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on TxM. Show that g has a unique minimizer which coincides with its unique

critical point, that is, the solution of the linear system Hv = b. More generally,

show that v minimizes g over a linear subspace of TxM if and only if gradg(v)

is orthogonal to that subspace, and that this minimizer exists and is unique.

Exercise 6.9. Theorem 6.7 controls the local convergence of Newton’s method to

a zero of a gradient vector field. More generally, let U ∈ X(M) be a smooth vector

field (not necessarily the gradient of some function) on a manifold equipped with

a connection ∇. Let Jx : TxM→ TxM denote the Jacobian of U at x, defined

by Jx(u) = ∇uU for all u ∈ TxM. Newton’s method for the vector field U

iterates xk+1 = F (xk) with F (x) = Rx(−(Jx)−1[U(x)]), using some retraction

R. Highlight the small changes needed in the proof of Theorem 6.7 to see that

if U(x⋆) = 0 and Jx⋆
is invertible for some x⋆ ∈ M then Newton’s method

initialized in a sufficiently small neighborhood of x⋆ converges to x⋆ at least

quadratically.

6.3 Computing Newton steps: conjugate gradients

Consider a cost function f : M→ R. Let x ∈ M be such that the Riemannian

Hessian of f at x is positive definite. Then, to compute Newton’s step at x

we minimize a quadratic approximation of f lifted to the tangent space at x.

Explicitly, we seek v ∈ TxM to minimize

g(v) =
1

2
⟨v,Hv⟩x − ⟨b, v⟩x , (6.4)

where we let H = Hessf(x) and b = −gradf(x) for short. Since H is positive

definite by assumption, g has a unique minimizer which coincides with its unique

critical point (Exercise 6.8). As

gradg(v) = Hv − b, (6.5)

that minimizer is the unique solution s ∈ TxM of the linear system Hs = b.

Below, we assume b ̸= 0 as otherwise the task is trivial.⋆

Since H is a linear map on the linear space TxM, we could in principle do the

following: choose a basis for TxM, represent H as a matrix and b as a vector

with respect to that basis (see Exercise 3.9), and solve the resulting linear system

in matrix form using any standard solver (e.g., based on LU, QR or Cholesky

decomposition). However, that would be impractical because we seldom have

access to a preferred basis of a tangent space (we would need to generate one),

and computing the representation of H in that basis would be expensive.

It is far more fruitful to resort to a matrix-free solver, that is, an algorithm

which only requires access to H as a linear map v 7→ Hv. This is indeed what we

usually have at our disposal in applications. Such solvers do not require access

to H in matrix form.

The most famous matrix-free solver for systems with a positive definite map
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is the conjugate gradients method (CG): see Algorithm 6.2. Using exactly one

computation of the form v 7→ Hv per iteration, this method generates three

finite sequences of tangent vectors in TxM:

1. p0, p1, p2, . . . are linearly independent: they span a subspace of TxM of in-

creasing dimension;

2. v0, v1, v2, . . . are increasingly better approximations of the minimizer of g; and

3. r0, r1, r2, . . . are the residues: the smaller rn, the better vn approximates the

sought solution.

Algorithm 6.2 CG: Conjugate gradients on a tangent space

Input: positive definite map H on TxM and b ∈ TxM, b ̸= 0

Set v0 = 0, r0 = b, p0 = r0
For n = 1, 2, . . .

Compute Hpn−1 (this is the only call to H)

αn =
∥rn−1∥2x

⟨pn−1,Hpn−1⟩x
vn = vn−1 + αnpn−1
rn = rn−1 − αnHpn−1
If rn = 0, output s = vn: the solution of Hs = b

βn =
∥rn∥2x
∥rn−1∥2x

pn = rn + βnpn−1

We begin with a simple fact clarifying how the residue rn informs us about

the quality of vn as a candidate minimizer for g.

Lemma 6.10. If Algorithm 6.2 generates the vectors v0, . . . , vn and r0, . . . , rn
before termination, then

rn = −gradg(vn) = b−Hvn. (6.6)

Thus, the algorithm terminates with vn if and only if vn minimizes g.

Proof. The proof is by induction. Clearly, r0 = b = −gradg(v0) since v0 = 0.

Assume rn−1 = −gradg(vn−1) = b − Hvn−1. Then, by construction in Al-

gorithm 6.2, we have rn = rn−1 − αnHpn−1 = b − Hvn−1 − αnHpn−1 =

b − H(vn−1 + αnpn−1) = b − Hvn = −gradg(vn). The last part holds since

the algorithm terminates with vn if and only if rn = 0.

The key fact about the CG algorithm is that the vectors p0, p1, . . . are orthogo-

nal with respect to a special inner product. The standard proof is by induction to

show simultaneously Lemmas 6.11, 6.12 and 6.13 below: see for example [TB97,

Thm. 38.1]. For exposition, we state Lemma 6.11 without proof, then we use it

to prove the two subsequent lemmas. The intent is to clarify how the properties

of p0, p1, . . . unlock all the other important features of CG.
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Lemma 6.11. If Algorithm 6.2 generates the vectors p0, p1, . . . , pn−1 before ter-

mination, then they are H-conjugate, that is, they are nonzero and

∀i ̸= j, ⟨pi, Hpj⟩x = 0.

In particular, p0, . . . , pn−1 are linearly independent.

The above lemma states that the vectors p0, p1, . . . form an orthogonal basis

with respect to the special inner product ⟨u, v⟩H = ⟨u,Hv⟩x. The fact that each

pn−1 is nonzero also confirms that αn is well defined since ⟨pn−1, Hpn−1⟩x is

then positive by positive definiteness of H.

The remarkable feature of H-conjugacy is that it makes minimizing g trivial

in that basis. The CG method exploits this to build the sequence v0, v1, . . ., as

stated in the next lemma. A more constructive proof would start with the fact

that any vector v in span(p0, . . . , pn−1) expands as v = y1p0 + · · · + ynpn−1 for

some coefficients y1, . . . , yn, then observing that g(v) is a quadratic function of

those coefficients with a diagonal Hessian matrix owing to H-conjugacy.

Lemma 6.12. If Algorithm 6.2 generates the vectors p0, . . . , pn−1 and v0, . . . , vn
before termination, then

vn = arg min
v∈span(p0,...,pn−1)

g(v). (6.7)

In particular, gradg(vn) is orthogonal to span(p0, . . . , pn−1).

Proof. Unrolling the recursion for vn in Algorithm 6.2 with v0 = 0, we see that

vn = vn−1 + αnpn−1 = · · · = α1p0 + · · ·+ αnpn−1. (6.8)

Thus, it is clear that vn is in the span of p0, . . . , pn−1. To show that vn minimizes

g in that span, we proceed by induction. For n = 0, we see that v0 = 0 is valid

since that is the only vector in the trivial span. Assume vn−1 minimizes g in

the span of p0, . . . , pn−2. Equivalently, gradg(vn−1) is orthogonal to p0, . . . , pn−2
(Exercise 6.8). By Lemma 6.10, this means rn−1 is orthogonal to p0, . . . , pn−2.

For the same reason, to show that vn minimizes g in the span of p0, . . . , pn−1
we must show that rn is orthogonal to those vectors. Consider the following for

i = 0, . . . , n− 1:

⟨rn, pi⟩x = ⟨rn−1 − αnHpn−1, pi⟩x = ⟨rn−1, pi⟩x − αn ⟨pn−1, Hpi⟩x .

For i ≤ n−2, both terms on the right-most side are zero by induction hypothesis

(for the firm term) and by H-conjugacy (for the second term, see Lemma 6.11).

For i = n− 1, the right-most side is zero by definition of αn. Indeed,

⟨rn−1, pn−1⟩x = ⟨rn−1, rn−1 + βn−1pn−2⟩x = ⟨rn−1, rn−1⟩x ,

where the last equality holds by orthogonality of rn−1 and pn−2.

From the above lemma, we can infer the following:
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1. We get steady progress in the sense that g(vn) ≤ g(vn−1) ≤ · · · ≤ g(v0)

because each vi is obtained by minimizing g over a subspace that contains all

previous subspaces.

2. The algorithm terminates with the minimizer of g after at most dimM it-

erations because if n reaches dimM then p0, . . . , pn−1 span the whole space

TxM hence rn = −gradg(vn) = 0.

To quantify how much progress we can hope to achieve as iterations progress,

it is instructive to study the sequence of subspaces spanned by the H-conjugate

directions. The following lemma gives a convenient characterization.

Lemma 6.13. If Algorithm 6.2 generates the vectors p0, . . . , pn−1 before termi-

nation, then

span(p0, . . . , pn−1) = span(b,Hb,H2b, . . . ,Hn−1b). (6.9)

We call the right-hand side the Krylov subspace Kn.

Proof. The proof is by induction on n. The identity (6.9) certainly holds for

n = 1 since p0 = b. Now assume (6.9) holds. Under that induction hypothesis,

we aim to show that if the algorithm generates pn then

span(p0, . . . , pn) = Kn+1.

To show this equality, it is sufficient to show both of the following:

1. dimKn+1 ≤ dim span(p0, . . . , pn), and

2. span(p0, . . . , pn) ⊆ Kn+1.

We know from Lemma 6.11 that p0, . . . , pn are linearly independent, so that

dim span(p0, . . . , pn) = n + 1. Moreover, dimKn+1 ≤ n + 1 because Kn+1 is

generated by n+ 1 vectors. Thus, the first part is clear. For the second part, we

already know by induction hypothesis that p0, . . . , pn−1 are included in Kn+1. It

remains to show the same for pn. To this end, consider the following where we

use (6.6) for rn:

pn = rn + βnpn−1 = b−Hvn + βnpn−1.

Of course, b is in Kn+1. From (6.8) we know vn is in span(p0, . . . , pn−1). By

induction hypothesis, this means vn ∈ Kn. By definition, for all u ∈ Kn it holds

that Hu is in Kn+1. Thus, Hvn ∈ Kn+1. The induction hypothesis also provides

pn−1 ∈ Kn+1. Hence, pn is in Kn+1.

Let s ∈ TxM be our target, that is, the unique solution to Hs = b. We wish

to assess the size of the error vector vn − s at iteration n. We could do so in the

norm ∥ · ∥x we already have on TxM, but we choose to use the norm associated

to the inner product ⟨u, v⟩H = ⟨u,Hv⟩x instead, namely, the norm

∥u∥H =
√
⟨u, u⟩H =

√
⟨u,Hu⟩x. (6.10)
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Explicitly, we aim to bound ∥vn−s∥H . To this end, notice that the approximation

error ∥v − s∥H for a vector v ∈ TxM obeys:

∥v − s∥2H = ⟨v − s,H(v − s)⟩x
= ⟨v,Hv⟩x − ⟨s,Hv⟩x − ⟨v,Hs⟩x + ⟨s,Hs⟩x
= ⟨v,Hv⟩x − 2 ⟨v, b⟩x + ⟨s,Hs⟩x
= 2g(v) + ⟨s,Hs⟩x , (6.11)

where we used that H is self-adjoint and Hs = b. Since the last term on the

right-hand side is independent of v, we conclude that minimizing ∥v−s∥H over a

subset of TxM is equivalent to minimizing g(v) over that same subset. Therefore,

Lemma 6.12 tells us that vn is the vector in span(p0, . . . , pn−1) which minimizes

∥vn − s∥H : this is why the H-norm is particularly relevant. Further combining

with Lemma 6.13 reveals the following key fact about the CG algorithm:

vn = arg min
v∈Kn

∥v − s∥H , (6.12)

whereKn is the Krylov subspace. Let us reformulate this once more: Lemmas 6.12

and 6.13 combined with the observation (6.11) reveal that

vn = a0b+ a1Hb+ a2H
2b+ · · ·+ an−1H

n−1b

=
(
a0I + a1H + · · ·+ an−1H

n−1) b, (6.13)

with coefficients a0, . . . , an−1 ∈ R such that ∥vn−s∥H is minimized. Substituting

Hs for b in (6.13), we deduce that the error vector at iteration n is

vn − s =
(
a0I + a1H + · · ·+ an−1H

n−1)Hs− s
=
(
a0H + a1H

2 + · · ·+ an−1H
n − I

)
s. (6.14)

The parenthesized expression on the right-hand side is a polynomial in H. Specif-

ically, it is qn(H) with the polynomial

qn(z) = −1 + a0z + a1z
2 + · · ·+ an−1z

n. (6.15)

Thus,

vn − s = qn(H)s. (6.16)

The polynomial qn has degree at most n and satisfies qn(0) = −1. Let Qn denote

the set of such polynomials. Since every polynomial in Qn can be written in the

form (6.15) for some choice of coefficients a0, . . . , an−1, and since the CG method

generates vn such that ∥vn − s∥H is minimized, it follows that the CG method

guarantees

∥vn − s∥H = min
q∈Qn

∥q(H)s∥H . (6.17)

To turn this conclusion into an interpretable bound on the error after n CG

iterations, we now investigate the effect of applying a polynomial to the map

H. To this end, let u1, . . . , ud be a basis of eigenvectors of H, orthonormal with
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respect to ⟨·, ·⟩x (we write d = dimM for short). These exist since H is self-

adjoint. Moreover, let λ1, . . . , λd be associated eigenvalues: Hui = λiui. The

unknown vector s expands as

s =

d∑
i=1

⟨ui, s⟩x ui.

Hence, t applications of H to this vector yield:

Hts =

d∑
i=1

λti ⟨ui, s⟩x ui.

More generally, applying q(H) to s for some polynomial q yields:

q(H)s =

d∑
i=1

q(λi) ⟨ui, s⟩x ui.

We conclude that, for any polynomial q,

∥q(H)s∥2H
∥s∥2H

=
⟨q(H)s,Hq(H)s⟩x

⟨s,Hs⟩x
=

∑d
i=1 q(λi)

2λi ⟨ui, s⟩2x∑d
i=1 λi ⟨ui, s⟩

2
x

≤ max
1≤i≤d

q(λi)
2,

where the inequality is due to positivity of the eigenvalues. Combined with (6.17),

it follows that

∥vn − s∥H ≤ ∥s∥H · min
q∈Qn

max
1≤i≤d

|q(λi)|. (6.18)

In words: the relative error after n iterations, in the H-norm, is controlled by

the existence of a polynomial q in Qn with small absolute value when evaluated

at each of the eigenvalues of H.

Based on these considerations, it follows easily that if H has only k ≤ d distinct

eigenvalues then CG terminates in k iterations. To verify this, it suffices to

construct a polynomial q of degree k with single roots at the distinct eigenvalues

and such that q(0) = −1. More generally, if λmin and λmax denote the smallest

and largest eigenvalues of H, then κ = λmax

λmin
is the condition number of H, and

it can be shown that

∥vn − s∥H ≤ ∥s∥H · 2
(√

κ− 1√
κ+ 1

)n

≤ ∥s∥H · 2e−n/
√
κ, (6.19)

so that the error decreases exponentially fast as CG iterates (hence linear conver-

gence as per Definition 4.14). This is shown by exhibiting an appropriate polyno-

mial q with small absolute value over the whole interval [λmin, λmax]: see [TB97,

Thm. 38.5] for a classical construction based on Chebyshev polynomials, as il-

lustrated in Figure 6.1.

We close with a few comments.

1. That CG terminates in at most dimM iterations is of little practical relevance,

in part because numerical round-off errors typically prevent this (specifically,
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Figure 6.1 The convergence rate of CG is governed by the existence of special poly-
nomials, as shown by (6.18). For illustration of (6.19), let [λmin, λmax] = [1, 9] and

κ = λmax
λmin

= 9. For n = 2, 3, 4, 5, the plots show the polynomial qn(x) = −Tn(ℓ(x))
Tn(ℓ(0))

,

where ℓ(x) = 2x−λmax−λmin
λmax−λmin

maps [λmin, λmax] to [−1, 1] and Tn(x) = cos(n arccos(x))

defines the Chebyshev polynomial of the first kind and of degree n on [−1, 1]. One can
check that qn is in Qn (that is, qn is a polynomial of degree n with qn(0) = −1) and,

as depicted, that |qn(x)| ≤ 2
(√

κ−1√
κ+1

)n

for all x ∈ [λmin, λmax].

because numerically the vectors pi are not exactly H-conjugate). However,

the progressive improvement of the iterates vn as predicted by (6.19) is borne

out empirically, and the role of the condition number κ is indeed critical. In

practice, CG is terminated after a set number of iterations, or when a target

relative tolerance is met. For example, we may replace the stopping criterion

rn = 0 with ∥rn∥x ≤ εtolerance∥b∥x.

2. Reconsidering the bigger picture, we want to keep in mind that the goal is to

minimize f(x): solving the linear system which arises in Newton’s method is

only a means to an end. Since CG can produce adequate approximate solutions

to the linear system in few iterations, it is often beneficial to terminate CG

early and proceed with an approximate Newton step: this is at the heart of

the developments regarding the trust-region method in the next section.

3. In practice, Hessf(x) may not be positive definite. If such is the case, we

ought to be able to detect it. For example, the inner product ⟨pn−1, Hpn−1⟩x
may turn out to be negative. In the trust-region method, such events are

monitored and appropriate actions are taken.

4. Regarding numerical errors again, in Algorithm 6.2, the vectors pi may slowly

build-up a non-tangent component (even though this cannot happen mathe-

matically). Experience shows that it is sometimes beneficial to ensure pn−1 is

tangent (up to machine precision) before computing Hpn−1. For embedded

submanifolds, this can be done through orthogonal projection for example.
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Doing this at every iteration appears to be sufficient to ensure the other se-

quences (namely, ri and vi) also remain numerically tangent.

Exercise 6.14. An alternative to CG is to run gradient descent on g(v) (6.4)

in the tangent space. Since g is a quadratic, it is easy to check that it has L-

Lipschitz continuous gradient with L = λmax(H). Show that running vn+1 =

vn− 1
Lgradg(vn) with v0 = 0 leads to ∥vn−s∥x ≤ e−n/κ∥s∥x, where κ = λmax(H)

λmin(H) .

Contrast this with the role of κ in (6.19) for CG.

6.4 Riemannian trust regions

The trust-region method addresses the fundamental shortcomings of Newton’s

method, while preserving its fast local convergence properties under favorable

circumstances. The premise is the same: around a point x, we approximate the

pullback f ◦ Rx with a simpler model in the tangent space:

f(Rx(s)) ≈ mx(s) = f(x) + ⟨gradf(x), s⟩x +
1

2
⟨Hx(s), s⟩x .

Here, Hx is allowed to be any self-adjoint linear map on TxM (in fact, we will

relax this even further). Of course, the model is a better match for f ◦Rx if Hx

is chosen to be the Hessian of f ◦Rx. From Proposition 5.44, we also know that,

close to critical points, this is essentially the same as Hessf(x) (exactly the same

for second-order retractions).

In a key departure from Newton’s method however, we do not select the step

by blindly jumping to the critical point of the model (which might not even

exist). Rather, we insist on reducing the value of mx. Moreover, since the model

is only a local approximation of the pullback, we only trust it in a ball around

the origin in the tangent space: the trust region. Specifically, at the iterate xk,

we define the model

mk(s) = f(xk) + ⟨gradf(xk), s⟩xk
+

1

2
⟨Hk(s), s⟩xk

(6.20)

for some map Hk : Txk
M → Txk

M to be specified, and we pick the tentative

next iterate x+k as Rxk
(sk) such that the step sk approximately solves the trust-

region subproblem:

min
s∈Txk

M
mk(s) subject to ∥s∥xk

≤ ∆k, (6.21)

where ∆k is the radius of the trust region at iteration k. Specific requirements

are discussed later, but at the very least mk(sk) should be smaller than mk(0).

The step is accepted (xk+1 = x+k ) or rejected (xk+1 = xk) based on the perfor-

mance of x+k as judged by the actual cost function f , compared to the expected

improvement as predicted by the model. Depending on how the two compare,

the trust-region radius may also be adapted. See Algorithm 6.3 for details: it is

called the Riemannian trust-region method (RTR).
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Algorithm 6.3 RTR: the Riemannian trust-region method

Parameters: maximum radius ∆̄ > 0, threshold ρ′ ∈ (0, 1/4)

Input: x0 ∈M, ∆0 ∈ (0, ∆̄]

For k = 0, 1, 2, . . .

Pick a map Hk : Txk
M→ Txk

M to define mk (6.20).

Approximately solve the subproblem (6.21), yielding sk.

The tentative next iterate is x+k = Rxk
(sk).

Compute the ratio of actual to model improvement:

ρk =
f(xk)− f(x+k )

mk(0)−mk(sk)
. (6.22)

Accept or reject the tentative next iterate:

xk+1 =

{
x+k if ρk > ρ′ (accept),

xk otherwise (reject).
(6.23)

Update the trust-region radius:

∆k+1 =


1
4∆k if ρk <

1
4 ,

min(2∆k, ∆̄) if ρk >
3
4 and ∥sk∥xk

= ∆k,

∆k otherwise.

(6.24)

Running RTR, we hope to find a minimizer of f , but that is too much to ask

in general. More realistically, we hope to find a point x = xk such that

∥gradf(x)∥x ≤ εg and Hessf(x) ⪰ −εH Id, (6.25)

where Id is the identity map on TxM, and εH may be infinite if we only care

about first-order optimality conditions. One of the main goals of this chapter

is to show that, regardless of initialization, under suitable assumptions, RTR

provides such a point in a bounded number of iterations.

Of course, to provide such guarantees we must specify conditions on the maps

Hk, requirements on how well the trust-region subproblems are to be solved,

and regularity conditions on the pullbacks f ◦Rxk
. We do this in the subsections

below. In Section 6.7, we discuss more restrictive settings which make it possible

to verify all assumptions discussed below in a straightforward manner.

6.4.1 Conditions on the model

The model mxk
is determined by a choice of map Hk from Txk

M to itself.

The simpler this map, the easier it may be to solve the trust-region subprob-

lem (6.21). In choosing Hk, we aim to strike a balance between model accuracy,
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computational efficiency, and convenience. With the goal (6.25) determined by

εg, εH > 0 in mind, we introduce the following requirements.

For iterations with large gradient, the conditions are particularly mild. In

essence, this is because for such iterations the main focus is on reducing the

gradient norm, which can be done with any first-order accurate model.

A 6.1. For all iterations k such that ∥gradf(xk)∥xk
> εg, we require that:

1. Hk is radially linear, that is,

∀s ∈ Txk
M, α ≥ 0, Hk(αs) = αHk(s); and (6.26)

2. Hk is uniformly bounded, that is, there exists c0 ≥ 0, independent of k, such

that

∀s ∈ Txk
M,

∣∣⟨s,Hk(s)⟩xk

∣∣ ≤ c0∥s∥2xk
. (6.27)

(We can gain insight into the latter through Corollary 10.47.)

An extreme case consists in selecting Hk = L · Id for some L > 0. This is

convenient, computationally inexpensive, and allows us to solve the subprob-

lem (6.21) in closed form: RTR then takes gradient steps. However, the model

does not capture second-order information at all, which may slow down conver-

gence. Alternatively, a convenient radially linear (but not linear) map Hk can

be obtained from finite difference approximations of the Hessian using gradients,

see Section 10.6. Naturally, if it is practical to use the Hessian of f (or that

of f ◦ Rxk
) itself for Hk, then the enhanced accuracy of the model is a strong

incentive to do so.

For iterations with small gradient, if there is a desire to reach approximate

satisfaction of second-order necessary optimality conditions (εH <∞), we need

the model to be (at least approximately) second-order accurate.

A 6.2. For all iterations k such that ∥gradf(xk)∥xk
≤ εg, we require Hk to be

linear and self-adjoint. Furthermore, there must exist c1 ≥ 0 independent of k

such that

∥Hess(f ◦ Rxk
)(0)−Hk∥ ≤

c1∆k

3
, (6.28)

where ∥ · ∥ denotes the operator norm of a self-adjoint map, that is, the largest

magnitude of any of its eigenvalues.

The convergence results below guarantee Hk is, eventually, almost positive

semidefinite. This is only meaningful if Hk is close to Hessf(xk) in operator

norm. In turn, Hessf(xk) is equal to Hess(f ◦Rxk
)(0) if the retraction is second

order (and for a general retraction they are close if xk is nearly critical): see

Propositions 5.44 and 5.45 (and Exercise 10.73 for first-order retractions). Over-

all, the conceptually simplest situation is that for which we use a second-order

retraction and a quadratically-accurate model, in which case:

Hk = Hess(f ◦ Rxk
)(0) = Hessf(xk). (6.29)
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Then, A6.2 holds with c1 = 0.

6.4.2 Requirements on solving the subproblem

Once a model is selected through a choice of map Hk, the key (and typically

most computationally expensive) part of an iteration of RTR is to solve the

trust-region subproblem (6.21) approximately, producing a step sk. Numerous

efficient algorithms have been proposed over the past few decades: we detail one

that is particularly well suited to the Riemannian case in Section 6.5. For now, we

merely specify minimum requirements on how well the task ought to be solved.

We require sufficient decrease in the value of the model, similar to but different

from the analysis of Riemannian gradient descent in Section 4.3 which required

sufficient decrease in the value of the actual cost function. So long as first-order

criticality has not been approximately attained, sufficient decrease is defined with

respect to the gradient norm. The subproblem solver we discuss in Section 6.5

satisfies the assumption below, see Exercise 6.26.

A 6.3. There exists c2 > 0 such that, for all k with ∥gradf(xk)∥xk
> εg, the

step sk satisfies

mk(0)−mk(sk) ≥ c2 min

(
∆k,
∥gradf(xk)∥xk

c0

)
∥gradf(xk)∥xk

, (6.30)

where c0 is the constant in A6.1.

This condition is easily satisfied by computing the so-called Cauchy point : the

minimizer of the subproblem when restricted to the negative gradient direction.

Given the gradient at xk, it can be computed with one call to Hk. It is an exercise

to establish the following lemma.

Lemma 6.15. Let gk = gradf(xk) for convenience. The Cauchy point is the

tangent vector sCk = −tgradf(xk) with t ≥ 0 such that mk(sCk ) is minimal under

the constraint ∥sCk ∥xk
≤ ∆k. Under A6.1, we can compute the corresponding

optimal t explicitly as:

t =

min

(
∥gk∥2xk

⟨gk,Hk(gk)⟩xk

, ∆k

∥gk∥xk

)
if ⟨gk, Hk(gk)⟩xk

> 0,

∆k

∥gk∥xk
otherwise.

Furthermore, setting sk = sCk in RTR satisfies A6.3 with c2 = 1
2 .

Once the gradient is small and if εH < ∞, it becomes necessary to focus on

second-order optimality conditions.

A 6.4. There exists c3 > 0 such that, for all k with ∥gradf(xk)∥xk
≤ εg and

λmin(Hk) < −εH , the step sk satisfies

mk(0)−mk(sk) ≥ c3∆2
kεH . (6.31)

(Note that Hk has real eigenvalues owing to A6.2.)
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This condition too can be satisfied with explicit, finite procedures by computing

eigensteps: moving up to the boundary of the trust region along a direction which

certifies that the smallest eigenvalue of Hk is strictly smaller than −εH . Proving

the next lemma is an exercise.

Lemma 6.16. Under A6.2, if λmin(Hk) < −εH then there exists a tangent

vector u ∈ Txk
M satisfying

∥u∥xk
= 1, ⟨gradf(xk), u⟩xk

≤ 0, and ⟨u,Hk(u)⟩xk
< −εH .

Setting sk = ∆ku (called an eigenstep) in RTR satisfies A6.4 with c3 = 1
2 .

Eigensteps are rarely (if ever) computed in practice. More pragmatically, the

existence of eigensteps serves to show that a global minimizer of the subproblem

also satisfies A6.4.

Corollary 6.17. If Hk is linear and self-adjoint for every iteration k, then

setting sk to be a global minimizer of the subproblem (6.21) at every iteration

satisfies both A6.3 and A6.4 with c2 = c3 = 1
2 . Likewise, setting sk to achieve at

least a fraction α ∈ (0, 1] of the optimal model decrease satisfies the assumptions

with c2 = c3 = α
2 .

Exercise 6.18. Give a proof of Lemma 6.15.

Exercise 6.19. Give a proof of Lemma 6.16.

6.4.3 Regularity conditions

As we did when analyzing the Riemannian gradient method, we require that the

cost function be lower-bounded.

A 6.5. There exists flow ∈ R such that f(xk) ≥ flow for all iterates x0, x1, . . .

Likewise, we still require a first-order, Lipschitz-type condition on the pull-

backs of f for the given retraction R. The set Sg is specified later on.

A 6.6. For a given subset Sg of the tangent bundle TM, there exists a constant

Lg > 0 such that, for all (x, s) ∈ Sg,

f(Rx(s)) ≤ f(x) + ⟨gradf(x), s⟩x +
Lg

2
∥s∥2x.

In addition to these, we now also include a second-order Lipschitz-type condi-

tion. WhenM is a Euclidean space and Rx(s) = x+s, this one holds in particular

if Hessf is Lipschitz continuous with constant LH . The set SH is specified later

on; it is empty if εH =∞.

A 6.7. For a given subset SH of the tangent bundle TM, there exists a constant

LH > 0 such that, for all (x, s) ∈ SH ,

f(Rx(s)) ≤ f(x) + ⟨gradf(x), s⟩x +
1

2
⟨s,Hess(f ◦ Rx)(0)[s]⟩x +

LH

6
∥s∥3x.
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We note that, in particular, the sets Sg and SH will not be required to contain

any tangent vectors of norm larger than ∆̄, since this is the largest trust-region

radius ever considered. This is useful notably when the retraction is not globally

defined (or well behaved). In addition, all root points of elements in Sg and

SH are iterates x0, x1, x2, . . . generated by RTR. This can be helpful when the

iterates are easily shown to lie in a compact subset of M, for example if the

sublevel sets of f are compact, as then A6.6 and A6.7 hold by Lemma 10.57: see

Section 6.7.

We gain further insight into the regularity assumptions from Corollary 10.54

and Exercise 10.58 (for A6.6) and from Corollary 10.56 and Exercise 10.87 (for

A6.7).

6.4.4 Iteration complexity

Given tolerances εg > 0 and εH > 0, we show that RTR produces an iterate

xk which satisfies the following termination conditions in a bounded number of

iterations:

∥gradf(xk)∥xk
≤ εg and λmin(Hk) ≥ −εH . (6.32)

We stress that εH may be set to infinity if only first-order optimality conditions

are targeted. Accordingly, we separate the theorem statement in two scenar-

ios. See the discussion around eq. (6.29) to relate the guarantees on Hk to the

eigenvalues of Hessf(xk).

Following the standard proofs for trust regions in Euclidean space, the analysis

is based on three supporting lemmas which we state and prove below. In a

nutshell, they show that:

1. The trust-region radius cannot become arbitrarily small. Essentially, this is

because regularity of the cost function ensures the model mk is sufficiently

accurate for small steps, which ultimately ensures step acceptance. This pre-

vents trust-region radius reductions beyond a certain point.

2. Combining the latter with our sufficient decrease assumptions, successful steps

initiated from iterates with large gradient produce large decrease in the cost

function value (and similarly at iterates where Hk has a “large” negative

eigenvalue). Yet, the total amount of cost decrease is bounded by f(x0)−flow,

so that there cannot be arbitrarily many successful steps.

3. The number of successful steps as above is at least a fraction of the total

number of iterations, because a large number of consecutive failures would

eventually violate the fact that the trust-region radius is lower-bounded: every

so often, there must be a successful step.

We state the main theorem—the proof comes later in this section.

Theorem 6.20. Let S = {(x0, s0), (x1, s1), . . .} be the pairs of iterates and ten-

tative steps generated by RTR under A6.1, A6.2, A6.3, A6.4 and A6.5. Further
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assume A6.6 and A6.7 hold with constants Lg and LH on the sets

Sg = {(xk, sk) ∈ S : ∥gradf(xk)∥xk
> εg} , and

SH = {(xk, sk) ∈ S : ∥gradf(xk)∥xk
≤ εg and λmin(Hk) < −εH} .

Define

λg =
1

4
min

(
1

c0
,

c2
Lg + c0

)
and λH =

3

4

c3
LH + c1

. (6.33)

We consider two scenarios, depending on whether second-order optimality con-

ditions are targeted or not:

1. If εg ≤ ∆0

λg
and εH =∞, there exists t with ∥gradf(xt)∥xt

≤ εg and

t ≤ 3

2

f(x0)− flow
ρ′c2λg

1

ε2g
+

1

2
log2

(
∆0

λgεg

)
= O

(
1

ε2g

)
. (6.34)

(In this scenario, A6.2, A6.4 and A6.7 are irrelevant.)

2. If εg ≤ ∆0

λg
, εg ≤ c2

c3
λH

λ2
g

and εH < c2
c3

1
λg

, there exists t′ ≥ t such that

∥gradf(xt′)∥xt′ ≤ εg and λmin(Ht′) ≥ −εH with

t′ ≤ 3

2

f(x0)− flow
ρ′c3λ2

1

ε2εH
+

1

2
log2

(
∆0

λε

)
= O

(
1

ε2εH

)
, (6.35)

where (λ, ε) = (λg, εg) if λgεg ≤ λHεH , and (λ, ε) = (λH , εH) otherwise.

Since the algorithm is a descent method, f(xt′) ≤ f(xt) ≤ f(x0).

To build a proof of the theorem above, we work through a sequence of three

lemmas. This first one lower-bounds the trust-region radius.

Lemma 6.21. Under the assumptions of Theorem 6.20, let x0, . . . , xn be iterates

generated by RTR. If none of them satisfy the termination conditions (6.32), then

∆k ≥ min(∆0, λgεg, λHεH) (6.36)

for k = 0, . . . , n.

Proof. Our goal is to show that if ∆k is small, then ρk must be large. By the

mechanism of RTR (specifically, eq. (6.24)), this guarantees ∆k cannot decrease

further. By definition of ρk (6.22), using mk(0) = f(xk),

1− ρk = 1− f(xk)− f(Rxk
(sk))

mk(0)−mk(sk)
=
f(Rxk

(sk))−mk(sk)

mk(0)−mk(sk)
.

Consider an iteration k such that ∥gradf(xk)∥xk
> εg. Then, the numerator is

upper-bounded owing to A6.6 and A6.1:

f(Rxk
(sk))−mk(sk)

= f(Rxk
(sk))− f(xk)− ⟨gradf(xk), sk⟩xk

− 1

2
⟨Hk(sk), sk⟩xk

≤ Lg + c0
2
∥sk∥2xk

.
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Furthermore, the denominator is lower-bounded by A6.3:

mk(0)−mk(sk) ≥ c2 min

(
∆k,

εg
c0

)
εg.

Hence, using ∥sk∥xk
≤ ∆k, we have

1− ρk ≤
1

2

Lg + c0
c2εg

∆2
k

min
(

∆k,
εg
c0

) .
If ∆k ≤ εg

c0
, the last factor is equal to ∆k. If additionally ∆k ≤ c2εg

Lg+c0
, then

1− ρk ≤ 1
2 . Using (6.33), we summarize this as: if ∆k ≤ 4λgεg, then ρk ≥ 1

2 and

the mechanism of RTR implies ∆k+1 ≥ ∆k.

Now, consider k such that ∥gradf(xk)∥xk
≤ εg and λmin(Hk) < −εH . Then,

the numerator is upper-bounded by A6.7, A6.2 and ∥sk∥xk
≤ ∆k:

f(Rxk
(sk))−mk(sk)

= f(Rxk
(sk))− f(xk)− ⟨gradf(xk), sk⟩xk

− 1

2
⟨Hess(f ◦ Rxk

)(0)[sk], sk⟩xk

+
1

2
⟨(Hess(f ◦ Rxk

(0)−Hk)[sk], sk⟩xk

≤ LH + c1
6

∆3
k,

and the denominator is lower-bounded by A6.4:

mk(0)−mk(sk) ≥ c3∆2
kεH . (6.37)

Combining, we get

1− ρk ≤
LH + c1
6c3εH

∆k.

Again, considering (6.33), we find that if ∆k ≤ 4λHεH , then ρk ≥ 1
2 and as a

result ∆k+1 ≥ ∆k.

We have established that if ∆k ≤ 4 min(λgεg, λHεH) then ∆k+1 ≥ ∆k. Since

RTR does not reduce the radius by more than a factor four per iteration, the

claim follows.

The second lemma upper-bounds the total number of successful (that is, ac-

cepted) steps before termination conditions are met.

Lemma 6.22. Under the assumptions of Theorem 6.20, let x0, . . . , xn be iterates

generated by RTR. If none of them satisfy the termination conditions (6.32),

define the set of successful steps among those as

Sn =
{
k ∈ {0, . . . , n} : ρk > ρ′

}
,

and let Un designate the unsuccessful steps, so that Sn and Un form a partition
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of {0, . . . , n}. In the first scenario of Theorem 6.20, the number of successful

steps is bounded as

|Sn| ≤
f(x0)− flow

ρ′c2

1

λgε2g
. (6.38)

Similarly, in the second scenario we have

|Sn| ≤
f(x0)− flow

ρ′c3

1

min(λgεg, λHεH)2εH
. (6.39)

Proof. Clearly, if k ∈ Un, then f(xk) = f(xk+1). On the other hand, if k ∈ Sn,

then the definition of ρk (6.22) combined with A6.3 and A6.4 ensures:

f(xk)− f(xk+1) = ρk
(
mk(0)−mk(sk)

)
≥ ρ′min

(
c2 min

(
∆k,

εg
c0

)
εg , c3∆2

kεH

)
.

By Lemma 6.21 and the assumption λgεg ≤ ∆0, it holds that

∆k ≥ min (λgεg, λHεH) .

Furthermore, using λg ≤ 1/c0 reveals that

min(∆k, εg/c0) ≥ min(∆k, λgεg) ≥ min (λgεg, λHεH) .

Hence,

f(xk)− f(xk+1) ≥ ρ′min
(
c2λgε

2
g, c2λHεgεH , c3λ

2
gε

2
gεH , c3λ

2
Hε

3
H

)
. (6.40)

In the first scenario, εH =∞ and the above simplifies to:

f(xk)− f(xk+1) ≥ ρ′c2λgε2g.

Sum over iterations up to n and use A6.5 (lower-bounded f):

f(x0)− flow ≥ f(x0)− f(xn+1) =
∑
k∈Sn

f(xk)− f(xk+1) ≥ |Sn|ρ′c2λgε2g.

Hence,

|Sn| ≤
f(x0)− flow

ρ′c2λg

1

ε2g
.

Similarly, in the second scenario, starting over from (6.40) and assuming both

c3λ
2
gε

2
gεH ≤ c2λHεgεH and c3λ

2
gε

2
gεH ≤ c2λgε

2
g (which is equivalent to εg ≤

c2λH/c3λ
2
g and εH ≤ c2/c3λg), the same telescoping sum yields

f(x0)− flow ≥ |Sn|ρ′c3 min(λgεg, λHεH)2εH .

Reorganize this as a bound on |Sn| to conclude.

Our third and last lemma lower-bounds the number of successful steps before

termination as a fraction of the total number of iterations before termination. It

captures the fact that we cannot have arbitrarily long strings of rejections.
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Lemma 6.23. Under the assumptions of Theorem 6.20, let x0, . . . , xn be iterates

generated by RTR. If none of them satisfy the termination conditions (6.32),

using the notation Sn and Un of Lemma 6.22, it holds that

|Sn| ≥
2

3
(n+ 1)− 1

3
max

(
0, log2

(
∆0

λgεg

)
, log2

(
∆0

λHεH

))
. (6.41)

Proof. The proof rests on the lower-bound for ∆k from Lemma 6.21. For all

k ∈ Sn, it holds that ∆k+1 ≤ 2∆k. For all k ∈ Uk, it holds that ∆k+1 ≤ 2−2∆k.

Hence,

∆n ≤ 2|Sn|2−2|Un|∆0.

On the other hand, Lemma 6.21 gives

∆n ≥ min(∆0, λgεg, λHεH) .

Combine, divide by ∆0 and take the log in base 2 to see that:

|Sn| − 2|Un| ≥ min

(
0, log2

(
λgεg
∆0

)
, log2

(
λHεH

∆0

))
.

Use |Sn|+ |Un| = n+ 1 to conclude.

With these lemmas available, the main theorem follows easily.

Proof of Theorem 6.20. For each scenario, Lemmas 6.22 and 6.23 provide an

upper-bound and a lower-bound on |Sn|, and it suffices to combine them to

produce an upper-bound on n. For example, in the first scenario, if n is such

that none of the iterates x0, . . . , xn have gradient smaller than εg, then

n ≤ 3

2

f(x0)− flow
ρ′c2

1

λgε2g
+

1

2
log2

(
∆0

λgεg

)
− 1.

Thus, by contraposition, after a number of iterations larger than the right-hand

side, an iterate with sufficiently small gradient must have been found. The same

argument applies in the second scenario.

6.4.5 Critical accumulation points

Building on Theorem 6.20 above, it is also possible to show that all accumulation

points of RTR are critical points. We start with a straightforward corollary of

this theorem that ensures RTR keeps generating points with small gradient, then

we strengthen that corollary with an additional assumption.

Corollary 6.24. Let S = {(x0, s0), (x1, s1), . . .} be the pairs of iterates and

tentative steps generated by RTR under A6.1, A6.3 and A6.5 with εg = 0 (we

aim for first-order criticality). Further assume A6.6 holds on S. Then,

lim inf
k→∞

∥gradf(xk)∥xk
= 0, (6.42)

that is, for all ε > 0 and K there exists k ≥ K such that ∥gradf(xk)∥xk
≤ ε.
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Proof. Let ε > 0 and K ∈ {0, 1, 2, . . .} be arbitrary. Our assumptions imply

that SK = {(xK , sK), (xK+1, sK+1), . . .} is a sequence of pairs of iterates and

tentative steps generated by RTR under A6.1, A6.3 and A6.5 with εg = ε and

εH =∞, and that A6.6 holds on SK . Thus, Theorem 6.20 guarantees that there

exists k ≥ K such that ∥gradf(xk)∥xk
≤ ε.

To strengthen the above corollary, we introduce a new assumption. If the

function x 7→ ∥gradf(x)∥x is Lipschitz continuous (see Section 10.4; this notably

holds if Hessf is continuous and bounded), then that assumption is satisfied

in particular if the retraction does not unduly distort distances, that is, if the

Riemannian distance between x and Rx(s) is bounded by some constant times

∥s∥x (see also A6.9 below). The latter holds for the exponential retraction (Sec-

tion 10.2). The assumption below also holds if S is contained in a compact set,

see Proposition 6.31.

A 6.8. For a given subset S of the tangent bundle TM, there exists a constant

Lgn > 0 such that, for all (x, s) ∈ S,∣∣∥gradf(Rx(s))∥Rx(s) − ∥gradf(x)∥x
∣∣ ≤ Lgn∥s∥x.

Under that assumption it is possible to show that all accumulation points of

RTR are critical points. The statement below is similar in spirit to [AMS08,

Thm. 7.4.4], though the precise assumptions are different, hence the proof is also

adapted.

Proposition 6.25. Let S = {(x0, s0), (x1, s1), . . .} be the pairs of iterates and

tentative steps generated by RTR under A6.1, A6.3 and A6.5 with εg = 0 (we

aim for first-order criticality). Further assume A6.6 and A6.8 hold on S. Then,

lim
k→∞

∥gradf(xk)∥xk
= 0. (6.43)

In particular, all accumulation points of x0, x1, . . . (if any) are critical points.

Proof. If iteration k is unsuccessful (ρk ≤ ρ′), then xk+1 = xk. If iteration k is

successful, then A6.8 guarantees

∥gradf(xk+1)∥xk+1
≥ ∥gradf(xk)∥xk

− Lgn∥sk∥xk
.

Fix an arbitrary index m such that gradf(xm) ̸= 0. For all ℓ ≥ m, we have

∥gradf(xℓ+1)∥xℓ+1
≥ ∥gradf(xm)∥xm

− Lgn

∑
m≤k≤ℓ
ρk>ρ′

∥sk∥xk
.

Pick the smallest ℓ ≥ m such that ∥gradf(xℓ+1)∥xℓ+1
≤ 1

2∥gradf(xm)∥xm : we

know such ℓ exists owing to Corollary 6.24. Then,

∥gradf(xm)∥xm ≤ 2Lgn

∑
m≤k≤ℓ
ρk>ρ′

∥sk∥xk
≤ 2Lgn

∑
m≤k≤ℓ
ρk>ρ′

∆k. (6.44)

Given our choice of ℓ, we have ∥gradf(xk)∥xk
> 1

2∥gradf(xm)∥xm for k =
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m, . . . , ℓ. Also, xk+1 = Rxk
(sk) for all k such that ρk > ρ′. It thus follows

from A6.3 and from the definition of ρk (6.22) that

f(xm)− f(xℓ+1) =
∑

m≤k≤ℓ
ρk>ρ′

f(xk)− f(xk+1)

≥
∑

m≤k≤ℓ
ρk>ρ′

ρ′c2
2

min

(
∆k,
∥gradf(xm)∥xm

2c0

)
∥gradf(xm)∥xm .

(6.45)

There are two scenarios to consider. Either
∥gradf(xm)∥xm

2c0
≤ ∆k for some k in the

summation range, in which case we use the corresponding term to lower-bound

the sum:

f(xm)− f(xℓ+1) ≥ ρ′c2
4c0
∥gradf(xm)∥2xm

. (6.46)

Or
∥gradf(xm)∥xm

2c0
> ∆k for all k in the summation range, in which case we use

both (6.45) and (6.44) to see that

f(xm)− f(xℓ+1) ≥ ρ′c2
2
∥gradf(xm)∥xm

∑
m≤k≤ℓ
ρk>ρ′

∆k

≥ ρ′c2
4Lgn

∥gradf(xm)∥2xm
. (6.47)

The sequence of function values f(x0), f(x1), . . . is lower-bounded by A6.5 and

non-increasing, hence it converges to some f∞. Combining the results above with

f(xm)− f∞ ≥ f(xm)− f(xℓ+1), we find for all m that

f(xm)− f∞ ≥
ρ′c2

4 max(Lgn, c0)
∥gradf(xm)∥2xm

. (6.48)

Take the limit m→∞ to conclude, using f(xm)− f∞ → 0.

6.4.6 Practical aspects

We list some practical considerations in a nutshell:

1. A typical value for ρ′ is 1
10 .

2. Possible default settings for ∆̄ are
√

dimM or the diameter of the manifold

if it is bounded; and ∆0 = 1
8∆̄.

3. Hk is often taken to be Hessf(xk) when available, regardless of whether or

not the retraction is second order. This does not affect local convergence rates

since close to critical points the distinction between first- and second-order

retraction is irrelevant for us.
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4. Practical stopping criteria for RTR typically involve an upper-bound on the

total number of iterations and a threshold on the gradient norm such as:

terminate if ∥gradf(xk)∥xk
≤ εg. Typically, εg = 10−8∥gradf(x0)∥x0

is a good

value. It is rare that one would explicitly check the eigenvalues of Hessf(xk)

before termination.

5. Computing ρk (6.22) can be delicate close to convergence, as it involves the

computation of f(xk)− f(x+k ): a difference of two potentially large numbers

that could be dangerously close to one another. Specifically, say we compute

f(xk) and we store it in memory in the variable f1. Even if f(xk) is computed

with maximal accuracy, it must eventually be rounded to one of the real

numbers that are exactly representable in, say, double precision, that is, on

64 bits following the IEEE 754 standard. This standard guarantees a relative

accuracy of εM ≈ 10−16, so that f1 = f(xk)(1 + ε1) with |ε1| ≤ εM. This is a

relative accuracy guarantee since

|f1 − f(xk)|
|f(xk)|

≤ εM.

(In practice, computing f(xk) would involve further errors leading to a larger

right-hand side.) Likewise, f2 = f(x+k )(1 + ε2) with |ε2| ≤ εM.

Assuming the difference between f1 and f2 is exactly representable in mem-

ory,1 in computing the numerator for ρk we truly compute

f1 − f2 = f(xk)− f(x+k ) + ε1f(xk)− ε2f(x+k ).

The best we can claim in general about the relative error is:

|(f1 − f2)− (f(xk)− f(x+k ))|
|f(xk)− f(x+k )|

≤ εM
|f(xk)|+ |f(x+k )|
|f(xk)− f(x+k )|

.

The right-hand side can be catastrophically large. Indeed, if f(xk) and f(x+k )

are large in absolute value yet their difference is very small (which may happen

near convergence), the relative error on the computation of the numerator of

ρk may make it useless. For example, with f(xk) = 104 and f(xk)− f(x+k ) =

10−12, the relative error bound is close to 1, meaning none of the digits in the

computed numerator can be trusted. In turn, this can lead to wrong decisions

in RTR regarding step rejections and trust-region radius updates.

No such issues plague the denominator, provided it is appropriately com-

puted. Indeed,

mk(0)−mk(sk) = −⟨sk, gradf(xk)⟩xk
− 1

2
⟨sk, Hk(sk)⟩xk

. (6.49)

Using the right-hand side for computation, if the step sk is small and the

gradient is small, then we combine two small real numbers, which is not as

dangerous as computation of the left-hand side.

1 By the Sterbenz lemma, this is true if f1, f2 are within a factor 2 of each other.

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

144 Second-order optimization algorithms

A standard fix [CGT00, §17.4.2] to these numerical issues is to regularize

the computation of ρk as

ρk =
f(xk)− f(x+k ) + δk

−⟨sk, gradf(xk)⟩xk
− 1

2 ⟨sk, Hk(sk)⟩xk
+ δk

, (6.50)

with

δk = max(1, |f(xk)|)εMρreg. (6.51)

The parameter ρreg can be set to 103 for example. When both the true numer-

ator and denominator of ρk become very small near convergence, the regular-

ization nudges (6.50) toward 1, which leads to step acceptance as expected.

This is a heuristic to (try to) address an inescapable limitation of inexact

arithmetic, though a detailed analysis by Sun and Nocedal provides insight

into what one may reasonably guarantee with it [SN22].

6. Care should be put in implementations to minimize the number of calls to the

mapHk. For example, in the subproblem solver described in Section 6.5 below,

exactly one call to Hk is needed per iteration, and furthermore the vector

Hk(sk) is a by-product of that algorithm when Hk is linear (Exercise 6.28),

so that computing the denominator of ρk does not require further calls to Hk.

6.5 The trust-region subproblem: truncated CG

The trust-region subproblem (6.21) consists in approximately solving a problem

of the form

min
s∈TxM

m(s) subject to ∥s∥x ≤ ∆ where m(s) =
1

2
⟨s,Hs⟩x − ⟨b, s⟩x , (6.52)

with a map H : TxM→ TxM, a tangent vector b ∈ TxM and a radius ∆ > 0.

At iteration k of RTR, these objects are H = Hk, b = −gradf(xk) and ∆ = ∆k.

We consider the important particular case where H is a linear, self-adjoint

map (e.g., Hk = Hessf(xk)). Then, m : TxM → R is a quadratic function.

Aside from the constraint ∥s∥x ≤ ∆, if H is furthermore positive definite, then

we know from Section 6.3 that conjugate gradients (CG, Algorithm 6.2) can be

used to compute a global minimizer of m: simply compare functions in (6.4)

and (6.52).

The general idea of the truncated CG method (tCG), Algorithm 6.4, is to run

CG on m(s) (6.52) while

1. Keeping an eye out for signs that H may not be positive definite;

2. Checking whether we left the trust region; and

3. Looking for opportunities to terminate early even if neither of those events

happen.
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Recall that CG generates directions pi. If the scalars ⟨pi, Hpi⟩x are positive

for i = 0, . . . , n−2, then p0, . . . , pn−2 are linearly independent hence they form a

basis for a subspace of TxM. Moreover, H is positive definite on that subspace.

Thus, up to that point, all the properties of CG hold. If, however, upon consid-

ering pn−1 we determine that ⟨pn−1, Hpn−1⟩x is non-positive, then this is proof

that H is not positive definite. In such situation, tCG computes the next step

vn by moving away from vn−1 along pn−1 so as to minimize the model m, that

is, tCG sets vn = vn−1 + tpn−1 with t such that m(vn) is minimized, under the

constraint ∥vn∥x ≤ ∆. There are two candidates for the value of t, namely, the

two roots of the quadratic

∥vn−1 + tpn−1∥2x −∆2 = ∥pn−1∥2xt2 + 2t ⟨vn−1, pn−1⟩x + ∥vn−1∥2x −∆2. (6.53)

The product of these roots is negative since ∥vn−1∥x < ∆ (otherwise we would

have already terminated), hence one root is positive and the other is negative. It

can be shown that selecting the positive root leads to the smallest value in the

model [ABG07, §3].

Now assuming ⟨pn−1, Hpn−1⟩x is positive, we consider the tentative new step

v+n−1 = vn−1 + αnpn−1. If this step lies outside the trust region, it seems at first

that we face a dilemma. Indeed, a priori, it might happen that later iterates re-

enter the trust region, in which case it would be unwise to stop. Fortunately, this

cannot happen. Specifically, it can be shown that steps grow in norm, so that if

one iterate leaves the trust region, then no future iterate re-enters it [CGT00,

Thm. 7.5.1], [NW06, Thm. 7.3]. Thus, it is reasonable to act now: tCG proceeds

by reducing how much we move along pn−1, setting vn = vn−1 + tpn−1 instead

with t ≥ 0 being the largest value that fulfills the trust-region constraint. This

happens to correspond exactly to the positive root of the quadratic in eq. (6.53).

In the unlikely event that v+n−1 lies exactly on the boundary of the trust region, it

makes sense to stop by the same argument: this is why we test for ∥v+n−1∥x ≥ ∆

with a non-strict inequality.

Finally, if neither non-positive ⟨pi, Hpi⟩x are encountered nor do the steps

leave the trust region, we rely on a stopping criterion to terminate tCG early.

The principle is that we should only work hard to solve the subproblem when

RTR is already close to convergence. Specifically, with r0 = b = −gradf(xk), the

chosen stopping criterion with parameters θ and κ allows tCG to terminate if

∥rn∥xk
≤ ∥gradf(xk)∥xk

·min(∥gradf(xk)∥θxk
, κ). (6.54)

It is only when the gradient of f is small that tCG puts in the extra effort to

reach residuals as small as ∥gradf(xk)∥1+θ
xk

. This is key to obtain superlinear

convergence, of order min(1 + θ, 2) (in particular, quadratic convergence for θ =

1), see Theorem 6.30 below. Intuitively, superlinear convergence occurs because

when xk is close to a critical point with positive definite Hessian, and with

Hk = Hessf(xk), steps produced by tCG are increasingly similar to Newton

steps.

The comments at the end of Section 6.3 regarding how to run CG in practice
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Algorithm 6.4 tCG: truncated conjugate gradients on a tangent space

Parameters: κ ≥ 0, θ ∈ (0, 1], e.g., κ = 1
10 , θ = 1

Input: self-adjoint H on TxM, b ∈ TxM and radius ∆ > 0

Output: approximate minimizer of m(s) = 1
2 ⟨s,Hs⟩x − ⟨b, s⟩x subject to

∥s∥x ≤ ∆

Set v0 = 0, r0 = b, p0 = r0
If r0 = 0

output s = v0
For n = 1, 2, . . .

Compute Hpn−1 (this is the only call to H)

Compute ⟨pn−1, Hpn−1⟩x
αn =

∥rn−1∥2x
⟨pn−1,Hpn−1⟩x

v+n−1 = vn−1 + αnpn−1
If ⟨pn−1, Hpn−1⟩x ≤ 0 or ∥v+n−1∥x ≥ ∆

Set vn = vn−1 + tpn−1 with t ≥ 0 such that ∥vn∥x = ∆

(t is the positive root of the quadratic in (6.53).)

output s = vn
vn = v+n−1
rn = rn−1 − αnHpn−1
If ∥rn∥x ≤ ∥r0∥x min(∥r0∥θx, κ)

output s = vn

βn =
∥rn∥2x
∥rn−1∥2x

pn = rn + βnpn−1

apply to tCG as well. Specifically, it is common to set a hard limit on the maxi-

mum number of iterations, and it is beneficial to ensure tangent vectors remain

tangent numerically.

Just like regular CG, tCG can be preconditioned [CGT00, §5.1.6]: this can

improve performance dramatically. In a precise sense, preconditioning tCG is

equivalent to changing the Riemannian metric [MS16].

Finally, it is good to know that the trust-region subproblem, despite being non-

convex, can be solved to global optimality efficiently. See [Vav91] and [CGT00,

§7] for pointers to a vast literature.

Exercise 6.26. Show that v1 as computed by Algorithm 6.4 is the Cauchy point

as constructed in Lemma 6.15. Since iterates monotonically improve m(vn) (6.52)

this implies that tCG guarantees A6.3 (p134) with c2 = 1
2 .

Exercise 6.27. Consider using tCG within RTR, so that b = −gradf(xk) and

H = Hk at iteration k of RTR. If b = 0, tCG terminates immediately with s = 0

(this leads RTR to set sk = 0, so that ρk = 0
0 (not-a-number); standard extended

arithmetic conventions then lead RTR to set xk+1 = xk and ∆k+1 = ∆k). Check
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that this may violate A6.4 (p134) if Hk has negative eigenvalues (in particular,

tCG does not compute a global minimum of the trust-region subproblem in this

case). Explain why it is necessary for tCG to terminate immediately if b = 0, that

is, explain why even if we skip the initial “if” statement the rest of the algorithm

would not be able to exploit the negative eigenvalues of Hk. See [CGT00, §7.5.4]

for a fix based on Lanczos iterations.

Exercise 6.28. Algorithm 6.4 terminates with a vector s as output. Show that

the same algorithm can also output Hs as a by-product without requiring ad-

ditional calls to H. Explicitly, if the second “output” statement triggers, then

Hs = b − rn−1 + tHpn−1; and if the third “output” statement triggers, then

Hs = b − rn. This is useful to compute the denominator of ρk (6.22) in the

trust-region method via (6.49).

6.6 Local convergence of RTR with tCG*

Under suitable assumptions, once iterates of RTR are close enough to a critical

point where the Hessian is positive definite, RTR converges superlinearly to that

point provided subproblems are solved with sufficient accuracy (for example,

using tCG). The two theorems below make this precise. They are (in some ways,

restricted) variations of claims found in [ABG07] and [AMS08, §7]. The proofs

are omitted.

The first result is a variation of [AMS08, Thm. 7.4.10]: it is a type of capture

theorem for RTR with tCG. It involves a special assumption on the retraction

that prevents undue distance distortions. It holds in particular if the retraction

is the exponential map (with c5 = 1), and it also holds if M is compact (see

Lemma 6.32 below).

A 6.9. There exist positive constants c4, c5 such that, for all (x, v) ∈ TM, if

∥v∥x ≤ c4 then dist(x,Rx(v)) ≤ c5∥v∥x.

Below, we require that Hessf is continuous.

Theorem 6.29. Let S = {(x0, s0), (x1, s1), . . .} be the pairs of iterates and

tentative steps generated by RTR with tCG as subproblem solver, with models

Hk = Hess(f ◦ Rxk
)(0) or Hk = Hessf(xk). Assume ∥Hk∥ ≤ c0 with some

constant c0 for all k, so that A6.1 and A6.3 hold, and also assume f is lower-

bounded as in A6.5. Further assume A6.6 and A6.8 hold on S. (In particular,

the assumptions of Proposition 6.25 hold, so that ∥gradf(xk)∥xk
→ 0.) Let the

retraction satisfy A6.9.

Let x⋆ ∈ M satisfy gradf(x⋆) = 0 and Hessf(x⋆) ≻ 0—in particular, it is a

local minimizer. There exists a neighborhood U of x⋆ such that, if xk is in U for

some k, then all subsequent iterates are in U and they converge to x⋆.

The second result is a restriction of [AMS08, Thm. 7.4.11]. It establishes su-
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perlinear local convergence (recall Definitions 4.14 and 4.15). We require that

Hessf is continuously differentiable.

Theorem 6.30. Let S = {(x0, s0), (x1, s1), . . .} be the pairs of iterates and ten-

tative steps generated by RTR with tCG as subproblem solver, either with models

Hk = Hess(f ◦ Rxk
)(0) or with models Hk = Hessf(xk). If the latter, assume

there exists a constant c6 such that ∥c′′(0)∥x ≤ c6 for all curves of the type

c(t) = Rx(ts) with s ∈ TxM of unit norm and x = xk for some k—this holds

with c6 = 0 if the retraction is second order.

Let x⋆ ∈ M satisfy gradf(x⋆) = 0 and Hessf(x⋆) ≻ 0. If the sequence

x0, x1, x2, . . . converges to x⋆ (as Theorem 6.29 might provide), then there exist

a constant c7 > 0 and an index K such that, for all k ≥ K, we have

dist(xk+1, x⋆) ≤ c7 dist(xk, x⋆)min(θ+1,2),

where θ > 0 is a parameter in the stopping criterion of tCG. In particular, with

θ = 1 convergence is at least quadratic.

6.7 Simplified assumptions for RTR with tCG*

The main theorems of Sections 6.4 and 6.6 involve a number of assumptions that

need to be checked in order to claim convergence guarantees for RTR. In this

section, we restrict the discussion to RTR with tCG as subproblem solver and

include simple assumptions that simplify the process of verifying that all other

assumptions hold. The resulting statements are more restrictive than above, but

they can often be applied directly in applications. This is especially simple ifM
is compact, as is the case for the Stiefel and the Grassman manifolds for example.

Throughout, we require that Hessf is continuously differentiable.

Proposition 6.31. Let S = {(x0, s0), (x1, s1), . . .} be the pairs of iterates and

tentative steps generated by RTR with models Hk = Hess(f ◦ Rxk
)(0) and tCG

as subproblem solver. (If the retraction is second order, the models coincide with

Hessf(xk).) Assume the iterates x0, x1, . . . are contained in a compact subset

of M. (This holds in particular if M is compact, or if any of the sublevel sets

{x ∈ M : f(x) ≤ f(xk)} is compact.) Then, A6.1 holds with some c0 ≥ 0, A6.2

holds with c1 = 0, A6.3 holds with c2 = 1
2 (Exercise 6.26), A6.4 may not hold

(Exercise 6.27), A6.5 holds with flow = infk f(xk) > −∞, A6.6 and A6.7 hold

on S with some constants Lg and LH (Lemma 10.57), and A6.8 holds on S with

some constant Lgn.

If the subproblem solver is replaced by one which solves the trust-region sub-

problem to optimality, then all of the above remain true except A6.4 is also

satisfied with c3 = 1
2 (Corollary 6.17).

Proof. All claims are clear except for the gradient-norm Lipschitz-type assump-

tion A6.8 which we now verify explicitly. In so doing, we use concepts from
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Sections 10.1 (length of curves), 10.3 (parallel transport) and 10.4 (Lipschitz

continuity).

Since the iterates xk are contained in a compact set K we know that S is

included in T = {(x, s) : x ∈ K and ∥s∥x ≤ ∆̄} which is compact in TM
(Exercise 10.31). For each (x, s) ∈ TM, the map DRx(s) is linear from TxM
to TRx(s)M. Its operator norm is continuous as a function of (x, s) since R is

smooth, that is, the function (x, s) 7→ ∥DRx(s)∥ is continuous on T . Since T is

compact, we deduce that there exists a constant r such that ∥DRx(s)∥ ≤ r for

all (x, s) ∈ T . Consequently, with (x, s) ∈ T arbitrary and c(t) = Rx(ts), we find

that the length of the curve c on the interval [0, 1] satisfies:

L(c) =

∫ 1

0

∥c′(t)∥c(t)dt

=

∫ 1

0

∥DRx(ts)[s]∥c(t)dt ≤
∫ 1

0

r∥s∥xdt = r∥s∥x. (6.55)

The set R(T ) = {Rx(s) : (x, s) ∈ T } is compact in M since it is the image

of a compact set through a continuous map. Thus, Hessf is continuous hence

bounded (in operator norm) by some constant q on R(T ). Writing PTc
1←0 for

parallel transport along a curve c from t = 0 to t = 1 (this is an isometry from

Tc(0)M to Tc(1)M), it follows with c(t) = Rx(ts) and using Proposition 10.46

that, for all (x, s) ∈ T ,

∥gradf(Rx(s))∥Rx(s) = ∥gradf(Rx(s))− PTc
1←0gradf(x) + PTc

1←0gradf(x)∥Rx(s)

≤ ∥gradf(Rx(s))− PTc
1←0gradf(x)∥Rx(s) + ∥gradf(x)∥x

≤ qL(c) + ∥gradf(x)∥x
≤ qr∥s∥x + ∥gradf(x)∥x.

Thus, ∥gradf(Rx(s))∥Rx(s) − ∥gradf(x)∥x ≤ qr∥s∥x. A similar argument shows

that ∥gradf(x)∥x−∥gradf(Rx(s))∥Rx(s) ≤ qr∥s∥x, so that A6.8 holds on T with

Lgn = qr.

Lemma 6.32. Any retraction R on a compact manifold M satisfies A6.9.

Proof. For all c4 > 0 the set T = {(x, v) ∈ TM : ∥v∥x ≤ c4} is compact

(Exercise 10.31) hence there exists c5 > 0 such that ∥DRx(v)∥ ≤ c5 for all (x, v) ∈
T (by continuity of the operator norm and smoothness of the retraction). It then

follows from (6.55) and from the definitions of distance and length (Section 10.1)

that

dist(x,Rx(v)) ≤ L(c) ≤ c5∥v∥x, (6.56)

where c(t) = Rx(tv) is a curve from c(0) = x to c(1) = Rx(v).

Corollary 6.33. Let S = {(x0, s0), (x1, s1), . . .} be the pairs of iterates and

tentative steps generated by RTR with models Hk = Hess(f ◦ Rxk
)(0) and tCG

as subproblem solver.

If the sublevel set {x ∈ M : f(x) ≤ f(x0)} is compact (which holds if M is
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compact), then the sequence of iterates x0, x1, x2, . . . has at least one accumula-

tion point and all of its accumulation points are critical points.

Further assume the retraction satisfies A6.9 (this holds if M is compact by

Lemma 6.32, or if M is complete and the retraction is the exponential map). If

one of the accumulation points has a positive definite Hessian, then the sequence

converges to that point with a superlinear local convergence rate (quadratic if

θ = 1 in tCG).

Proof. RTR is a descent method (f(xk+1) ≤ f(xk) for all k) hence the sequence

x0, x1, . . . is contained in a compact set: this ensures that it has at least one

accumulation point. All of these accumulation points are critical points owing

to Proposition 6.25, whose assumptions are satisfied owing to Proposition 6.31.

If A6.9 holds too, then Theorem 6.29 applies, guaranteeing that if any of the

accumulation points has a positive definite Hessian then that critical point is

attractive: eventually, the sequence enters any neighborhood of that point and

converges to it as a result. The rate of convergence follows from Theorem 6.30.

6.8 Numerically checking a Hessian*

In Section 4.8, we considered a numerical method to check whether code to

compute the Riemannian gradient is correct. Similarly, we now describe a method

to check code for the Riemannian Hessian. In the Matlab toolbox Manopt, this

method is implemented as checkhessian.

The two first points to check are:

1. That Hessf(x) indeed maps TxM to TxM linearly, and

2. That it is indeed a self-adjoint map.

This can be done numerically by generating a random x ∈ M and two ran-

dom tangent vectors u, v ∈ TxM, computing both Hessf(x)[u] and Hessf(x)[v],

verifying that these are tangent, checking that

Hessf(x)[au+ bv] = aHessf(x)[u] + bHessf(x)[v]

for some random scalars a, b, and finally confirming that

⟨u,Hessf(x)[v]⟩x = ⟨Hessf(x)[u], v⟩x ,

all up to machine precision.

This being secured, consider the Taylor expansion (5.28): if R is a second-order

retraction, or if x is a critical point, then

f(Rx(tv)) = f(x) + t ⟨gradf(x), v⟩x +
t2

2
⟨Hessf(x)[v], v⟩x +O(t3). (6.57)
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This says that, under the stated conditions,

E(t) ≜

∣∣∣∣f(Rx(tv))− f(x)− t ⟨gradf(x), v⟩x −
t2

2
⟨Hessf(x)[v], v⟩x

∣∣∣∣ = O(t3).

Taking the logarithm on both sides, we find that log(E(t)) must grow approxi-

mately linearly in log(t), with a slope of three (or more) when t is small:

log(E(t)) ≈ 3 log(t) + constant.

This suggests a procedure to check the Hessian numerically:

1. Check that the gradient is correct (Section 4.8);

2. Run the preliminary checks (tangency, linearity and symmetry);

3. If using a second-order retraction, generate a random point x ∈M; otherwise,

find an (approximate) critical point x ∈ M, for example using Riemannian

gradient descent;

4. Generate a random tangent vector v ∈ TxM with ∥v∥x = 1;

5. Compute f(x), ⟨gradf(x), v⟩x and ⟨Hessf(x)[v], v⟩x;

6. Compute E(t) for several values of t logarithmically spaced on the interval

[10−8, 100];

7. Plot E(t) as a function of t, in a log–log plot;

8. Check that the plot exhibits a slope of three (or more) over several orders of

magnitude.

Again, we do not expect to see a slope of three over the whole range, but we do

expect to see this over a range of values of t covering at least one or two orders

of magnitude. Of course, the test is less conclusive if it has to be run at a critical

point. Even if computing second-order retractions turns out to be expensive for

the manifold at hand, its use here as part of a diagnostics tool is worthwhile: we

are still free to use any other retraction for the optimization algorithm.

6.9 Notes and references

First- and second-order optimality conditions are further studied in [YZS14,

BH19], notably to include the case of constrained optimization on manifolds.

Newton’s method on manifolds is analyzed in most treatments of optimization

on manifolds; see for example [AMS08, §6] and the many references therein,

including [ADM+02, Man02]. In particular, the convergence result Theorem 6.7

and Exercise 6.9 correspond to [AMS08, Thm. 6.3.2]. The reference material for

the discussion of conjugate gradients in Section 6.3 is [TB97, Lect. 38].

Assumption A6.9 in Section 6.6 parallels an assumption made for the same

reasons in [AMS08, eq. (7.25)].

Trust-region methods in Euclidean space are discussed in great detail by Conn

et al. [CGT00]; see also [NW06] for a shorter treatment. Absil et al. [ABG07] in-

troduced the Riemannian version of the trust-region method. Their analysis also
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appears in [AMS08, §7]. The truncated CG algorithm is also called Steihaug-

Toint CG [Ste83, Toi81]. The global convergence analysis which shows RTR

computes approximate first- and second-order critical points in a bounded num-

ber of iterations is mostly the same as in [BAC18]. Certain parts appear almost

verbatim in that reference (in particular, the proofs of Lemmas 6.22 and 6.23). It

is itself based on a similar analysis of the Euclidean version proposed by Cartis

et al. [CGT12], who also show examples for which the worst-case is attained. The

global convergence results in terms of limit inferior and limit of gradient norm

(Corollary 6.24 and Proposition 6.25) appear with somewhat different assump-

tions as [AMS08, Thm. 7.4.2, Thm. 7.4.4]: the proofs are adapted accordingly.

The RTR method presented here generates sequences whose accumulation

points are first-order critical (under some assumptions). It can also find approx-

imate second-order critical points up to any tolerance, but the theory does not

guarantee accumulation at exact second-order critical points. A somewhat more

theoretical variant of RTR presented in [LKB22b] does accumulate at second-

order critical points. It mirrors a Euclidean construction by Curtis et al. [CLR18].

For local convergence results, the capture theorem (Theorem 6.29) and the su-

perlinear local convergence result (Theorem 6.30) appear with proofs as [AMS08,

Thm. 7.4.10, Thm. 7.4.11]. The statements here are somewhat different but

the same proofs apply. In particular, for Theorem 6.30, the reference state-

ment [AMS08, Thm. 7.4.11] makes the two following assumptions (among oth-

ers). First, there exists c6 > 0 such that, for all k,

∥Hk −Hess(f ◦ Rxk
)(0)∥ ≤ c6∥gradf(xk)∥xk

. (6.58)

This is clear if Hk = Hess(f ◦ Rxk
)(0). If Hk = Hessf(xk) the above follows

from the assumptions in Theorem 6.30 and from the following formula (see for

example Exercise 10.73):

⟨v,Hess(f ◦ Rx)(0)[v]⟩x = ⟨v,Hessf(x)[v]⟩x + ⟨gradf(x), c′′(0)⟩x (6.59)

where (x, v) ∈ TM is arbitrary and c(t) = Rx(tv). Second, there exist positive

c8, c9, c10 such that, for all (x, v) ∈ TM with dist(x, x⋆) ≤ c8 and ∥v∥x ≤ c9 it

holds

∥Hess(f ◦ Rx)(v)−Hess(f ◦ Rx)(0)∥ ≤ c10∥v∥x. (6.60)

This always holds if Hessf is continuously differentiable, by Lemma 10.57.

To some extent, the trust-region method is a fix of Newton’s method to make

it globally convergent. At its core, it is based on putting a hard limit on how

far one trusts a certain quadratic model for the (pullback of the) cost function.

Alternatively, one may resort to a soft limit by adding a cubic regularization

term to a quadratic model. In the same way that the trust-region radius is

updated adaptively, the weight of the regularization term can also be updated

adaptively, leading to the adaptive regularization with cubics (ARC) method.

In the Euclidean case, it dates back to seminal work by Griewank [Gri81] and

Nesterov and Polyak [NP06]. Cartis et al. give a thorough treatment including
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complexity bounds [CGT11b, CGT11a]. Qi proposed a first extension of ARC to

Riemannian manifolds [Qi11]. Iteration complexity analyses akin to the one we

give here for RTR appear in [ZZ18, ABBC20]. As a theoretical strength, ARC

is an optimal method for cost functions with Lipschitz continuous gradient and

Hessian.
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7 Embedded submanifolds: examples

In this chapter, we describe several embedded submanifolds of linear spaces that

occur in applications. For each one, we rely on Chapters 3 and 5 to derive the geo-

metric tools that are relevant to optimize over them. See Table 7.1 for a list of the

manifolds discussed in this chapter (and a few more), together with pointers to

Matlab implementations in the toolbox Manopt [BMAS14]. PyManopt [TKW16]

and Manopt.jl [Ber22] provide similar implementations in Python and Julia. All

three toolboxes are available from manopt.org.

Remember from Section 3.2 that products of embedded submanifolds are em-

bedded submanifolds. This extends to general manifolds. Throughout the book,

we show how to build the geometric toolbox of a product using the geometric

toolboxes of its parts. See Table 7.2 for pointers. Manopt builds these toolboxes

automatically for productsM1×· · ·×Mk and powersMk =M×· · ·×M with

the tools productmanifold and powermanifold.

This chapter is meant to be consulted periodically for illustration while reading

earlier chapters.

7.1 Euclidean spaces as manifolds

Optimization on manifolds generalizes unconstrained optimization: the tools and

algorithms we develop here apply just as well to optimization on linear spaces.

For good measure, we spell out the relevant geometric tools.

Let E be a real linear space, such as Rn,Rm×n,Cn,Cm×n, etc.: see Section 3.1.

We think of E as a (linear) manifold. Its dimension as a manifold is the same as

its dimension as a linear space. All tangent spaces are the same: for x ∈ E ,

TxE = E . (7.1)

An obvious (and reasonable) choice of retraction is

Rx(v) = x+ v, (7.2)

though Definition 3.47 allows for more exotic choices as well.

Equipped with an inner product, E is a Euclidean space, and also a (linear)

Riemannian manifold. The orthogonal projector from E to a tangent space is of
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M Set Manopt tools Section

E Rn,Rm×n, . . . euclideanfactory 7.1
Cn,Cm×n, . . . euclideancomplexfactory

Sym(n) symmetricfactory

Skew(n) skewsymmetricfactory

Subspace euclideansubspacefactory

Sd−1 Sphere in Rm×n spherefactory 7.2
Sphere in Cm×n spherecomplexfactory

OB(d, n) Oblique manifold obliquefactory

Complex oblique obliquecomplexfactory

Cn
1 n complex phases complexcirclefactory

St(n, p) Stiefel stiefelfactory 7.3
Complex Stiefel stiefelcomplexfactory

O(n) Orthogonal group (see St(n, n) or SO(n)) 7.4
SO(n) Rotation group rotationsfactory

U(n) Unitary group unitaryfactory

Rm×n
r Fixed rank fixedrankembeddedfactory 7.5

Hn Hyperbolic space hyperbolicfactory 7.6

{x ∈ E : h(x) = 0} 7.7

Gr(n, p) Set of subspaces grassmannfactory 9.16
in Rn or Cn grassmanncomplexfactory

Sym(n)+ Positive definite sympositivedefinitefactory 11.7

M1 ×M2 Product manifold productmanifold

Mk Power manifold powermanifold

Table 7.1 List of manifolds described in this chapter (and a few more), with pointers to
implementations in Manopt (Matlab). The toolbox offers more, as documented on the web-
site manopt.org. The latter also points to PyManopt and Manopt.jl with implementations
in Python and Julia. Section 7.8 points to additional manifolds of interest. Details regarding
product manifolds are given throughout the book: see Table 7.2.

course the identity map:

Projx(u) = u. (7.3)

Smoothness of a function f : E → R is defined in the usual sense; its classical

gradient and its Riemannian gradient coincide.

More generally, we may consider a linear manifoldM embedded in a Euclidean

space E , that is, M is a linear subspace of E . For example, we may consider

Sym(n)—the space of real symmetric matrices of size n—to be a submanifold of

Rn×n. It still holds that TxM =M for all x ∈ M, and Rx(v) = x+ v is still a

good choice for a retraction. Numerically, points and tangent vectors of M are

typically stored as elements of E . In this more general setup, Projx denotes the

orthogonal projection from E to TxM, that is, orthogonal projection from E to

M. In particular, it does not depend on x: we write ProjM. If we makeM into a
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Product of manifolds is a manifold (embedded) Proposition 3.20
Product of manifolds is a manifold (general) Exercise 8.31

Differential of F : M1 ×M2 → N Exercise 3.40
Tangent bundle of M1 ×M2 Equation (3.31)
Retraction for M1 ×M2 Exercise 3.50
Product of Riemannian metrics is Riemannian Example 3.57
Gradient of f : M1 ×M2 → R Exercise 3.67

Product connection ∇ on M1 ×M2 Exercise 5.4
Product of Riemannian connections is Riemannian Exercise 5.13
Hessian of f : M1 ×M2 → R Example 5.19
Covariant derivative D

dt
induced by product ∇ Exercise 5.34

Geodesics on Riemannian product manifold Exercise 5.39

Riemannian distance on Riemannian product Exercise 10.14
Exponential map on Riemannian product manifold Exercise 10.32
Parallel transport on product manifold Exercise 10.39

Table 7.2 The product M1 ×M2 of two manifolds is a manifold. Moreover, if we know
how to work on M1 and M2 separately, then it is easy to work on their product as well.
This table points to the relevant facts to do that in various places of this book.

Riemannian submanifold of E , that is, if the inner product onM is the same as

the inner product on E (appropriately restricted), then Proposition 3.61 states

the following: given a smooth f : M → R with smooth extension f̄ : U → R
defined on a neighborhood U of M in E ,

gradf(x) = ProjM(gradf̄(x)). (7.4)

For example, with the usual inner product on E = Rn×n (3.14), with M =

Sym(n) as a Riemannian submanifold, ProjM(Z) = Z+Z⊤

2 so that the gradient

of a function on Sym(n) is simply the symmetric part of its classical gradient on

all of Rn×n.

Of course, we could endow E with a non-Euclidean Riemannian metric, that

is, with a Riemannian metric which varies from point to point: see Exercise 7.1.

Second-order tools

Covariant derivatives (∇ and D
dt ) on a Euclidean space E coincide with the usual

vector field derivatives. The Riemannian Hessian of a function f : E → R coin-

cides with its Euclidean Hessian. The retraction Rx(v) = x+ v is a second-order

retraction (Definition 5.42). In fact, it is the exponential map (Section 10.2).

Further consider the case where M is a linear subspace and a Riemannian

submanifold of E . Then, continuing with the same notation as above, ∇ and D
dt

are still the usual vector field derivatives, and the Hessian of f is related to that

of f̄ through

Hessf(x)[v] = ProjM
(
Hessf̄(x)[v]

)
(7.5)
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7.2 The unit sphere in a Euclidean space 157

for all x, v ∈M. We can also write this symmetrically as:

Hessf(x) = ProjM ◦Hessf̄(x) ◦ ProjM. (7.6)

The retraction Rx(v) = x+ v retains the aforementioned properties on M.

Exercise 7.1. We could endow a linear space with a non-Euclidean Riemannian

metric, that is, with a Riemannian metric which varies from point to point. To

be explicit, let M denote the manifold Rn with the Riemannian metric

⟨u, v⟩x = u⊤G(x)v,

where G(x) ∈ Sym(n) is a positive definite matrix which varies smoothly with

x. The retraction Rx(v) = x + v is still acceptable since retractions are defined

independently of the Riemannian structure.

Given a smooth function f̄ : Rn → R, we can formally define f : M → R
through f(x) = f̄(x) for all x. This way, gradf denotes the Riemannian gradient

of f on M and gradf̄ denotes the Euclidean gradient of f̄ on Rn, where the

latter is equipped with the canonical inner product ⟨u, v⟩ = u⊤v. Give a formula

for gradf(x) in terms of gradf̄(x).

Consider the special case where the Hessian of f̄ is everywhere positive definite

(f̄ is strictly convex) and we let G(x) = Hessf̄(x). Compare the classical Newton

method on f̄ and Riemannian gradient descent on f .

7.2 The unit sphere in a Euclidean space

Let E be a Euclidean space endowed with an inner product ⟨·, ·⟩ and associated

norm ∥ · ∥. For example, this could be Rd with the metric ⟨u, v⟩ = u⊤v, or it

could be Rn×p with the metric ⟨U, V ⟩ = Tr(U⊤V ). With d = dim E , we define

the unit sphere in E as

Sd−1 = {x ∈ E : ∥x∥ = 1}. (7.7)

A defining function is h(x) = ⟨x, x⟩ − 1. Its differential is Dh(x)[v] = 2 ⟨x, v⟩, so

that

TxSd−1 = {v ∈ E : ⟨x, v⟩ = 0} , (7.8)

and dim Sd−1 = dim E − 1 = d− 1. One possible retraction is

Rx(v) =
x+ v

∥x+ v∥
=

x+ v√
1 + ∥v∥2

. (7.9)

The orthogonal projector to the tangent space at x is

Projx : E → TxSd−1 : u 7→ Projx(u) = u− ⟨x, u⟩x. (7.10)

Equip Sd−1 with the induced Riemannian metric to turn it into a Riemannian

submanifold. Then, for a smooth function f : Sd−1 → R with smooth extension
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f̄ : U → R in a neighborhood U of Sd−1 in E , the gradient of f is given by

Proposition 3.61 as

gradf(x) = Projx(gradf̄(x)) = gradf̄(x)−
〈
x, gradf̄(x)

〉
x. (7.11)

In particular, x is a critical point of f if and only if gradf̄(x) is parallel to x.

In Manopt, formulas such as (7.11) which convert the Euclidean gradient of a

smooth extension into a Riemannian gradient are available for each manifold as

egrad2rgrad.

A product of k spheres is called an oblique manifold. For example, the product

of k spheres in Rd is denoted by OB(d, k) = (Sd−1)k. Its elements are typically

represented using matrices in Rd×k (or Rk×d) whose columns (or rows) have unit

norm. The same can be done for complex matrices. An often useful particular

case is the complex circle, which consists of all complex numbers of unit modulus

(called phases): this is nothing but an alternative way of representing S1.

Second-order tools

With Sd−1 as a Riemannian submanifold of the Euclidean space E , covariant

derivatives (∇ and D
dt ) on Sd−1 coincide with the usual vector field derivatives

(of smooth extensions) in E , followed by orthogonal projection to tangent spaces

(Theorem 5.9, Proposition 5.31).

We can use this to obtain a formula for the Riemannian Hessian of f : Sd−1 →
R, with smooth extension f̄ : U → R defined on a neighborhood U of Sd−1 in E .

Following Example 5.17, we let

Ḡ(x) = gradf̄(x)−
〈
x, gradf̄(x)

〉
x

denote a smooth extension of the vector field gradf to a neighborhood of Sd−1

in E . Then,

Hessf(x)[v] = ∇vgradf

= Projx
(
DḠ(x)[v]

)
= Projx

(
Hessf̄(x)[v]−

[〈
v, gradf̄(x)

〉
+
〈
x,Hessf̄(x)[v]

〉]
x

−
〈
x, gradf̄(x)

〉
v
)

= Projx(Hessf̄(x)[v])−
〈
x, gradf̄(x)

〉
v. (7.12)

In Manopt, formulas such as (7.12) which convert the Euclidean gradient and

Hessian of a smooth extension into a Riemannian Hessian are available for each

manifold as ehess2rhess.

The retraction (7.9) is a second-order retraction (see Definition 5.42, Exam-

ple 5.43 and Proposition 5.55). Geodesics on Sd−1 are given in Example 5.37.
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7.3 The Stiefel manifold: orthonormal matrices

For p ≤ n, let Rn×p be endowed with the standard inner product ⟨U, V ⟩ =

Tr(U⊤V ). The (compact)1 Stiefel manifold is the set of matrices in Rn×p whose

columns are orthonormal in Rn with respect to the inner product ⟨u, v⟩ = u⊤v.

This can be written conveniently as:2

St(n, p) =
{
X ∈ Rn×p : X⊤X = Ip

}
, (7.13)

where Ip is the identity matrix of size p. In particular, St(n, 1) is the unit sphere

in Rn. We call matrices in St(n, p) orthonormal matrices and we reserve the word

orthogonal matrix for square orthonormal matrices.

Consider the following function:

h : Rn×p → Sym(p) : X 7→ h(X) = X⊤X − Ip, (7.14)

where Sym(p) is the linear space of symmetric matrices of size p. The latter

has dimension k = p(p+1)
2 , so that we may identify it with Rk if desired. We

can verify that h is a defining function for St(n, p). Indeed, h is smooth and

h−1(0) = St(n, p): it remains to check that the differential of h has rank k for all

X ∈ St(n, p). To this end, consider Dh(X) : Rn×p → Sym(p):

Dh(X)[V ] = lim
t→0

h(X + tV )− h(X)

t

= lim
t→0

(X + tV )⊤(X + tV )−X⊤X
t

= X⊤V + V ⊤X. (7.15)

To show Dh(X) has rank k, we must show its image (or range) is a linear subspace

of dimension k. Since the codomain Sym(p) has dimension k, we must show that

the image of Dh(X) is all of Sym(p), that is, Dh(X) is surjective. To do so,

consider V = 1
2XA with A ∈ Sym(p) arbitrary. Then,

Dh(X)[V ] =
1

2
X⊤XA+

1

2
A⊤X⊤X = A.

In other words: for any matrix A ∈ Sym(p), there exists a matrix V ∈ Rn×p such

that Dh(X)[V ] = A. This confirms the image of Dh(X) is all of Sym(p), so that

it has rank k. Thus, h is a defining function for St(n, p), making it an embedded

submanifold of Rn×p of dimension

dim St(n, p) = dimRn×p − dim Sym(p) = np− p(p+ 1)

2
. (7.16)

The tangent spaces are subspaces of Rn×p:

TXSt(n, p) = ker Dh(X) =
{
V ∈ Rn×p : X⊤V + V ⊤X = 0

}
. (7.17)

1 The non-compact Stiefel manifold refers to the open subset of matrices of rank p in Rn×p.
We always mean compact.

2 Many authors use the notation St(p, n) for the same set—we prefer the notation St(n, p) as

it is reminiscent of the size of the matrices.
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It is sometimes convenient to parameterize tangent vectors in explicit form. First,

complete3 the orthonormal basis formed by the columns of X with a matrix

X⊥ ∈ Rn×(n−p) such that [ X X⊥ ] ∈ Rn×n is orthogonal:

X⊤X = Ip, X⊤⊥X⊥ = In−p, and X⊤X⊥ = 0. (7.18)

Since [ X X⊥ ] is, in particular, invertible, any matrix V ∈ Rn×p can be written

as

V =
[
X X⊥

] [Ω

B

]
= XΩ +X⊥B, (7.19)

for a unique choice of Ω ∈ Rp×p and B ∈ R(n−p)×p. Using this decomposition,

V is a tangent vector at X if and only if

0 = Dh(X)[V ] = X⊤(XΩ +X⊥B) + (XΩ +X⊥B)⊤X = Ω + Ω⊤.

In other words, Ω must be skew-symmetric, while B is free. Thus,

TXSt(n, p) =
{
XΩ +X⊥B : Ω ∈ Skew(p), B ∈ R(n−p)×p

}
, (7.20)

where we used the decomposition (7.19) with respect to an arbitrary choice of

X⊥ ∈ Rn×(n−p) satisfying (7.18), and

Skew(p) = {Ω ∈ Rp×p : Ω⊤= −Ω} (7.21)

is the set of skew-symmetric matrices of size p.

One popular retraction for St(n, p) is the Q-factor retraction:4

RX(V ) = Q, (7.22)

where QR = X + V is a (thin) QR decomposition: Q ∈ St(n, p) and R ∈ Rp×p

upper triangular with nonnegative diagonal entries. This is well defined since,

for a tangent vector V ∈ TXSt(n, p),

(X + V )⊤(X + V ) = Ip + V ⊤V (7.23)

is positive definite, showing X+V has full rank p: under that condition, the QR

decomposition is indeed unique. This retraction can be computed in ∼ np2 basic

arithmetic operations (+,−,×, /,
√
·) using the modified Gram–Schmidt algo-

rithm or a Householder triangularization. The defining properties of a retraction

are satisfied: Surely, RX(0) = X; Furthermore, inspecting the Gram–Schmidt al-

gorithm reveals that it maps full-rank matrices in Rn×p to their Q-factor through

a sequence of smooth operations, so that R is smooth (by composition); Finally,

an expression for DRX(V ) is derived in [AMS08, Ex. 8.1.5], from which it is

straightforward to verify that DRX(0) is the identity map.

3 The matrix X⊥ is never built explicitly: it is merely a useful mathematical tool.
4 Some software packages offer a built-in qr routine which may not enforce nonnegativity of

diagonal entries of R—this is the case of Matlab for example. It is important to flip the
signs of the columns of Q accordingly. In Manopt, call qr unique.
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Another popular retraction for St(n, p) is the polar retraction:

RX(V ) = (X + V )
(
(X + V )⊤(X + V )

)−1/2
= (X + V )(Ip + V ⊤V )−1/2, (7.24)

where M−1/2 denotes the inverse matrix square root of M . This can be computed

through eigenvalue decomposition of the matrix Ip + V ⊤V , or (better) through

SVD of X+V . Indeed, if X+V = UΣW⊤ is a thin singular value decomposition,

the polar factor of X + V is UW⊤ and that is equivalent to (7.24). Clearly,

RX(0) = X and R is smooth. It is straightforward to check that DRX(0) is the

identity map. In fact, the polar retraction is the metric projection retraction (see

Section 5.12 and [Sch66]), globally well defined since X + V has full rank for all

(X,V ) ∈ TM as argued above [AM12, Prop. 7].

Yet another often-used retraction for the Stiefel manifold is the Cayley trans-

form [WY13, JD15].

The orthogonal projector to a tangent space of St(n, p) must be such that

U −ProjX(U) is orthogonal to TXSt(n, p), that is, the difference must be in the

orthogonal complement of the tangent space in Rn×p. The latter is called the

normal space to St(n, p) at X:

NXSt(n, p) = (TXSt(n, p))
⊥

=
{
U ∈ Rn×p : ⟨U, V ⟩ = 0 for all V ∈ TXSt(n, p)

}
=
{
U ∈ Rn×p : ⟨U,XΩ +X⊥B⟩ = 0

for all Ω ∈ Skew(p), B ∈ R(n−p)×p}.
Expand normal vectors as U = XA + X⊥C with some A ∈ Rp×p and C ∈
R(n−p)×p; then:

NXSt(n, p) =
{
U ∈ Rn×p : ⟨XA+X⊥C,XΩ +X⊥B⟩ = 0

for all Ω ∈ Skew(p), B ∈ R(n−p)×p}
=
{
U ∈ Rn×p : ⟨A,Ω⟩ = 0 and ⟨C,B⟩ = 0

for all Ω ∈ Skew(p), B ∈ R(n−p)×p}
= {XA : A ∈ Sym(p)} , (7.25)

where we used that the orthogonal complement of Skew(p) in Rp×p is Sym(p).

Thus, orthogonal projection of U ∈ Rn×p satisfies

U − ProjX(U) = XA

for some symmetric matrix A. Furthermore, the projected vector must lie in

TXSt(n, p), hence

ProjX(U)⊤X +X⊤ProjX(U) = 0.

Plugging the former into the latter yields

(U −XA)⊤X +X⊤(U −XA) = 0,
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that is, U⊤X +X⊤U = 2A. Hence,

ProjX(U) = U −XX⊤U + U⊤X

2
(7.26)

= (I −XX⊤)U +X
X⊤U − U⊤X

2
. (7.27)

One convenient way to turn St(n, p) into a Riemannian manifold is to make it a

Riemannian submanifold of Rn×p, in which case the projector yields a convenient

formula for the gradient of a smooth function f in terms of a smooth extension

f̄ , by Proposition 3.61:

gradf(X) = ProjX(gradf̄(X)) = gradf̄(X)−X sym(X⊤gradf̄(X)), (7.28)

where sym(M) = M+M⊤

2 extracts the symmetric part of a matrix.

Other Riemannian metrics are sometimes used: see for example the so-called

canonical metric in [EAS98].

Second-order tools

With St(n, p) as a Riemannian submanifold of Rn×p, covariant derivatives (∇
and D

dt ) on St(n, p) coincide with the usual vector field derivatives (of smooth

extensions) in Rn×p, followed by orthogonal projection to tangent spaces (The-

orem 5.9, Proposition 5.31).

We use this to obtain a formula for the Riemannian Hessian of f : St(n, p)→ R,

with smooth extension f̄ defined on a neighborhood of St(n, p) in Rn×p. Let

Ḡ(X) = gradf̄(X)−X sym(X⊤gradf̄(X))

denote a smooth extension of the vector field gradf to a neighborhood of St(n, p)

in Rn×p. Then,

Hessf(X)[V ] = ∇V gradf

= ProjX
(
DḠ(X)[V ]

)
= ProjX

(
Hessf̄(X)[V ]− V sym(X⊤gradf̄(X))−XS

)
= ProjX

(
Hessf̄(X)[V ]− V sym(X⊤gradf̄(X))

)
, (7.29)

where S = sym(V ⊤gradf̄(X) + X⊤Hessf̄(X)[V ]), and XS vanishes through

ProjX . The polar retraction (7.24) is a second-order retraction (Definition 5.42)

because it is the metric projection retraction (Proposition 5.55), but the Q-factor

retraction (7.22) is not. Geodesics on St(n, p) are given in [AMS08, eq. (5.26)].

Exercise 7.2. Show that the polar retraction R on M = St(n, p) (7.24) is such

that E(X,V ) = (X,RX(V )) from TM to E(TM) has a smooth inverse.
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7.4 The orthogonal group and rotation matrices

As a special case of the Stiefel manifold, matrices in St(n, n) form the orthogonal

group, that is, the set of orthogonal matrices in Rn×n:

O(n) = {X ∈ Rn×n : X⊤X = XX⊤= In}. (7.30)

It is a group equipped with matrix multiplication as its group operation. Being a

special case of the Stiefel manifold, O(n) is also an embedded submanifold, this

time of Rn×n. As a set which is both a manifold and a group, it is known as a

Lie group (more about this in Section 9.2). It has dimension

dim O(n) = n2 − n(n+ 1)

2
=
n(n− 1)

2
, (7.31)

and tangent spaces given by

TXO(n) =
{
XΩ ∈ Rn×n : Ω ∈ Skew(n)

}
= XSkew(n). (7.32)

Notice how TInO(n) = Skew(n), so that TXO(n) = XTInO(n): tangent spaces

are essentially “translated” versions of the tangent space at the identity matrix,

which is also the identity element of O(n) as a group. In Lie group parlance, we

call TInO(n) the Lie algebra of O(n).

Numerically, it is convenient to represent tangent vectors at X simply by their

skew-symmetric factor Ω, keeping in mind that we mean to represent the tangent

vector XΩ. More generally, it is important to mind the distinction between how

we represent points and vectors in the ambient space, and how we represent

points and tangent vectors on the manifold.

Both the Q-factor and the polar retractions of St(n, p) are valid retractions

for O(n).

The orthogonal projector is given by

ProjX(U) = X
X⊤U − U⊤X

2
= X skew(X⊤U), (7.33)

where skew(M) = M−M⊤

2 extracts the skew-symmetric part of a matrix. Turning

O(n) into a Riemannian submanifold of Rn×n with the standard Euclidean met-

ric, this once more gives a direct formula for the gradient of a smooth function

on O(n), through Proposition 3.61:

gradf(X) = X skew(X⊤gradf̄(X)). (7.34)

Of course, this is equivalent to the corresponding formula (7.28) for Stiefel.

An important feature of O(n), relevant for optimization, is that it is discon-

nected. Specifically, it has two components, corresponding to orthogonal matrices

of determinant +1 and −1:

1 = det(In) = det(XX⊤) = det(X)2.

Indeed: since the determinant is a continuous function from Rn×n to R, by
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the intermediate value theorem, any continuous curve connecting a matrix with

determinant +1 to a matrix with determinant −1 must pass through a matrix

with determinant zero and hence must leave O(n).

Our optimization algorithms move along continuous curves (retraction curves).

As a result, when we initialize such an algorithm in a certain connected com-

ponent, it cannot “jump” to another connected component. Therefore, it is im-

portant to initialize in the appropriate component. Geometrically, orthogonal

matrices of size n correspond to rotations of Rn, possibly composed with a re-

flection for those matrices that have determinant −1. In situations where only

rotations are relevant, it makes sense to consider the special orthogonal group,

also known as the group of rotations:

SO(n) = {X ∈ O(n) : det(X) = +1} . (7.35)

This is still an embedded submanifold of Rn×n of course. To verify it, consider

the defining function h(X) = X⊤X − In defined on {X ∈ Rn×n : det(X) > 0},
which is an open subset of Rn×n.

As a connected component of O(n), all the tools we developed so far apply

just as well to SO(n). This includes eq. (7.34) for gradients as well as

dim SO(n) =
n(n− 1)

2
, (7.36)

TXSO(n) = XSkew(n), (7.37)

ProjX(U) = X skew(X⊤U). (7.38)

It is clear that retractions on O(n) yield retractions on SO(n) since, being

smooth, they cannot leave a connected component.

Second-order tools

With O(n) and SO(n) as Riemannian submanifolds of the Euclidean space Rn×n,

covariant derivatives (∇ and D
dt ) coincide with the usual vector field derivatives

(of smooth extensions) in Rn×n, followed by orthogonal projection to tangent

spaces (Theorem 5.9, Proposition 5.31).

We use this to obtain a formula for the Riemannian Hessian of a real function

f on O(n) or SO(n), with smooth extension f̄ in Rn×n. Of course, exactly the

same developments as for the Stiefel manifold hold, so that by (7.29) we get:

Hessf(X)[V ] = ProjX
(
Hessf̄(X)[V ]− V sym(X⊤gradf̄(X))

)
. (7.39)

Writing V = XΩ for some Ω ∈ Skew(n), this also reads

Hessf(X)[XΩ] = X skew
(
X⊤Hessf̄(X)[V ]− Ω sym(X⊤gradf̄(X))

)
,

making the skew-symmetric representation of Hessf(X)[XΩ] clearer.

For both O(n) and SO(n), the polar retraction (7.24) is the metric projection

retraction (because it was so for the Stiefel manifold) hence it is a second-order
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retraction (see Section 5.12), but the Q-factor retraction (7.22) is not. It is an

exercise to show that

c(t) = X exp(tΩ) (7.40)

is a geodesic on O(n) (or SO(n)) such that c(0) = X and c′(0) = XΩ. (This hap-

pens because the Riemannian metric is bi-invariant, so that the Lie exponential

map and the Riemannian exponential map coincide, and it is known that the

Lie exponential map is given by the matrix exponential exp.)

Exercise 7.3. Show that c(t) as defined by (7.40) is indeed a curve on O(n), and

verify that d
dtc(t) = c(t)Ω. Deduce that d

dt

(
d
dtc(t)

)
= c(t)Ω2 and, eventually, that

c′′(t) = D
dtc
′(t) = 0, which confirms c is a geodesic. Hint: use (4.33) to express

the differential of the matrix exponential, and use the fact that exp(A + B) =

exp(A) exp(B) if A and B commute.

Exercise 7.4. Work out a geometric toolbox for the unitary group

U(n) = {X ∈ Cn×n : X∗X = In} (7.41)

as a Riemannian submanifold of Cn×n with the usual inner product (3.17).

7.5 Fixed-rank matrices

The set of real matrices of size m× n and rank r,

Rm×n
r = {X ∈ Rm×n : rank(X) = r}, (7.42)

is an embedded submanifold of Rm×n, as we now show. Importantly, this is only

true for fixed rank r: the set of matrices in Rm×n with rank up to r is not

an embedded submanifold of Rm×n. It is, however, an algebraic variety and a

stratified space—we do not consider optimization on such spaces. Moreover, in

contrast to the examples discussed earlier in this chapter, Rm×n
r is neither open

nor closed in Rm×n.

For an arbitrary X ∈ Rm×n
r , we now build a local defining function. We cannot

use h(X) = rank(X)− r as a defining function because it is not continuous, let

alone smooth. Instead, we proceed as follows. Since X has rank r, it contains an

invertible submatrix of size r× r, that is, it is possible to extract r columns and

r rows of X such that the resulting matrix in Rr×r is invertible. For notational

convenience, assume for now that this is the case for the first r rows and columns,

so that X can be written in block form as

X =

[
X11 X12

X21 X22

]
with X11 ∈ Rr×r invertible, and X12 ∈ Rr×(n−r), X21 ∈ R(m−r)×r and X22 ∈
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R(m−r)×(n−r). Since X has rank r, its n− r last columns must be linear combi-

nations of its r first columns, that is, there exists W ∈ Rr×(n−r) such that[
X12

X22

]
=

[
X11

X21

]
W.

Consequently, W = X−111 X12 and X22 = X21W = X21X
−1
11 X12. Under our as-

sumption that X11 is invertible, this relationship between the blocks of X is

necessary and sufficient for X to have rank r.

This suggests a candidate local defining function. Let U be the subset of Rm×n

consisting of all matrices whose upper-left submatrix of size r×r is invertible: X

is in U , and U is open in Rm×n since its complement—the set of matrices whose

upper-left submatrix has determinant equal to zero—is closed. Consider

h : U → R(m−r)×(n−r) : Y =

[
Y11 Y12
Y21 Y22

]
7→ h(Y ) = Y22 − Y21Y −111 Y12,

with the same block-matrix structure as before. By the above, h−1(0) = Rm×n
r ∩

U . Furthermore, h is smooth in U . Finally, its differential at Y is (V ∈ Rm×n

has the same block structure as Y ):

Dh(Y )[V ] = V22 − V21Y −111 Y12 + Y21Y
−1
11 V11Y

−1
11 Y12 − Y21Y

−1
11 V12,

where we used the following identity for the differential of the matrix inverse

(recall Example 4.24):

D
(
M 7→M−1

)
(M)[H] = −M−1HM−1. (7.43)

The codomain of Dh(Y ) is R(m−r)×(n−r). Any matrix in that codomain can be

attained with some input V (simply consider setting V11, V12, V21 to zero, so that

Dh(Y )[V ] = V22). Thus, the differential of h is surjective everywhere in U : it is

a local defining function for Rm×n
r around X. If the upper-left submatrix of size

r × r of X is not invertible, we can construct another local defining function

using the same procedure: one for each choice of submatrix.

Together, these local defining functions cover the whole set, showing that

Rm×n
r is an embedded submanifold of Rm×n with dimension

dimRm×n
r = dimRm×n − dimR(m−r)×(n−r)

= mn− (m− r)(n− r)
= r(m+ n− r). (7.44)

Notice that, for a given rank r, the dimension of Rm×n
r grows linearly with

m+ n, as opposed to the dimension of the embedding space Rm×n which grows

much faster, as mn. To exploit this key feature in numerical algorithms, we

must represent X appropriately in memory: this should make it possible to

store matrices with an amount of memory that grows linearly in m + n even

though their size is m × n. One convenient choice is as a thin singular value
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decomposition:

X = UΣV ⊤, U ∈ St(m, r), Σ =

σ1 . . .

σr

 , (7.45)

V ∈ St(n, r),

where σ1 ≥ · · · ≥ σr > 0 are the singular values of X. To identify X uniquely, it

is only necessary to store U,Σ, V in memory. We stress that this is only about

representation: the use of orthonormal matrices is only for convenience, and has

no bearing on the geometry of Rm×n
r .

The tangent space to Rm×n
r at X is given by the kernel of Dh(X), with an

appropriate h as constructed above. However, this characterization is impractical

because it requires one to identify an invertible submatrix of X in order to

determine which local defining function to use. Besides, it is more convenient to

aim for a representation of the tangent space TXRm×n
r that is compatible with

the practical representation of X (7.45).

Since we know that each tangent space has dimension as in (7.44), it is suf-

ficient to exhibit a linear subspace of that dimension which is included in the

tangent space. Going back to the definition of tangent space (3.23), we do so by

explicitly constructing smooth curves on Rm×n
r .

Given X = UΣV ⊤ as above, let U(t) be a smooth curve on St(m, r) such that

U(0) = U , let V (t) be a smooth curve on St(n, r) such that V (0) = V , and let

Σ(t) be a smooth curve in the set of invertible matrices of size r × r (this is an

open submanifold of Rr×r) such that Σ(0) = Σ. Then,

c(t) = U(t)Σ(t)V (t)⊤

is a smooth curve on Rm×n
r such that c(0) = X. Hence, its velocity at zero is a

tangent vector at X:

c′(0) = U ′(0)ΣV ⊤+ UΣ′(0)V ⊤+ UΣV ′(0)⊤∈ TXRm×n
r .

Since U(t) is a smooth curve on St(m, r) through U , its velocity U ′(0) is in

the tangent space to St(m, r) at U . The other way around, for any vector in

TUSt(m, r), there is a smooth curve U(t) with that velocity at t = 0. From (7.20),

this means that for any Ω ∈ Skew(r) and B ∈ R(m−r)×r we can arrange to have

U ′(0) = UΩ + U⊥B,

where U⊥ is such that [ U U⊥ ] is orthogonal. Likewise, for any Ω′ ∈ Skew(r) and

C ∈ R(n−r)×r we can arrange to have

V ′(0) = V Ω′ + V⊥C,

with V⊥ such that [ V V⊥ ] is orthogonal. Finally, since Σ(t) is a smooth curve in an

open submanifold of Rr×r, we can arrange for Σ′(0) to be any matrix A ∈ Rr×r.
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Overall, this shows that all of the following velocities are in the tangent space of

Rm×n
r at X:

c′(0) = (UΩ + U⊥B)ΣV ⊤+ UAV ⊤+ UΣ(V Ω′ + V⊥C)⊤

= U(ΩΣ +A− ΣΩ′︸ ︷︷ ︸
M

)V ⊤+ U⊥BΣ︸ ︷︷ ︸
Up

V ⊤+ U(V⊥CΣ⊤︸ ︷︷ ︸
Vp

)⊤. (7.46)

Since Σ is invertible, we find that any matrix of the form

UMV ⊤+ UpV
⊤+ UV ⊤p

with M ∈ Rr×r arbitrary and Up ∈ Rm×r, Vp ∈ Rn×r such that U⊤Up = V ⊤Vp =

0 is tangent at X. The conditions on Up and Vp amount to 2r2 linear constraints,

hence we have found a linear subspace of TXRm×n
r of dimension

r2 +mr + nr − 2r2 = r(m+ n− r).

This coincides with the dimension of TXRm×n
r by (7.44). Thus, we have found

the whole tangent space:

TXRm×n
r =

{
UMV ⊤+ UpV

⊤+ UV ⊤p :

M ∈ Rr×r, Up ∈ Rm×r, Vp ∈ Rn×r, and

U⊤Up = 0, V ⊤Vp = 0
}
. (7.47)

Notice how, if X is already identified by the triplet (U,Σ, V ), then to represent a

tangent vector at X we only need small matrices M,Up, Vp. These require essen-

tially the same amount of memory as for storing X. Sometimes, it is convenient

(for analysis, not computation) to write tangent vectors as follows:

TXRm×n
r =

{[
U U⊥

] [A B

C 0

] [
V V⊥

]⊤
: A,B,C are arbitrary

}
. (7.48)

This reveals the dimension of the tangent space even more explicitly.

To build a retraction for Rm×n
r , one possibility is to use metric projection

(Section 5.12): make the step in the ambient space, then project back to the

manifold. To project from Rm×n to Rm×n
r , we first need to endow Rm×n with

a Euclidean metric: we choose the standard inner product, ⟨U, V ⟩ = Tr(U⊤V ),

with its induced norm ∥U∥ =
√
⟨U,U⟩ (the Frobenius norm). Then, we construct

the retraction as:

RX(H) = arg min
Y ∈Rm×n

r

∥X +H − Y ∥2. (7.49)

Following the well-known Eckart–Young–Mirsky theorem, the solution to this

optimization problem (when it exists) is given by the singular value decomposi-

tion of X + H truncated at rank r. With X and H represented as above, this

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

7.5 Fixed-rank matrices 169

can be computed efficiently. Indeed, consider

X +H = U(Σ +M)V ⊤+ UpV
⊤+ UV ⊤p

=
[
U Up

] [Σ +M Ir
Ir 0

] [
V Vp

]⊤
.

This notably reveals that X + H has rank at most 2r. Compute5 thin QR fac-

torizations of the left and right matrices:

QURU =
[
U Up

]
, QVRV =

[
V Vp

]
,

with QU ∈ St(m, 2r), QV ∈ St(n, 2r) and RU , RV ∈ R2r×2r upper triangular

(assuming 2r ≤ m,n; otherwise, the procedure is easily adapted). This costs

∼ 8(m+ n)r2 arithmetic operations. Then,

X +H = QU RU

[
Σ +M Ir
Ir 0

]
R⊤V︸ ︷︷ ︸

≈ŨΣ̃Ṽ ⊤

Q⊤V .

Compute a singular value decomposition Ũ Σ̃Ṽ ⊤ of the middle part as indicated,

truncated at rank r: Ũ , Ṽ ∈ St(2r, r), and Σ̃ ∈ Rr×r diagonal with decreas-

ing, nonnegative diagonal entries. This costs essentially some multiple of ∼ r3

arithmetic operations, and reveals the truncated singular value decomposition of

X +H:

RX(H) = (QU Ũ)Σ̃(QV Ṽ )⊤. (7.50)

Computing the products QU Ũ and QV Ṽ costs ∼ 4(m + n)r2 arithmetic opera-

tions. The triplet (QU Ũ , Σ̃, QV Ṽ ) represents the retracted point on Rm×n
r .

Notice that if we wish to compute RX(tH) for several different values of t (as

would happen in a line-search procedure), then we can save the QR computa-

tions and replace the matrix
[
Σ+M Ir
Ir 0

]
with

[
Σ+tM tIr
tIr 0

]
. After a first retraction,

subsequent retractions along the same direction could be up to three times faster.

It is clear that RX(0) = X. That this retraction is indeed well defined and

smooth (locally) and that DRX(0) is the identity map follow from general prop-

erties of metric projection retractions (Section 5.12). See also [AO15] for details

on this and several other retractions on Rm×n
r .

There ⋆is an important caveat with the retraction detailed above. Specifically,

projection to Rm×n
r is not globally well defined. In part, this is because Rm×n

r is

not (the shell of) a convex set in Rm×n. This fact is apparent in the step where

we compute the rank-r truncated singular value decomposition of a matrix of

size 2r × 2r: depending on the vector being retracted, that operation may not

have a solution (if the matrix has rank less than r), or the solution may not be

5 Here, the signs on the diagonals of RU , RV are irrelevant. In principle, some work can be
saved using that U has orthonormal columns and that the columns of Up are orthogonal to

those of U , but this is numerically delicate when Up is ill conditioned; likewise for V, Vp.
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unique (if its rth and (r + 1)st singular values are positive and equal). Overall,

this means we must be careful when we use this retraction.

With Rm×n still endowed with the standard inner product, we now turn to

the orthogonal projectors of Rm×n
r . From (7.48), it is clear that the normal space

at X = UΣV ⊤ is given by:

NXRm×n
r =

{
U⊥WV ⊤⊥ : W ∈ R(m−r)×(n−r)

}
. (7.51)

Then, the orthogonal projection of Z ∈ Rm×n to TXRm×n
r satisfies both

Z − ProjX(Z) = U⊥WV ⊤⊥

for some W and, following (7.47),

ProjX(Z) = UMV ⊤+ UpV
⊤+ UV ⊤p (7.52)

for some M,Up, Vp with U⊤Up = V ⊤Vp = 0. Combined, these state

Z = UMV ⊤+ UpV
⊤+ UV ⊤p + U⊥WV ⊤⊥ .

Define PU = UU⊤, PV = V V ⊤, P⊥U = Im−PU and P⊥V = In−PV . Then, we find

in turn:

PUZPV = UMV ⊤, P⊥U ZPV = UpV
⊤, and PUZP

⊥
V = UV ⊤p .

Hence,

ProjX(Z) = PUZPV + P⊥U ZPV + PUZP
⊥
V (7.53)

= U(U⊤ZV )V ⊤+ (Im − UU⊤)ZV V ⊤+ UU⊤Z(In − V V ⊤).

In the notation of (7.52), this is a tangent vector at X represented by

M = U⊤ZV, Up = ZV − UM, and Vp = Z⊤U − VM⊤. (7.54)

If Z is structured so that U⊤Z and ZV can be computed efficiently, its projection

can also be computed efficiently: this is crucial in practice.

Turning Rm×n
r into a Riemannian submanifold of Rm×n with the standard

Euclidean metric, the gradient of a smooth f : Rm×n
r → R with smooth extension

f̄ to a neighborhood of Rm×n
r in Rm×n is given by Proposition 3.61 as

gradf(X) = ProjX(gradf̄(X)),

to be computed using (7.52) and (7.54). In applications, gradf̄(X) is often a

sparse matrix, or a low-rank matrix available in factored form, or a sum of such

structured matrices. In those cases, the projection can (and should) be computed

efficiently.

Let X = UΣV ⊤ ∈ Rm×n
r be a matrix represented by the triplet (U,Σ, V ),

and let Ẋ, Ẋ ′ be two tangent vectors at X represented as in (7.47) by triplets
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(M,Up, Vp) and (M ′, U ′p, V
′
p) (respectively). With the stated Riemannian struc-

ture on Rm×n
r , we can compute the inner product Ẋ and Ẋ ′ as follows:

⟨Ẋ, Ẋ ′⟩X = ⟨UMV ⊤+ UpV
⊤+ UV ⊤p , UM

′V ⊤+ U ′pV
⊤+ U(V ′p)⊤⟩

= ⟨M,M ′⟩+ ⟨Up, U
′
p⟩+ ⟨Vp, V ′p⟩, (7.55)

where ⟨·, ·⟩ refers to the usual Frobenius inner products over the appropriate ma-

trix spaces. Notice how the cancellations that occurred above make it possible to

compute inner products of tangent vectors using only the triplets that represent

them, for a moderate computational cost.

Second-order tools

With Rm×n
r as a Riemannian submanifold of the Euclidean space Rm×n, covari-

ant derivatives (∇ and D
dt ) coincide with the usual vector field derivatives (of

smooth extensions), followed by orthogonal projection to tangent spaces (Theo-

rem 5.9, Proposition 5.31).

We use this to obtain a formula for the Riemannian Hessian of f : Rm×n
r → R

with smooth extension f̄ . Let O be the subset of Rm×n containing all matrices

whose rth and (r + 1)st singular values are distinct: this is a neighborhood of

Rm×n
r . Given a matrix X in O, let PU be the orthogonal projector from Rm

to the subspace spanned by the r dominant left singular vectors of X: this is

smooth in X. In particular, if X = UΣV ⊤ has rank r (with factors as in (7.53)),

then PU = UU⊤. Likewise, let PV be the orthogonal projector from Rn to the

subspace spanned by the r dominant right singular vectors of X, also smooth in

X, so that for X = UΣV ⊤ ∈ Rm×n
r we have PV = V V ⊤. The projectors to the

orthogonal complements are P⊥U = Im−PU and P⊥V = In−PV . Then, we define a

smooth extension of gradf(X) to O in Rm×n with the shorthand Z = gradf̄(X)

as

Ḡ(X) = PUZPV + P⊥U ZPV + PUZP
⊥
V

= PUZPV + ZPV − PUZPV + PUZ − PUZPV

= ZPV + PUZ − PUZPV .

In order to differentiate Ḡ(X), we must determine the differentials of PU and

PV as a function of X. To this end, consider any tangent vector H = UMV ⊤+

UpV
⊤+ UV ⊤p at X ∈ Rm×n

r . We aim to design a smooth curve c on Rm×n
r such

that c(0) = X and c′(0) = H. Then, we can use

DḠ(X)[H] = (Ḡ ◦ c)′(0)

to reach our conclusion.

Taking inspiration from (7.46), pick a smooth curve U(t) on St(m, r) such that

U(0) = U and U ′(0) = UpΣ−1. Similarly, pick a smooth curve V (t) on St(n, r)

such that V (0) = V and V ′(0) = VpΣ−1, and set Σ(t) = Σ + tM . By design,
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this ensures that c(t) = U(t)Σ(t)V (t)⊤ satisfies c(0) = X and c′(0) = H. Define

ṖU—the derivative of PU at X along H—through:

PU(t) = U(t)U(t)⊤, and

ṖU ≜
d

dt
PU(t)

∣∣∣∣
t=0

= U(0)U ′(0)⊤+ U ′(0)U(0)⊤= UΣ−1U⊤p + UpΣ−1U⊤.

Likewise, define ṖV through

PV (t) = V (t)V (t)⊤, and ṖV ≜
d

dt
PV (t)

∣∣∣∣
t=0

= V Σ−1V ⊤p + VpΣ−1V ⊤.

With Ż = Hessf̄(X)[H] for short, this allows us to write

DḠ(X)[H] = ŻPV + ZṖV + ṖUZ + PU Ż − ṖUZPV − PU ŻPV − PUZṖV

= (PU + P⊥U )ŻPV + PU Ż(PV + P⊥V )− PU ŻPV + P⊥U ZṖV + ṖUZP
⊥
V

= PU ŻPV + P⊥U (ŻPV + ZṖV ) + (PU Ż + ṖUZ)P⊥V .

We can now use the fact that Rm×n
r is a Riemannian submanifold of Rm×n

together with (7.52) to claim

Hessf(X)[H] = ProjX
(
DḠ(X)[H]

)
= UM̃V ⊤+ ŨpV

⊤+ UṼ ⊤p , (7.56)

for matrices M̃, Ũp, Ṽp given as in (7.54). Explicitly,

M̃ = U⊤DḠ(X)[H]V = U⊤ŻV,

Ũp = DḠ(X)[H]V − UM̃ = P⊥U

(
ŻV + ZVpΣ−1

)
,

Ṽp = (DḠ(X)[H])⊤U − V M̃⊤= P⊥V

(
Ż⊤U + Z⊤UpΣ−1

)
, (7.57)

where Z = gradf̄(X), Ż = Hessf̄(X)[H], X = UΣV ⊤ and H is represented by

the triplet (M,Up, Vp).

Once more, Z and Ż are matrices in Rm×n whose structure (if any) should be

exploited to compute the products ZVp, Z⊤Up, ŻV and Ż⊤U efficiently.

We may reorganize the above as:

Hessf(X)[H] = ProjX(Hessf̄(X)[H])

+
[
P⊥U gradf̄(X)VpΣ−1

]
V ⊤+ U

[
P⊥V (gradf̄(X))⊤UpΣ−1

]⊤
. (7.58)

This highlights the Riemannian Hessian as the projection of the Euclidean Hes-

sian with additional corrections to Ũp and Ṽp (between brackets): compare with

Corollary 5.47. Notice the Σ−1 factors: these indicate that Riemannian Hessians

are likely to behave poorly close to the “brink”, that is, if some of the top r

singular values of X are near zero.

In closing, we note that the retraction (7.50) is second order because it is the

metric projection retraction (Proposition 5.55).
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Exercise 7.5. Taking inspiration from the discussion of retraction (7.50), pro-

pose an algorithm to compute an SVD representation of a tangent vector. More

precisely: given a point X ∈ Rm×n
r represented by a triplet (U,Σ, V ) as in (7.45)

and a tangent vector Ẋ ∈ TXRm×n
r represented by a triplet (M,Up, Vp) as

in (7.47), explain how you compute a triplet (Ũ , Σ̃, Ṽ ) which is a representation

of Ẋ = Ũ Σ̃Ṽ ⊤, where Ũ , Ṽ have 2r orthonormal columns and Σ̃ has nonnegative

(but not necessarily positive) diagonal entries, with overall complexity linear in

m+ n. (In Manopt, such functions are called tangent2ambient.)

Exercise 7.6. In this section, we have developed representations of points and

tangent vectors on the manifold Rm×n
r which allow for efficient computation.

To develop theory however, it is sometimes more convenient to work with the

points and tangent vectors directly, rather than in terms of particular matrix

decompositions. It is indeed possible to find such expressions.

Let PX and P⊥X denote orthogonal projectors to the image (the range) of X

and to its orthogonal complement, respectively. Thus, if X = UΣV ⊤ is an SVD

of X ∈ Rm×n
r , then

PX = UU⊤, P⊥X = Im − UU⊤, PX⊤ = V V ⊤, P⊥X⊤ = In − V V ⊤.

Verify the following:

TXRm×n
r = {Ẋ ∈ Rm×n : P⊥X ẊP

⊥
X⊤ = 0},

ProjX(Z) = Z − P⊥XZP⊥X⊤

= PXZ + ZPX⊤− PXZPX⊤.

With f̄ a smooth extension of f : Rm×n
r → R, further verify that

gradf(X) = ProjX(gradf̄(X)) and

Hessf(X)[Ẋ] = ProjX

(
Hessf̄(X)[Ẋ] +NẊ⊤(X†)⊤+ (X†)⊤Ẋ⊤N

)
,

where X† is the Moore–Penrose pseudo-inverse of X, and N is shorthand for

the normal part of the gradient of f̄ at X:

N = P⊥X gradf̄(X)P⊥X⊤.

Of course, X is second-order critical for f if and only if gradf(X) = 0 and

Hessf(X) ⪰ 0. The latter is equivalent to the condition that〈
Ẋ,Hessf̄(X)[Ẋ] +NẊ⊤(X†)⊤+ (X†)⊤Ẋ⊤N

〉
≥ 0

for all Ẋ ∈ TXRm×n
r .

7.6 The hyperboloid model

Consider the bilinear map ⟨·, ·⟩M on Rn+1 defined by

⟨u, v⟩M = −u0v0 + u1v1 + · · ·+ unvn = u⊤Jv (7.59)

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

174 Embedded submanifolds: examples

with J = diag(−1, 1, . . . , 1). This is not a Euclidean inner product because J has

one negative eigenvalue, but it is a pseudo-inner product because all eigenvalues

of J are nonzero. It is called the Minkowski pseudo-inner product on Rn+1.

Consider the following subset of Rn+1 (sometimes denoted by Hn):

M =
{
x ∈ Rn+1 : ⟨x, x⟩M = −1 and x0 > 0

}
=
{
x ∈ Rn+1 : x20 = 1 + x21 + · · ·+ x2n and x0 > 0

}
. (7.60)

The equation ⟨x, x⟩M = −1 defines two connected components determined by

the sign of x0. The condition x0 > 0 selects one of them. The defining function

h(x) = ⟨x, x⟩M + 1 has differential

Dh(x)[u] = 2 ⟨x, u⟩M = (2Jx)⊤u.

Notice that x0 ̸= 0 for all x ∈M; hence, 2Jx ̸= 0 for all x ∈M. We deduce that

M is an embedded submanifold of Rn+1 of dimension n with tangent spaces

TxM =
{
u ∈ Rn+1 : ⟨x, u⟩M = 0

}
. (7.61)

For n = 2, the manifold M is one sheet of a hyperboloid of two sheets in R3.

While ⟨·, ·⟩M is only a pseudo-inner product on Rn+1, it is an inner product

when restricted to the tangent spaces of M. Indeed, for all (x, u) ∈ TM,

⟨u, u⟩M = u21 + · · ·+ u2n − u20

= u21 + · · ·+ u2n −
1

x20
(x1u1 + · · ·+ xnun)2

≥ u21 + · · ·+ u2n −
1

x20
(x21 + · · ·+ x2n)(u21 + · · ·+ u2n)

= (u21 + · · ·+ u2n)

(
1− x20 − 1

x20

)
=

1

x20
(u21 + · · ·+ u2n)

≥ 0.

Above, we used in turn: ⟨x, u⟩M = 0 to eliminate u0, then Cauchy–Schwarz, then

⟨x, x⟩M = −1 to claim x21 + · · ·+ x2n = x20 − 1. As a result, ∥u∥M =
√
⟨u, u⟩M is

a well-defined norm on any tangent space. This is despite the fact that ⟨u, u⟩M
can be negative if u does not belong to any tangent space of M.

It is easy to check that the restriction of ⟨·, ·⟩M to each tangent space TxM
defines a Riemannian metric onM, turning it into a Riemannian manifold. With

this Riemannian structure, we callM a hyperbolic space in the hyperboloid model.

The main geometric trait of M with n ≥ 2 is that its sectional curvatures are

constant, equal to −1. Manifolds with that property are called hyperbolic spaces.

There are several other models that share this trait, namely the Beltrami–Klein

model, the Poincaré ball model and the Poincaré half-space model. For more

about curvature and these models, see [Lee18, p62].
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The tangent space TxM is an n-dimensional subspace of Rn+1. Its orthogonal

complement with respect to ⟨·, ·⟩M is the one-dimensional normal space

NxM =
{
v ∈ Rn+1 : ⟨u, v⟩M = 0 for all u ∈ TxM

}
= span(x). (7.62)

Thus, orthogonal projection from Rn+1 to TxM with respect to ⟨·, ·⟩M takes the

form Projx(z) = z+αx with α ∈ R chosen so that z+αx is in TxM, that is, so

that 0 = ⟨x, z + αx⟩M = ⟨x, z⟩M − α. In other words:

Projx(z) = z + ⟨x, z⟩M · x. (7.63)

With this tool in hand, we can construct a useful formula to compute gradients

of functions on M.

Proposition 7.7. Let f̄ : Rn+1 → R be a smooth function on the Euclidean space

Rn+1 with the usual inner product ⟨u, v⟩ = u⊤v. Let f = f̄ |M be the restriction

of f̄ to M with the Riemannian structure as described above. The gradient of f

is related to that of f̄ as follows:

gradf(x) = Projx
(
Jgradf̄(x)

)
, (7.64)

where J = diag(−1, 1, . . . , 1) and Projx is defined by (7.63).

Proof. By definition, gradf(x) is the unique vector in TxM such that Df(x)[u] =

⟨gradf(x), u⟩M for all u ∈ TxM. Since f̄ is a smooth extension of f , we can

compute

Df(x)[u] = Df̄(x)[u]

=
〈
gradf̄(x), u

〉
=
〈
Jgradf̄(x), u

〉
M

=
〈
Jgradf̄(x),Projx(u)

〉
M

=
〈
Projx

(
Jgradf̄(x)

)
, u
〉
M
.

Above, the second line is by definition of gradf̄(x); the third by definition of

⟨·, ·⟩M ; the fourth because u is tangent at x; and the fifth because Projx is self-

adjoint with respect to ⟨·, ·⟩M , as are all orthogonal projectors. The claim follows

by uniqueness.

As a remark, note that Jgradf̄(x) which appears in (7.64) is the gradient of f̄ in

the Minkowski space Rn+1 with pseudo-inner product ⟨·, ·⟩M . See O’Neill [O’N83]

for a general treatment of submanifolds of spaces equipped with pseudo-inner

products.

Second-order tools

For all smooth vector fields V on M and all (x, u) ∈ TM, define the operator

∇ as

∇uV = Projx(DV̄ (x)[u]), (7.65)
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where V̄ is any smooth extension of V to a neighborhood of M in Rn+1 and

DV̄ (x)[u] is the usual directional derivative. It is an exercise to check that∇ is the

Riemannian connection forM. It is instructive to compare this with Theorem 5.9

where we make the same claim under the assumption that the embedding space

is Euclidean. Here, the embedding space is not Euclidean, but the result stands.

Again, see O’Neill [O’N83] for a general treatment.

The covariant derivative D
dt (induced by ∇) for a smooth vector field Z along

a smooth curve c : I →M is given by

D

dt
Z(t) = Projc(t)

(
d

dt
Z(t)

)
, (7.66)

where d
dtZ(t) is the usual derivative of Z understood as a map from I to Rn+1—

this makes use of the fact that Z(t) ∈ Tc(t)M ⊂ Rn+1. Compare this with

Proposition 5.31.

It is an exercise to check that, for arbitrary (x, u) ∈ TM,

c(t) = Expx(tu) ≜ cosh(∥tu∥M )x+
sinh(∥tu∥M )

∥tu∥M
tu

= cosh(t∥u∥M )x+
sinh(t∥u∥M )

∥u∥M
u (7.67)

defines the unique geodesic on M such that c(0) = x and c′(0) = u. Notice

that this is defined for all t: Exp is a second-order retraction defined on the

whole tangent bundle (see also Section 10.2). Compare with the geodesics on the

sphere, Example 5.37.

We proceed to construct a formula for the Hessian of a function on M based

on the gradient and Hessian of a smooth extension.

Proposition 7.8. (Continued from Proposition 7.7.) The Hessian of f is related

to that of f̄ as follows:

Hessf(x)[u] = Projx
(
JHessf̄(x)[u]

)
+
〈
x, Jgradf̄(x)

〉
M
· u, (7.68)

where J = diag(−1, 1, . . . , 1) and Projx is defined by (7.63).

Proof. Consider the following smooth vector field in Rn+1:

Ḡ(x) = Jgradf̄(x) +
〈
Jgradf̄(x), x

〉
M
· x.

This is a smooth extension of gradf fromM to Rn+1. Thus, for all (x, u) ∈ TM
we have

Hessf(x)[u] = ∇ugradf

= Projx
(
DḠ(x)[u]

)
= Projx

(
JHessf̄(x)[u] + qx+

〈
Jgradf̄(x), x

〉
M
· u
)

= Projx
(
JHessf̄(x)[u]

)
+
〈
Jgradf̄(x), x

〉
M
· u,

where q is the derivative of
〈
Jgradf̄(x), x

〉
M

at x along u—and we do not need
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to compute it since qx is in the normal space, hence it vanishes through the

projector.

Exercise 7.9. Check that ⟨·, ·⟩M indeed defines a Riemannian metric on M.

Verify that ∇ (7.65) is the Riemannian connection for M, that D
dt (7.66) is

the covariant derivative induced by ∇ and that c(t) (7.67) is a geodesic on M
satisfying c(0) = x and c′(0) = u (that this is the unique such geodesic is a

consequence of general results, see Section 10.2).

7.7 Manifolds defined by h(x) = 0

Let h : E → Rk be a smooth function on a Euclidean space of dimension strictly

larger than k with inner product ⟨·, ·⟩ and induced norm ∥ · ∥. If Dh(x) has full

rank k for all x such that h(x) = 0, the set

M = {x ∈ E : h(x) = 0} (7.69)

is an embedded submanifold of E of dimension dim E − k. We assume so here. In

contrast with Definition 3.10, we require the whole manifold to be defined with

a single defining function h. Notwithstanding, everything below still holds if M
is only locally defined by h. We focus on the case of a global h for notational

simplicity and because it covers several of the examples we have encountered.

With the notation h(x) = (h1(x), . . . , hk(x))
⊤

to highlight the k constraint

functions hi : E → R, we can spell out the linear map

Dh(x)[v] =
(
⟨gradh1(x), v⟩ , . . . , ⟨gradhk(x), v⟩

)⊤
(7.70)

and its adjoint

Dh(x)∗[α] =

k∑
i=1

αigradhi(x). (7.71)

The tangent spaces are given by

TxM = ker Dh(x) = {v ∈ E : ⟨gradhi(x), v⟩ = 0 for all i}. (7.72)

The fact that Dh(x) has full rank k means that the gradients of the constraints

at x are linearly independent. In other words, they form a basis for the normal

space at x:

NxM = (ker Dh(x))
⊥

= span
(
gradh1(x), . . . , gradhk(x)

)
. (7.73)

Let Projx : E → TxM denote orthogonal projection from E to TxM. Then, for

any vector v in E there exists a unique choice of coefficients α ∈ Rk such that

v = Projx(v) + Dh(x)∗[α]. (7.74)
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This decomposes v into its tangent and normal parts at x. Explicitly, α is the

unique solution to the following least-squares problem:

α = arg min
α∈Rk

∥v −Dh(x)∗[α]∥2 = (Dh(x)∗)
†

[v],

where the dagger † denotes Moore–Penrose pseudo-inversion, so that

Projx(v) = v −Dh(x)∗
[
(Dh(x)∗)

†
[v]
]
. (7.75)

This formula is expected since im Dh(x)∗ = (ker Dh(x))⊥ = NxM.

One possible retraction for M is metric projection as studied in Section 5.12.

It relies on the Euclidean metric to define:

Rx(v) = arg min
y∈E

∥x+ v − y∥ subject to h(y) = 0. (7.76)

This is well defined for small enough v, but Rx(v) may not be uniquely defined

for all v. It may be difficult to compute in general.

Let M be a Riemannian submanifold of E . Then, R (7.76) is a second-order

retraction. Given a smooth function f̄ : E → R and its restriction f = f̄ |M, the

Riemannian gradient follows from (7.75) as

gradf(x) = Projx(gradf̄(x)) = gradf̄(x)−
k∑

i=1

λi(x)gradhi(x), (7.77)

with λ(x) = (Dh(x)∗)
†

[gradf̄(x)].

Second-order tools

WithM as a Riemannian submanifold of the Euclidean space E , covariant deriva-

tives (∇ and D
dt ) coincide with the usual vector field derivatives (of smooth

extensions), followed by orthogonal projection to tangent spaces (Theorem 5.9,

Proposition 5.31). We use this to determine the Riemannian Hessian of f = f̄ |M.

Notice that

λ(x) = (Dh(x)∗)†[gradf̄(x)] (7.78)

is a smooth function on the open subset of E consisting of all points x where

Dh(x) has full rank k. Thus, we can differentiate gradf(x) (7.77) as follows:

Dgradf(x)[v] = Hessf̄(x)[v]

−
k∑

i=1

Dλi(x)[v] · gradhi(x)−
k∑

i=1

λi(x)Hesshi(x)[v].

Then, since Hessf(x)[v] is nothing but the orthogonal projection of Dgradf(x)[v]

to TxM and since each gradhi(x) is orthogonal to TxM, it follows that

Hessf(x)[v] = Projx

(
Hessf̄(x)[v]−

k∑
i=1

λi(x)Hesshi(x)[v]

)
. (7.79)
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This can be summarized with pleasantly symmetric identities:

gradf(x) = gradf̄(x)−
k∑

i=1

λi(x)gradhi(x), (7.80)

Hessf(x) = Projx ◦

(
Hessf̄(x)−

k∑
i=1

λi(x)Hesshi(x)

)
◦ Projx, (7.81)

with λ(x) as defined in (7.78), and with the understanding that the linear map on

the right-hand side of (7.81) is restricted to TxM. Notice that λ(x) depends on

gradf̄(x) only through its normal component: compare with the Hessian formulas

in Section 5.11. The work above easily yields an expression for the Weingarten

map (5.38) of M.

Exercise 7.10. Consider the equality constrained optimization problem

min
x∈E

f̄(x) subject to h(x) = 0, (7.82)

where f̄ : E → R and h : E → Rk are smooth on a Euclidean space E with dim E >
k. The Lagrangian function L : E × Rk → R for this problem is:

L(x, λ) = f̄(x)− ⟨λ, h(x)⟩ .

A classical result is that if x ∈ E is such that Dh(x) has rank k and x is a local

minimizer for (7.82) then x satisfies KKT conditions of order one and two;

explicitly: there exists a unique λ ∈ Rk such that

1. gradL(x, λ) = 0, and

2. ⟨HessxL(x, λ)[v], v⟩ ≥ 0 for all v ∈ ker Dh(x),

where the Hessian of L is taken with respect to x only. These are the classical

first- and second-order necessary optimality condition for (7.82).

The full-rank requirement on Dh(x) is known as the linear independence con-

straint qualification (LICQ), because it amounts to the requirement that the gra-

dients of the constraints at x be linearly independent.

We know M = {x ∈ E : h(x) = 0} is an embedded submanifold of E if Dh(x)

has rank k for all x ∈ M. Assuming this holds, show that x ∈ E satisfies the

first-order KKT conditions if and only if x is in M and gradf(x) = 0, where

f = f̄ |M is restricted toM equipped with the Riemannian submanifold structure.

Additionally, show that x satisfies both first- and second-order KKT conditions

if and only if x ∈M, gradf(x) = 0 and Hessf(x) ⪰ 0.

This confirms that the classical necessary optimality conditions are equivalent

to the conditions we established in Sections 4.2 and 6.1 when LICQ holds globally.

(Of course, this reasoning can also be applied locally around any point x.) This

gives KKT conditions and Lagrange multipliers a geometric interpretation. These

considerations form part of the basis of Luenberger’s seminal paper [Lue72] which

started the field of optimization on manifolds.
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7.8 Notes and references

Much of the material in this chapter is standard, though some of it rarely appears

in as much detail.

For the Stiefel manifold in particular, we follow mostly [AMS08].

The construction of tools for optimization on Rm×n
r as a Riemannian subman-

ifold of Rm×n follows work by Vandereycken [Van13]. Similarly, one can derive

tools for optimization over fixed-rank tensors in tensor train (TT) and Tucker

format [UV13, KSV14, HS18, UV20]. Fine properties of curves generated by

the metric projection retraction to the real algebraic variety of matrices of rank

upper-bounded by r appear in [Lev20, Thm. 3.1, Cor. 3.3]. One popular tech-

nique to optimize over matrices of rank up to r (rather than equal to r) is to

set X = AB⊤ and to optimize over the factors A ∈ Rm×r, B ∈ Rn×r (this is an

over-parameterization since the factorization is not unique). There exist other

such smooth over-parameterizations of the variety of bounded rank matrices, see

for example [LKB22b].

Applications of optimization on hyperbolic space in machine learning include

hierarchical embeddings [NK17, JMM19, KMU+20].

Here are a few other manifolds of interest for applications:

• The Stiefel manifold with the canonical metric [EAS98];

• The Grassmann manifold Gr(n, p) of subspaces of dimension p in Rn. It can be

viewed as a quotient manifold of St(n, p), or as an embedded submanifold

of Rn×n where each subspace is identified with an orthogonal projector of

rank p: see the discussion around eq. (9.90) in Section 9.16;

• Matrices with positive entries (see Section 11.6);

• Positive definite matrices (see Section 11.7);

• Positive semidefinite matrices with a fixed rank [VAV09, JBAS10, MA20]—see

also Example 9.57;

• Multinomial manifolds; the simplex (Exercise 3.65); stochastic matrices [DH19];

• The rigid motion group (special Euclidean group) SE(n): this is a manifold as

the product of the manifolds Rn and SO(n), providing a parameterization

of all possible rigid motions in Rn as a combination of a translation and a

rotation (to add reflections, use O(n) instead of SO(n));

• The essential manifold for camera pose descriptions (epipolar constraint be-

tween projected points in two perspective views) [TD14];

• Shape space as the manifold of shapes in R2,R3, . . . (see [FCPJ04] or [MS20]

and many references therein).

At times, the search space of an optimization problem in a linear space E
is defined through two sets of equality constraints, h(x) = 0 and g(x) = 0, in

such a way that {x : h(x) = 0} defines an embedded submanifold of E but the

intersection {x : h(x) = 0 and g(x) = 0} does not. Then, it may be beneficial to

optimize over the manifold {x : h(x) = 0} and to move the constraint g(x) = 0 to

the cost function as a penalty. This can be done in several ways, for example using
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a quadratic penalty—f(x)+λ∥g(x)∥2—or using a type of augmented Lagrangian

method [LB20]. One can also attempt to handle inequality constraints in this

fashion.
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8 General manifolds

In this chapter, we consider the general definition of a (smooth) manifold. Follow-

ing Brickell and Clark [BC70], we initially give a (too) broad definition, devoid

of topological considerations. To avoid confusion, we refer to these objects as

manifolds*, with a star. Promptly after that, in order to exclude topological cu-

riosities that are of little interest to optimization, we restrict the definition and

call the remaining objects manifolds. This final definition is standard.

Of course, embedded submanifolds of linear spaces—as we have considered

so far—are manifolds: we shall verify this. Interestingly, the general perspective

enables us to consider new manifolds. In particular, we touch upon the Grass-

mann manifold which consists of all linear subspaces of a given dimension in

some linear space. Chapter 9 discusses such manifolds in more depth.

We then revisit our geometric toolbox to generalize smooth maps, tangent

spaces, vector fields, retractions, Riemannian metrics, gradients, connections,

Hessians, etc. By design, Chapters 4 and 6 regarding optimization algorithms

apply verbatim to the general setting.

8.1 A permissive definition

Given a set M (without any particular structure so far), the first step toward

defining a smooth manifold structure on M is to model M after Rd. To do so, we

introduce the concept of chart. A chart establishes a one-to-one correspondence

between a subset of M and an open subset of Rd. This allows us to leverage the

powerful tools we have at our disposal on Rd to work on M .

As the terms chart and (later) atlas suggest, it helps to think of M as the

Earth (a sphere), of charts as two-dimensional, flat maps of parts of the Earth,

and of atlases as collections of maps that cover the Earth.

Definition 8.1. A d-dimensional chart on a set M is a pair (U , φ) consisting

of a subset U of M (called the domain) and a map φ : U → Rd such that:

1. φ(U) is open in Rd, and

2. φ is invertible between U and φ(U).

The numbers (φ(x)1, . . . , φ(x)d) are the coordinates of the point x ∈ U in the

chart φ. The map φ−1 : φ(U)→ U is a local parameterization of M .
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f

φ(U)

U

φ−1

f̃ = f ◦ φ−1

RM

φ(U) ⊆ Rd

M R

φ−1

f̃

f

Figure 8.1 Illustration and matching commutative diagram for eq. (8.1) expressing a
real function f on a set M through a chart (U , φ).

When the domain is clear, we often call φ itself a chart. Given a point x in

M , we say φ is a chart around x if x is in the domain of φ.

For a function from (an open subset of) Rd to R, we readily have a notion of

smoothness: it is smooth at x if it is infinitely differentiable at x, in the usual

sense. One of the goals of differential geometry is to generalize this notion to

functions f : M → R on a more general class of sets M . Let (U , φ) be a d-

dimensional chart around x ∈M . Then, as illustrated in Figure 8.1,

f̃ = f ◦ φ−1 : φ(U)→ R (8.1)

is called a coordinate representative of f in this chart. Since φ(U) is open in Rd,

it makes sense to talk of differentiability of f̃ . In particular, we may want to

define that, with respect to this chart, f is smooth at x if f̃ is smooth at φ(x).

Two d-dimensional charts (U , φ) and (V, ψ) on M around x are compatible

if they yield the same conclusions regarding smoothness of functions at x. Re-

stricted to the appropriate domains, the coordinate representatives

f̃ = f ◦ φ−1 and f̂ = f ◦ ψ−1

are related by

f̃ = f̂ ◦ (ψ ◦ φ−1) and f̂ = f̃ ◦ (φ ◦ ψ−1).

Thus, the differentiability properties of f̃ and f̂ are the same if the domains

involved are open in Rd and if ψ ◦ φ−1 and its inverse are smooth. This is made

precise in the following definition illustrated by Figure 8.2. There, we could allow

non-overlapping charts to have different dimensions, but this serves little purpose

in optimization. Accordingly, we require all charts to have the same dimension.
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M

Rd Rd

U

V

φ(U)

ψ(V)

φ−1 ψ

ψ ◦ φ−1

Figure 8.2 Overlapping charts (U , φ) and (V, ψ) on a manifold of dimension d. The
darker area on the manifold corresponds to the intersection U ∩V of the chart domains.
In the coordinate spaces (bottom), the darker areas correspond to the open images
φ(U∩V) and ψ(U∩V): the coordinate change map ψ◦φ−1 is a diffeomorphism between
these two.

Definition 8.2. Two charts (U , φ) and (V, ψ) of M are compatible if they have

the same dimension d and either U ∩ V = ∅, or U ∩ V ≠ ∅ and:

1. φ(U ∩ V) is open in Rd;

2. ψ(U ∩ V) is open in Rd; and

3. ψ ◦ φ−1 : φ(U ∩ V)→ ψ(U ∩ V) is a smooth invertible function whose inverse

is also smooth (i.e., it is a diffeomorphism, see Definition 3.11).

A collection of charts is compatible if each pair of charts in that collection is

compatible. Compatible charts that cover the whole set M form an atlas.

Definition 8.3. An atlas A on a set M is a compatible collection of charts on

M whose domains cover M . In particular, for every x ∈ M , there is a chart

(U , φ) ∈ A such that x ∈ U .

Given an atlas A, it is an exercise to show that the collection A+ of all charts

of M which are compatible with A is itself an atlas of M , called a maximal atlas.
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U ⊆ M V ⊆ M′

φ(U) ⊆ Rd
ψ(V) ⊆ Rd′

F̃

φ−1

F

ψ

Figure 8.3 Commutative diagram for Definition 8.5 expressing a map through charts.

Thus, any atlas uniquely defines a maximal atlas: we use the latter to define

manifolds* (the star is a reminder that topological concerns are delayed to a

later section.) We say that the maximal atlas defines a smooth structure on M .

Definition 8.4. A manifold* is a pair M = (M,A+), consisting of a set M

and a maximal atlas A+ on M . The dimension ofM is the dimension of any of

its charts. When the atlas is clear from context, we often conflate notation for

M and M .

We can now define smoothness of maps between manifolds*. Below, smooth-

ness of F̃ is understood in the usual sense for maps between open subsets of

linear spaces (see Section 3.1). See also Figure 8.3.

Definition 8.5. A map F : M→M′ is smooth at x ∈M if

F̃ = ψ ◦ F ◦ φ−1 : φ(U)→ ψ(V)

is smooth at φ(x), where (U , φ) is a chart of M around x and (V, ψ) is a chart

of M′ around F (x). The map F is smooth if it is smooth at every point x in

M. We call F̃ a coordinate representative of F .

Remark 8.6. By extension, we say a map F : M → M′ is k times (contin-

uously) differentiable if its coordinate representatives are so. Smoothness cor-

responds to k = ∞. Later, we endow M with a Riemannian metric so that

f : M → R is (continuously) differentiable if and only if it has a (continuous)

Riemannian gradient, and f is twice (continuously) differentiable if and only if

it has a (continuous) Riemannian Hessian.

It is an exercise to verify that Definition 8.5 is independent of the choice of

charts, and that composition preserves smoothness.

Example 8.7. Let E be a linear space of dimension d. We can equip E with a

smooth structure as follows: choose a basis for E; set U = E and let φ(x) ∈ Rd

denote the coordinates of x in the chosen basis; the maximal atlas generated by

(U , φ) yields the usual smooth structure on E. For example, if E = Rd, we can

choose φ(x) = x. By default, we always use this smooth structure on Rd.

Example 8.8. Let M be an open subset of a linear space E of dimension d.
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With the same chart as in the previous example, only restricted to U = M , it

is clear that φ(M) is open in Rd, so that (U , φ) is a chart for M , and it covers

all of M hence it defines an atlas on M . We conclude that any open subset of a

linear space is a manifold* with a natural atlas. By default, we always use this

smooth structure on open subsets of linear spaces.

Example 8.9. The local parameterization φ−1 : φ(U)→M associated to a chart

(U , φ) is a smooth map. Likewise, with the previous example in mind, the chart

φ : U → Rd is a smooth map. Indeed, in both cases, we can arrange for their

coordinate representative to be the identity map.

Example 8.10. Consider the unit circle, S1 = {x ∈ R2 : x21 + x22 = 1}. One

possible atlas is made of four charts, each defined on a half circle—dubbed North,

East, South and West—as follows:

UN = {x ∈ S1 : x2 > 0}, φN (x) = x1,

UE = {x ∈ S1 : x1 > 0}, φE(x) = x2,

US = {x ∈ S1 : x2 < 0}, φS(x) = x1,

UW = {x ∈ S1 : x1 < 0}, φW (x) = x2.

It is clear that these are one-dimensional charts. For example, checking the North

chart we find that φN : UN → φN (UN ) is invertible and φN (UN ) = (−1, 1) is

open in R, as required. Furthermore, these charts are compatible. For example,

checking for the North and East charts, we find that:

1. UN ∩ UE = {x ∈ S1 : x1 > 0 and x2 > 0};
2. φN (UN ∩ UE) = (0, 1) is open;

3. φE(UN ∩ UE) = (0, 1) is open; and

4. φ−1E (z) = (
√

1− z2, z), so that (φN ◦φ
−1
E )(z) =

√
1− z2, which is smooth and

smoothly invertible on (0, 1).

The charts also cover the whole set S1, so that together they form an atlas A for

S1. As a result, (S1,A+) is a manifold*.

Earlier, using Definition 3.10, we called S1 an embedded submanifold of R2.

In Section 8.3, we argue more generally that embedded submanifolds of linear

spaces (as per that early definition) are manifolds*.

Example 8.11. We now discuss a new example: the (n − 1)-dimensional real

projective space, RPn−1. This is the set of lines through the origin (that is, one-

dimensional linear subspaces) of Rn. To any nonzero point x ∈ Rn, we associate

a linear subspace as follows:

π : Rn\{0} → RPn−1 : x 7→ π(x) = {αx : α ∈ R}.

The classical atlas for RPn−1 is built from the following charts. For a given i in

{1, . . . , n}, consider the following subset of RPn−1:

Ui = {π(x) : x ∈ Rn and xi ̸= 0}.
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This is the set of lines through the origin that are not parallel to the plane Pi

defined by xi = 1. In other words, this is the set of lines through the origin that

intersect that plane. This allows us to define the map φi on the domain Ui into

Rn−1, as the coordinates of the intersection of the line π(x) with the plane Pi:

φi(π(x)) =

(
x1
xi
, . . . ,

xi−1
xi

,
xi+1

xi
, . . . ,

xn
xi

)
.

The map φi is indeed well defined because the right-hand side depends only on

π(x) and not on x itself—this is key. The range φi(Ui) is all of Rn−1 (since

there exists a line through the origin and any point of Pi), hence it is open.

Furthermore, φi is invertible:

φ−1i (z1, . . . , zi−1, zi+1, . . . , zn) = π(z1, . . . , zi−1, 1, zi+1, . . . , zn).

Thus, {(Ui, φi)}i=1,...,n are charts for RPn−1. They cover RPn−1 since no line

can be parallel to all planes P1, . . . , Pn. Thus, it remains to verify that the charts

are compatible. For all pairs i ̸= j, consider the following:

1. Ui ∩ Uj = {π(x) : x ∈ Rn, xi ̸= 0 and xj ̸= 0};
2. φi(Ui∩Uj) and φj(Ui∩Uj) are both subsets of Rn−1 defined by one coordinate

being nonzero: they are indeed open;

3. Without loss of generality, consider i < j. Then,

(φj ◦ φ−1i )(z1, . . . , zi−1, zi+1, . . . , zn)

=

(
z1
zj
, . . . ,

zi−1
zj

,
1

zj
,
zi+1

zj
, . . . ,

zj−1
zj

,
zj+1

zj
, . . . ,

zn
zj

)
is indeed smooth on the appropriate domain, and similarly for φi ◦ φ

−1
j .

As a result, the charts form an atlas for RPn−1, turning it into a manifold*.

In Chapter 9, we discuss a generalization of this idea: the Grassmann manifold,

which consists of all linear subspaces of a given dimension.

It is important to note that, in general, a set M may admit two (or more)

distinct atlases A and A′ that are not compatible (their union is not an atlas),

so that their corresponding maximal atlases are distinct. These two atlases then

lead to different smooth structures on M , which shows that it is not sufficient

to specify the set M : an atlas must also be specified—see Exercise 8.14.

Exercise 8.12. Given an atlas A for a set M , show that the collection A+ of

all charts of M which are compatible with A is a well-defined atlas of M .

Exercise 8.13. Show Definition 8.5 is independent of the choice of charts. Fur-

thermore, show that if F : M→M′ and G : M′ →M′′ are smooth, then their

composition G ◦ F is smooth. More broadly, establish the smoothness rules from

Exercises 3.37, 3.38, 3.39 and 3.40 for general manifolds. We study the claims

about differentials later in Exercise 8.40.
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Exercise 8.14. For the set M = R, consider the two following charts, both

defined on all of M : φ(x) = x and ψ(x) = 3
√
x. Verify that these are indeed

charts, and that they are not compatible. Let A+ be the maximal atlas generated

by φ and let M = (M,A+) denote R with the resulting smooth structure (this

is the usual structure on R). Likewise, let B+ be the maximal atlas generated by

ψ and write M′ = (M,B+). Give an example of a function f : R → R which is

not smooth as a function from M to R yet which is smooth as a function from

M′ to R. What about the other way around?

8.2 The atlas topology, and a final definition

In the above section, we have equipped a set M with a smooth structure. This

affords us the notion of smooth functions between properly endowed sets. As we

now show, this structure further induces a topology on M , that is, a notion of

open sets, called the atlas topology. In turn, having a topology on M is useful in

optimization to define concepts such as local optima and convergence.

We start with a few reminders. After discussing two desirable properties of

topologies, we restrict the definition of manifold to those whose atlas topology

enjoy those properties.

The usual notion of open sets in Rd can be abstracted to arbitrary sets as

topologies. Essentially, in defining a topology, we declare certain subsets to be

open, while making sure that certain basic properties hold, as specified below.

Definition 8.15. A topology on a set M is a collection T of subsets of M with

the following properties. A subset of M is called open if and only if it is in T ,

and:

1. M and ∅ are open;

2. The union of any collection of open sets is open; and

3. The intersection of any finite collection of open sets is open.

A subset C of M is called closed if it is the complement of an open set in M ,

that is, M\C is open. In particular, M and ∅ are both open and closed. Some

subsets of M may be neither open nor closed.

A topological space is a pair (M, T ) consisting of a set with a topology. Given

two topological spaces (M, T ), (M ′, T ′) and a map F : M →M ′, we define that

F is continuous if for every open set O′ in M ′ the pre-image

F−1(O′) = {x ∈M : F (x) ∈ O′}

is open in M .

In defining a topology on a manifold* M = (M,A+), it is natural to require

that the chart functions be continuous in that topology. In particular, since for

any chart (U , φ) of M we have that φ(U) is open in Rd (assuming dimM = d),

we should require that φ−1(φ(U)) = U be open, that is, chart domains should be
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deemed open. It is easy to check with the following definitions that this collection

of sets forms a basis for a topology consisting in the collection of all unions of

chart domains [BC70, Prop. 2.4.2].

Definition 8.16. A collection B of subsets of a set M is a basis for a topology

on M if

1. For each x ∈M , there is a set B ∈ B such that x ∈ B; and

2. If x ∈ B1 ∩ B2 for B1, B2 ∈ B, there exists B3 ∈ B such that x ∈ B3 and

B3 ⊆ B1 ∩B2.

The topology T defined by B is the collection of all unions of elements of B.

In the following definition, it is important to consider the maximal atlas as

otherwise we may miss some open sets.

Definition 8.17. Given a maximal atlas A+ on a set M , the atlas topology on

M states that a subset of M is open if and only if it is the union of a collection

of chart domains.

A subset S of a topological space T inherits a topology called the subspace

topology : it consists in the collection of all open sets of T intersected with S.

By default, when we consider a subset of a topological space, we tacitly equip it

with the subspace topology. With this in mind, we get the following convenient

fact, true by design [BC70, Prop. 2.4.3].

Proposition 8.18. In the atlas topology, any chart φ : U → φ(U) is continuous

and its inverse is also continuous (i.e., it is a homeomorphism).

A welcome consequence of the latter proposition is that, with the atlas topolo-

gies on manifolds* M and M′, any function F : M → M′ which is smooth in

the sense of Definition 8.5 is also continuous in the topological sense [BC70,

Prop. 2.4.4].

One of the reasons we need to discuss topologies in some detail is that, in

general, atlas topologies may lack certain desirable properties: we must require

them explicitly. The first such property is called Hausdorff (or T2).

Definition 8.19. A topology on a set M is Hausdorff if all pairs of distinct

points have disjoint neighborhoods, that is, for all x, x′ distinct in M there exist

open sets O and O′ such that x ∈ O, x′ ∈ O′ and O ∩O′ = ∅.

Recall that a sequence x0, x1, . . . on a topological space is said to converge to x

if, for every neighborhood U of x, there exists an index k such that xk, xk+1, . . .

are all in U : we then say that the sequence is convergent and that x is its limit.

Crucially for optimization, in a Hausdorff topology, any convergent sequence of

points has a unique limit [Lee12, p600]. This may not be the case otherwise

(consider for example the trivial topology, in which the only open sets are the

empty set and the set itself.)

The second desirable property is called second-countable.
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Definition 8.20. A topology is second-countable if there is a countable basis

for its topology.

At last, we can give a proper definition of manifolds.

Definition 8.21. A manifold is a pair M = (M,A+) consisting of a set M

and a maximal atlas A+ on M such that the atlas topology is Hausdorff and

second-countable.

A manifold* is indeed not always a manifold: the atlas topology is not always

Hausdorff (see Examples 3.2.1–3 in [BC70]), and it may also not be second-

countable (see Example 3.3.2 in the same reference). The following proposition

gives a convenient way of ensuring a (not necessarily maximal) atlas induces a

suitable topology [Lee12, Lem. 1.35].

Proposition 8.22. Let A be an atlas for the set M . Assume both:

1. For all x, y ∈ M distinct, either both x and y are in the domain of some

chart, or there exist two disjoint chart domains U and V such that x ∈ U and

y ∈ V; and

2. Countably many of the chart domains suffice to cover M .

Then, the atlas topology of A+ is Hausdorff (by property 1) and second-countable

(by property 2), so that M = (M,A+) is a manifold.

The following proposition provides yet another way of assessing the atlas topol-

ogy [BC70, Prop. 3.1.1]. We use it in Section 8.3. The “only if” direction is a

direct consequence of Proposition 8.18.

Proposition 8.23. Let the set M be equipped with both a maximal atlas A+

and a topology T . The atlas topology on M coincides with T if and only if the

charts of one atlas of M in A+ are homeomorphisms with respect to T .

Open subsets of manifolds are manifolds in a natural way by restriction of

the chart domains, called open submanifolds. Unless otherwise specified, when

working with an open subset of a manifold (often, a chart domain), we implicitly

mean to use the open submanifold geometry. See also Section 8.14 for further

facts about open submanifolds.

Definition 8.24. Let M be a manifold and let V be open in M in the atlas

topology. For any chart (U , φ) ofM such that U∩V ̸= ∅, build the chart (U∩V, φ)

on V. The collection of these charts forms an atlas for V, turning it into a

manifold in its own right. Equipped with this atlas, we call V an open submanifold

of M.

Example 8.25. In all examples from Section 8.1, we have constructed atlases

with a finite number of charts. Hence, by Proposition 8.22, their atlas topologies

are second-countable. Furthermore, for linear spaces and open subsets of linear

spaces, we have used only one chart, so that the same proposition guarantees the
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resulting topologies are Hausdorff. We conclude that linear spaces and their open

subsets are manifolds.

Part of the motivation for the topological restrictions introduced in this section

is that a manifold* carries partitions of unity if (and essentially only if) the

topology is as prescribed—see [BC70, §3.4]. Partitions of unity are useful in

particular to show existence of Riemannian metrics (see Section 8.9). In short:

every manifold can be turned into a Riemannian manifold [Lee12, Prop. 13.3].

We close this section with the definition of compact manifolds, for which we

first recall a few topological notions. (See also Theorem 10.8.)

Definition 8.26. Let M = (M, T ) be a topological space (for example, a man-

ifold with its atlas topology). An open cover of a subset S of M is a collection

of open sets of M whose union contains S. We say S is compact if, for each

open cover of S, one can select a finite number of open sets from that open cover

whose union still contains S (called a finite subcover). The space M itself is

compact if S = M is compact.

Definition 8.27. A compact manifold is a manifold which is compact as a

topological space with its atlas topology.

Example 8.28. This example anticipates concepts from Section 8.3. An embed-

ded submanifold M of a Euclidean space E is a compact manifold if and only if

M is a compact subset of E, that is, M is closed and bounded as a subset of E.

This is because M inherits its topology from E. In particular, the unit sphere,

the Stiefel manifold, the orthogonal group and the special orthogonal group as

discussed in Chapter 7 all are compact manifolds.

Exercise 8.29. To show that the circle S1 and the real projective space RPn−1

are manifolds, it remains to verify that their atlases (as constructed in Sec-

tion 8.1) induce Hausdorff topologies. Do this using Proposition 8.22. You may

need to add a few charts to the atlases.

Exercise 8.30. Check that Definition 8.24 is legitimate, that is, show that the

proposed charts are indeed charts, that they form an atlas, and that the atlas

topology is Hausdorff and second-countable.

Exercise 8.31. Let M and N be two manifolds. For any pair of charts (U , φ)

and (V, ψ) of M and N , respectively, consider the map ϕ defined on U × V
by ϕ(x, y) = (φ(x), ψ(y)). Show that these maps define a smooth structure on

the product space M× N , called the product manifold structure. Deduce that

dim(M×N ) = dimM+ dimN , and that open subsets of the product manifold

are unions of products of open subsets of M and N .
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8.3 Embedded submanifolds are manifolds

All the way back in Chapter 3, we defined embedded submanifolds of linear

spaces with Definition 3.10. In this section, we show that all sets we have thus

far called embedded submanifolds are indeed manifolds. To do so, we equip them

with an atlas, and we confirm that the corresponding atlas topology coincides

with the topology we have been using so far. In Section 8.14, we shall also see

that our early notion of smooth maps between embedded submanifolds of linear

spaces agrees with the more general notion of smooth maps between manifolds.

Proposition 8.32. A subset M of a linear space E which is an embedded sub-

manifold as per Definition 3.10 admits an atlas which makes it a manifold in

the sense of Definition 8.21. The corresponding atlas topology coincides with the

subspace topology as given in Definition 3.21.

Proof. Let d = dim E and n = dimM = d− k. The claim has two parts.

Part 1.
We construct an atlas for M to make it a manifold*. Let x ∈ M be arbitrary.

By Theorem 3.12, there exists a neighborhood U of x in E , an open set W in

Rd and a diffeomorphism F : U → W such that F (M ∩ U) = E ∩ W where

E = {y ∈ Rd : yn+1 = · · · = yd = 0} is a linear subspace of Rd. We use F to

propose a tentative chart (U , φ) for M around x. Let

U =M∩ U and φ : U → φ(U) : y 7→ φ(y) = trim(F (y)), (8.2)

where trim: Rd → Rn discards the last k components of a vector. This map is

invertible since the k entries removed by trim are identically zero on U , so that

φ−1(z) = F−1(zpad(z)), (8.3)

where zpad: Rn → Rd pads a vector with k zeros at the end. The composition

trim ◦ zpad is identity on Rn while zpad ◦ trim is identity on E. Notice that W

is open in Rd and

φ(U) = trim(F (M∩ U)) = trim(E ∩W ).

One can then verify that φ(U) is open in Rn using standard properties of the

topologies on Rn and Rd. Thus, (U , φ) is an n-dimensional chart for M around

x. Such a chart can be constructed around every point x ∈M, so that we cover

the whole set. The last step is to verify that the charts are compatible. To this

end, consider two charts as above, (U , φ) and (V, ψ), with overlapping domains

and associated diffeomorphisms F : U → F (U) ⊆ Rd and G : V → G(V ) ⊆ Rd.

Then, the change of coordinates map is

ψ ◦ φ−1 = trim ◦G ◦ F−1 ◦ zpad,
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from φ(U ∩ V) to ψ(U ∩ V). These domains are open because U ∩ V is open,

hence so are F (U ∩ V ) and G(U ∩ V ) and we have

φ(U ∩ V) = trim(E ∩ F (U ∩ V )) , and

ψ(U ∩ V) = trim(E ∩G(U ∩ V )) .

To check the first identity, verify that F (U ∩V) = E ∩F (U ∩V ) as follows, then

compose with trim:

• F (U ∩ V) ⊆ E ∩ F (U ∩ V ) as F (U ∩ V) = F (M∩ U ∩ V ) ⊆ F (U ∩ V ) and

F (U ∩ V) ⊆ F (U) = E ∩ F (U) ⊆ E, and

• E∩F (U ∩V ) ⊆ F (U ∩V) since for all y ∈ E∩F (U ∩V ) there exists x ∈ U ∩V
such that F (x) = y, hence x is in U and F (x) is in E, which implies that

x is in U =M∩U ; since x is also in V we deduce that x is in U ∩V, hence

y is in F (U ∩ V).

Overall, we find that the change of coordinates map ψ ◦ φ−1 is smooth (by

composition) and its inverse φ ◦ ψ−1 = trim ◦F ◦ G−1 ◦ zpad is also smooth,

so that the charts are compatible. This finishes the construction of our atlas,

turning M into a manifold*.

Part 2.
That the atlas and subspace topologies coincide follows from Proposition 8.23.

Indeed, we only need to show that the charts constructed above are homeomor-

phisms with respect to the subspace topology on M. By definition, U =M∩U
is open in that topology. Furthermore, φ(U) is open in Rn as we argued above.

Since the map φ : U → φ(U) is invertible, it remains to argue that it and its

inverse are continuous in the subspace topology. That φ is continuous is clear

since it is the restriction of the continuous map trim◦F from U to U . That φ−1

is continuous is also clear since it is equal to the continuous map F−1 ◦ zpad,

only with the codomain restricted to U .

The topology on E is Hausdorff and second-countable, and it is easy to see

that the subspace topology inherits these properties. Thus, we conclude thatM
equipped with the above atlas is a manifold.

Additionally, the constructed atlas yields the unique smooth structure on M
for which (a) the atlas topology coincides with the subspace topology and (b)

the notion of smooth functions on M is the same as judged through charts or

as judged by the existence of smooth extensions—see Section 8.14. This is why, ⋆

even though in general it does not make sense to say that a set is or is not a

manifold, it does make sense to say that a subset of a linear space is or is not an

embedded submanifold of that linear space.



Text changed on Aug. 22, 2023. Spotted by Timon Miehling. Published text: Additionally, the constructed atlas yields the unique smooth structure on M for which the atlas topology coincides with the subspace topology—see Section 8.14.
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8.4 Tangent vectors and tangent spaces

In defining tangent vectors to a manifold in Section 3.2, we relied heavily on

the linear embedding space. In the general setting however, we do not have this

luxury. We must turn to a more general, intrinsic definition. Here, we present

one general definition of tangent vectors on manifolds as equivalence classes of

curves. Another (equivalent) definition is through the notion of derivation (at a

point): we do not discuss it.

Let x be a point on a d-dimensional manifold M. Consider the set Cx of

smooth curves on M passing through x at t = 0:

Cx = {c | c : I →M is smooth and c(0) = x}.

Smoothness of c on an open interval I ⊆ R around 0 is to be understood through

Definition 8.5.

We define an equivalence relation on Cx denoted by ∼. Let (U , φ) be a chart

of M around x and consider c1, c2 ∈ Cx. Then, c1 ∼ c2 if and only if φ ◦ c1 and

φ ◦ c2 have the same derivative at t = 0, that is,

c1 ∼ c2 ⇐⇒ (φ ◦ c1)′(0) = (φ ◦ c2)′(0). (8.4)

These derivatives are well defined as φ◦ci is a smooth function (by composition)

from some open interval around 0 to an open subset of Rd. It is an exercise to

prove that this equivalence relation is independent of the choice of chart.

The equivalence relation partitions Cx into equivalence classes: we call them

tangent vectors. The rationale is that all the curves in a same equivalence class

(and only those) pass through x with the same “velocity,” as judged by their

velocities through φ(x) in coordinates.

Definition 8.33. The equivalence class of a curve c ∈ Cx is the set of curves

that are equivalent to c as per (8.4):

[c] = {ĉ ∈ Cx : c ∼ ĉ}.

Each equivalence class is called a tangent vector to M at x. The tangent space

to M at x, denoted by TxM, is the quotient set

TxM = Cx/∼ = {[c] : c ∈ Cx},

that is, the set of all equivalence classes.

Given a chart (U , φ) around x, the map

θφx : TxM→ Rd : [c] 7→ θφx ([c]) = (φ ◦ c)′(0) (8.5)

is well defined by construction: the expression (φ ◦ c)′(0) does not depend on

the choice of representative c in [c]. It is an exercise to show that θφx is bijective.

This bijection naturally induces a linear space structure over TxM, by copying
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the linear structure of Rd:

a · [c1] + b · [c2] ≜ (θφx )−1
(
a · θφx ([c1]) + b · θφx ([c2])

)
. (8.6)

This structure, again, is independent of the choice of chart. Thus, the tangent

space is a linear space in its own right.

Theorem 8.34. Tangent spaces are linear spaces of dimension dimM with the

linear structure given through (8.6).

When M is an embedded submanifold of a linear space, the two definitions

of tangent spaces we have seen are compatible in the sense that they yield the

same vector space structure, so that we always use the simpler one. In particular,

the tangent spaces of (an open subset of) a linear space E (for example, Rd) are

identified with E itself.

Theorem 8.35. ForM embedded in a linear space E, there exists a linear space

isomorphism (that is, an invertible linear map) showing that Definitions 3.14

and 8.33 are compatible.

Proof. Pick x ∈ M. Let (U , φ) be a chart around x as built in (8.2) from a

diffeomorphism F so that φ = trim ◦F |U and φ−1 = F−1 ◦ zpad |φ(U). Pick

an arbitrary smooth curve c on M satisfying c(0) = x. This is also a curve

in E . Let v = c′(0) ∈ E . Passing to coordinates, define c̃(t) = φ(c(t)). Write

c = φ−1 ◦ c̃ = F−1 ◦ zpad ◦c̃ to see that F ◦ c = zpad ◦c̃. Thus,

F (x) = F (c(0)) = zpad(c̃(0)), and

DF (x)[v] = (F ◦ c)′(0) = zpad(c̃′(0)).

Moreover, θφx ([c]) = (φ ◦ c)′(0) = c̃′(0). Therefore, with v = c′(0),

v = DF (x)−1[zpad(θφx ([c]))]. (8.7)

This is a linear map converting the tangent vector [c] in the sense of Defini-

tion 8.33 to the tangent vector v in the sense of Definition 3.14. This map is

one-to-one, with inverse given by:

[c] = (θφx )−1(trim(DF (x)[v])). (8.8)

Thus, the two definitions of tangent spaces are compatible.

Exercise 8.36. Show that the equivalence relation (8.4) is independent of the

choice of chart (U , φ) around x. Show that θφx (8.5) is bijective. Show that the

linear structure on TxM defined by (8.6) is independent of the choice of chart,

so that it makes sense to talk of linear combinations of tangent vectors without

specifying a chart.
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8.5 Differentials of smooth maps

By design, the notion of tangent vector induces a notion of directional deriva-

tives. Let F : M→M′ be a smooth map. For any tangent vector v ∈ TxM, pick

a representative curve c (formally, c ∈ v) and consider the map t 7→ F (c(t)): this

is a smooth curve on M′ passing through F (x) at t = 0. The equivalence class

of that curve is a tangent vector to M′ at F (x). The equivalence relation (8.4)

is specifically crafted so that this map between tangent spaces does not depend

on the choice of c in v. This yields a notion of differential for maps between

manifolds. In equation (8.9) below, brackets on the right-hand side select an

equivalence class of curves, whereas brackets on the left-hand side merely distin-

guish between x (the point at which we differentiate) and v (the direction along

which we differentiate) as per usual.

Definition 8.37. Given manifolds M andM′, the differential of a smooth map

F : M→M′ at x is a linear map DF (x) : TxM→ TF (x)M′ defined by:

DF (x)[v] = [t 7→ F (c(t))], (8.9)

where c is a smooth curve on M passing through x at t = 0 such that v = [c].

When the codomain of F is (an embedded submanifold of) a linear space,

Theorem 8.35 provides an identification of the abstract tangent spaces of that

codomain with the concrete tangent spaces from Chapter 3. In this way, we can

confirm that Definitions 8.37 and 3.34 are compatible.

Proposition 8.38. For a smooth map F : M → N where N is an embedded

submanifold of a linear space E, we identify the tangent spaces of N to subspaces

of E as provided by Theorem 8.35. Then, with v = [c] a tangent vector at x ∈M,

we can write

DF (x)[v] = (F ◦ c)′(0), (8.10)

where F ◦ c is seen as a map into E.

In particular, let F(M) denote the set of smooth scalar fields on M, that is,

the set of smooth functions f : M→ R. Then, identifying the tangent spaces of

R with R itself, we write

Df(x)[v] = (f ◦ c)′(0) (8.11)

for the differential Df(x) : TxM→ R, where v = [c].

Proof. This is essentially a tautology. Let us write the proof for a map G : M→
N so we can use F to denote the diffeomorphism appearing in the conversion

formula (8.7) for a chart φ of N around G(x). On the one hand, since G ◦ c is a

curve on N passing through G(x), formula (8.7) provides

(G ◦ c)′(0) = DF (G(x))−1[zpad(θφG(x)([G ◦ c]))]. (8.12)
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On the other hand, Definition 8.37 states that DG(x)[v] = [G ◦ c], and the

concrete representation of [G ◦ c] is obtained through (8.7) as:

DF (G(x))−1[zpad(θφG(x)([G ◦ c]))].

Thus, the concrete representation of DG(x)[v] is (G ◦ c)′(0).

Exercise 8.39. Verify that equation (8.9) is well defined, that is, the right-hand

side does not depend on the choice of c representing v. Additionally, show that

DF (x) is indeed a linear map with respect to the linear structure (8.6) on tangent

spaces.

Exercise 8.40. (Continued from Exercise 8.13.) For smooth maps F1, F2 : M→
E (with E a linear space) and real numbers a1, a2, show that F : x 7→ a1F1(x) +

a2F2(x) is smooth and we have linearity:

DF (x) = a1DF1(x) + a2DF2(x).

For smooth maps f : M → R and G : M → E, show that the product map

fG : x 7→ f(x)G(x) is smooth from M to E and we have a product rule:

D(fG)(x)[v] = G(x)Df(x)[v] + f(x)DG(x)[v].

Let F : M→M′ and G : M′ →M′′ be smooth. Establish the chain rule for the

differential of their composition:

D(G ◦ F )(x)[v] = DG(F (x))[DF (x)[v]].

Generalize the claim of Exercise 3.40 too.

8.6 Tangent bundles and vector fields

Identically to Definition 3.42, we define the tangent bundle as the disjoint union

of all tangent spaces, now provided by Definition 8.33.

Definition 8.41. The tangent bundle of a manifold M is the set:

TM = {(x, v) : x ∈M and v ∈ TxM}.

We often conflate notation for (x, v) and v when the context is clear.

Definition 8.42. The projection π : TM → M extracts the base of a vector,

that is, π(x, v) = x. At times, we may write π(v) = x.

Just like tangent bundles of embedded submanifolds are themselves embedded

submanifolds (Theorem 3.43), tangent bundles of manifolds are manifolds in a

natural way. (Smoothness of π is understood through Definition 8.5.)

Theorem 8.43. For any manifoldM of dimension d, the tangent bundle TM is

itself a manifold of dimension 2d, in such a way that the projection π : TM→M
is smooth.
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Proof. From any chart (U , φ) ofM, we construct a chart (Ũ , φ̃) of TM as follows.

Define the domain Ũ = π−1(U) to be the set of all tangent vectors to any point

in U . Then, define φ̃ : Ũ → φ̃(Ũ) ⊆ R2d as

φ̃(x, v) = (φ(x), θφx (v)), (8.13)

where θφx is defined by (8.5). See [Lee12, Prop. 3.18] for details.

The smooth structure on a tangent bundle is such that the differential of a

smooth map is itself a smooth map.

Proposition 8.44. Consider a smooth map F : M → M′ and its differential

DF : TM → TM′ defined by DF (x, v) = DF (x)[v]. With the natural smooth

structures on TM and TM′, the map DF is smooth.

Proof. Write DF in coordinates using charts from Theorem 8.43, then use Propo-

sition 8.51 below. Details in [Lee12, Prop. 3.21].

The manifold structure on TM makes it possible to define smooth vector fields

on manifolds as smooth maps from M to TM.

Definition 8.45. A vector field V is a map from M to TM such that π ◦ V is

the identity map. The vector at x is written V (x) and lies in TxM. If V is also

a smooth map, then it is a smooth vector field. The set of smooth vector fields

on M is denoted by X(M).

In Section 8.8, we use the following characterization of smooth vector fields to

construct coordinate vector fields.

Proposition 8.46. A vector field V on M is smooth if and only if, for every

chart (U , φ) of M, the map x 7→ θφx (V (x)) is smooth on U .

Proof. Using Definition 8.5 about smooth maps and the charts of TM defined

by (8.13), we conclude that V is smooth if and only if, for every chart (U , φ) of

M,

Ṽ = φ̃ ◦ V ◦ φ−1 : φ(U) ⊆ Rd → R2d

is smooth, where φ̃(x, v) = (φ(x), θφx (v)). For z = φ(x), we have

Ṽ (z) = (z, θφx (V (x)))

so that Ṽ is smooth if and only if x 7→ θφx (V (x)) is smooth on U .

Let V be a vector field on M. As we did in Definition 5.5, we define the

action of V on a smooth function f ∈ F(U) with U open in M as the function

V f : U → R determined by

(V f)(x) = Df(x)[V (x)]. (8.14)

Based on the latter, we mention a characterization of smooth vector fields which

is sometimes useful. The proof in the direction we need is an exercise in Sec-

tion 8.8. See [Lee12, Prop. 8.14] for the other one.
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Proposition 8.47. A vector field V on a manifold M is smooth if and only if

V f is smooth for all f ∈ F(M).

Exercise 8.48. Show that for V,W ∈ X(M) and f, g ∈ F(M) the vector field

fV + gW is smooth.

8.7 Retractions and velocity of a curve

Now equipped with broader notions of smooth maps, tangent vectors and tan-

gent bundles for a manifold M, we can generalize the notion of retraction from

Definition 3.47.

Definition 8.49. A retraction on a manifold M is a smooth map

R: TM→M : (x, v) 7→ Rx(v)

such that for each (x, v) ∈ TM the curve c(t) = Rx(tv) satisfies v = [c], where

[c] is the equivalence class of the curve c as per Definition 8.33.

The latter definition is somewhat abstract. We can give it a more familiar look

by defining the notion of velocity of a curve on a general manifold.

Definition 8.50. Let c : I → M be a smooth curve. The velocity of c at t,

denoted by c′(t), is the tangent vector in Tc(t)M given by

c′(t) = [τ 7→ c(t+ τ)],

where the brackets on the right-hand side take the equivalence class of the shifted

curve, as per Definition 8.33.

Observe that c′(0) = [c]. Thus, a smooth map R: TM → M is a retraction

exactly if each curve c(t) = Rx(tv) satisfies c′(0) = [c] = v and (as implicitly

required by the latter) c(0) = x. This characterization matches Definition 3.47.

Moreover, it is equivalent still to define retractions as smooth maps R: TM→
M : (x, v) 7→ Rx(v) such that, for all (x, v) ∈ TM, we have

1. Rx(0) = x, and

2. DRx(0) : TxM→ TxM is the identity map: DRx(0)[v] = v.

To be clear, here, 0 denotes the zero tangent vector at x, that is, the equivalence

class of smooth curves on M that pass through x at t = 0 with zero velocity, as

judged through any chart around x. Also, the differential DRx(0) makes sense as

Rx : TxM→M is a smooth map, and we identify the tangent spaces of TxM
(a linear space) with itself (using Theorem 8.35), so that T0(TxM)—the domain

of DRx(0)—is identified with TxM.
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8.8 Coordinate vector fields as local frames

Let (U , φ) be a chart on a d-dimensional manifoldM. Here and in many places,

we use that U itself is a manifold; specifically, an open submanifold of M: see

Definition 8.24. Consider the following vector fields on U , called coordinate vector

fields:

Wi(x) =
[
t 7→ φ−1(φ(x) + tei)

]
, i = 1, . . . , d, (8.15)

where e1, . . . , ed are the canonical basis vectors for Rd (that is, the columns of

the identity matrix of size d). The defining property of these vector fields is

that, when pushed through θφx (8.5), they correspond to the constant coordinate

vector fields of Rd:

θφx (Wi(x)) =
d

dt
φ(φ−1(φ(x) + tei))

∣∣∣∣
t=0

= ei. (8.16)

As a corollary, we obtain a generalization of Proposition 3.69: local frames exist

around any point on a manifold (see Definition 3.68).

Proposition 8.51. Coordinate vector fields (8.15) are smooth on U , that is,

W1, . . . ,Wd belong to X(U). Furthermore, they form a local frame, that is, for

all x ∈ U , the tangent vectors W1(x), . . . ,Wd(x) are linearly independent.

Proof. Smoothness follows from (8.16) and Proposition 8.46. Now consider the

linear structure on TxM defined by (8.6): W1(x), . . . ,Wd(x) are linearly inde-

pendent if and only if they are so after being pushed through θφx , which is clearly

the case owing to (8.16).

To interpret the corollary below, use the fact that a vector field is smooth on

M if and only if it is smooth when restricted to each chart domain U .

Corollary 8.52. Given a vector field V on M and a chart (U , φ), there exist

unique functions g1, . . . , gd : U → R such that V |U = g1W1 + · · ·+ gdWd. These

functions are smooth if and only if V |U is smooth.

Proof. That functions gi : U → R such that V |U =
∑

i giWi exist and are unique

follows from linear independence of W1(x), . . . ,Wd(x). The smoothness equiva-

lence follows from Proposition 8.46 and

θφx (V (x)) =

d∑
i=1

gi(x)θφx (Wi(x)) = (g1(x), . . . , gd(x))⊤, (8.17)

where we used θφx (Wi(x)) = ei by (8.16).

Exercise 8.53. Show that for all V ∈ X(M) and f ∈ F(M) the function V f is

smooth on M (this is one direction of Proposition 8.47).
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8.9 Riemannian metrics and gradients

Since tangent spaces are linear spaces, we can define inner products on them. The

following definitions already appeared in the context of embedded submanifolds

in Sections 3.7 and 3.8: they extend verbatim to the general case.

Definition 8.54. An inner product on TxM is a bilinear, symmetric, positive

definite function ⟨·, ·⟩x : TxM× TxM→ R. It induces a norm for tangent vec-

tors: ∥u∥x =
√
⟨u, u⟩x. A metric on M is a choice of inner product ⟨·, ·⟩x for

each x ∈M.

Definition 8.55. A metric ⟨·, ·⟩x on M is a Riemannian metric if it varies

smoothly with x, in the sense that for all smooth vector fields V,W on M the

function x 7→ ⟨V (x),W (x)⟩x is smooth from M to R.

Definition 8.56. A Riemannian manifold is a manifold with a Riemannian

metric.

Definition 8.57. Let f : M→ R be smooth on a Riemannian manifoldM. The

Riemannian gradient of f is the vector field gradf on M uniquely defined by the

following identities:

∀(x, v) ∈ TM, Df(x)[v] = ⟨v, gradf(x)⟩x , (8.18)

where Df(x) is as in Proposition 8.38 and ⟨·, ·⟩x is the Riemannian metric.

The gradient of a smooth function is a smooth vector field: the proof of Propo-

sition 3.70 extends as is, using local frames provided by Proposition 8.51 for

example.

Proposition 8.58. For f ∈ F(M), the gradient gradf is smooth.

Proposition 3.59 also holds true in the general case, with the same proof. We

restate the claim here. See also Exercise 10.73.

Proposition 8.59. Let f : M → R be a smooth function on a Riemannian

manifold M equipped with a retraction R. Then, for all x ∈M,

gradf(x) = grad(f ◦ Rx)(0), (8.19)

where f ◦Rx : TxM→ R is defined on a Euclidean space ( TxM with the inner

product ⟨·, ·⟩x), hence its gradient is a “classical” gradient.

Likewise, Example 3.57 and Exercise 3.67 regarding Riemannian product man-

ifolds generalize verbatim for product manifolds as defined in Exercise 8.31.

8.10 Lie brackets as vector fields

Recall Definition 5.5 where we introduced the notion of Lie bracket of smooth

vector fields U, V ∈ X(M): for all f ∈ F(U) with U open in M, the Lie bracket
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[U, V ] acts on f and produces a smooth function on U defined by

[U, V ]f = U(V f)− V (Uf). (8.20)

We now extend Proposition 5.10 to show that [U, V ] acts on F(M) in the exact

same way that a specific smooth vector field does, which allows us to think of

[U, V ] itself as being that smooth vector field. To this end, we first show a special

property of coordinate vector fields.

Proposition 8.60. Lie brackets of coordinate vector fields (8.15) vanish iden-

tically, that is,

[Wi,Wj ]f = 0

for all 1 ≤ i, j ≤ d and all f ∈ F(U).

Proof. Writing f in coordinates as f̃ = f ◦ φ−1 (smooth from φ(U) open in Rd

to R by Definition 8.5), we find using Proposition 8.38:

(Wif)(x) = Df(x)[Wi(x)]

=
d

dt
f
(
φ−1 (φ(x) + tei)

)∣∣∣∣
t=0

=
d

dt
f̃(φ(x) + tei)

∣∣∣∣
t=0

= Df̃(φ(x))[ei]

= ⟨gradf̃(φ(x)), ei⟩, (8.21)

where we use the canonical inner product ⟨·, ·⟩ on Rd to define the Euclidean

gradient of f̃ . Using this result twice, we obtain

(Wj(Wif))(x) = D
(
(Wif) ◦ φ−1

)
(φ(x))[ej ]

= D
(
⟨gradf̃ , ei⟩

)
(φ(x))[ej ]

=
〈

Hessf̃(φ(x))[ej ], ei

〉
.

Since the Euclidean Hessian Hessf̃ is self-adjoint, we find that

(Wi(Wjf))(x) = (Wj(Wif))(x)

hence ([Wi,Wj ]f)(x) = 0 for all x ∈ U and for all i, j.

Proposition 8.61. Let U, V be two smooth vector fields on a manifold M.

There exists a unique smooth vector field W on M such that [U, V ]f = Wf for

all f ∈ F(M). We identify [U, V ] with that smooth vector field.

Proof. We first show the claim on a chart domain. Let (U , φ) be a chart of

M, and let W1, . . . ,Wd be the corresponding coordinate vector fields (8.15). By
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Corollary 8.52, any two vector fields U, V ∈ X(M) can be expressed on U as

U |U =

d∑
i=1

giWi, V |U =

d∑
j=1

hjWj ,

for a unique set of smooth functions gi, hj ∈ F(U). For all f ∈ F(U),

V f =

d∑
j=1

hjWjf.

Using linearity and Leibniz’ rule (Exercise 5.11),

U(V f) =
∑
i,j

giWi(hjWjf) =
∑
i,j

gi(Wihj)(Wjf) + gihjWi(Wjf).

With similar considerations for V (Uf), namely,

V (Uf) =
∑
i,j

hjWj(giWif) =
∑
i,j

hj(Wjgi)(Wif) + hjgiWj(Wif),

we find

[U, V ]f = U(V f)− V (Uf)

=
∑
i,j

gi(Wihj)(Wjf)− hj(Wjgi)(Wif) +
∑
i,j

gihj [Wi,Wj ]f.

Since [Wi,Wj ]f = 0 by Proposition 8.60, it follows that, on the domain U , there

is a unique smooth vector field, specifically,∑
i,j

gi(Wihj)Wj − hj(Wjgi)Wi, (8.22)

which acts on F(U) in the exact same way as does [U, V ]. This construction

can be repeated on a set of charts whose domains cover M. By uniqueness, the

constructions on overlapping chart domains are compatible. Hence, this defines

a smooth vector field on all of M. We identify it with [U, V ].

8.11 Riemannian connections and Hessians

The notion of connection applies in the general case. For convenience we repeat

Definition 5.20 here. (Definition 5.1 also extends as is.)

Definition 8.62. An (affine) connection on M is an operator

∇ : X(M)× X(M)→ X(M) : (U, V ) 7→ ∇UV

which has three properties for all U, V,W ∈ X(M), f, g ∈ F(M) and a, b ∈ R:

1. F(M)-linearity in U : ∇fU+gWV = f∇UV + g∇WV ;

2. R-linearity in V : ∇U (aV + bW ) = a∇UV + b∇UW ; and
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3. Leibniz rule: ∇U (fV ) = (Uf)V + f∇UV .

The field ∇UV is the covariant derivative of V along U with respect to ∇.

Likewise, Theorem 5.6 regarding the existence and uniqueness of a Rieman-

nian connection extends without difficulty. We use Proposition 8.61 (stating Lie

brackets are vector fields) to state the symmetry condition in a more standard

way.

Theorem 8.63. On a Riemannian manifold M, there exists a unique connec-

tion ∇ which satisfies two additional properties for all U, V,W ∈ X(M):

4. Symmetry: [U, V ] = ∇UV −∇V U ; and

5. Compatibility with the metric: U⟨V,W ⟩ = ⟨∇UV ,W ⟩+ ⟨V,∇UW ⟩.

This connection is called the Levi-Civita or Riemannian connection.

As we showed in Proposition 5.21 in the embedded case, connections are point-

wise operators in U . The proof from the embedded case extends to the general

case with two changes: first, we now use the more general proof of existence of

local frames provided by Proposition 8.51; second, we must reaffirm the technical

Lemma 5.27 which allows us to make sense of ∇ when applied to locally defined

smooth vector fields (such as coordinate vector fields for example).

Proposition 8.64. For any connection ∇ and smooth vector fields U, V on a

manifold M, the vector field ∇UV at x depends on U only through U(x). Thus,

we can write ∇uV to mean (∇UV )(x) for any U ∈ X(M) such that U(x) = u,

without ambiguity.

These observations allow us to extend Definition 5.14 for Riemannian Hessians

to general manifolds.

Definition 8.65. Let M be a Riemannian manifold with its Riemannian con-

nection ∇. The Riemannian Hessian of f ∈ F(M) at x ∈ M is the linear map

Hessf(x) : TxM→ TxM defined as follows:

Hessf(x)[u] = ∇ugradf.

Equivalently, Hessf maps X(M) to X(M) as Hessf [U ] = ∇Ugradf .

The proof that the Riemannian Hessian is self-adjoint, given for embedded

submanifolds in Proposition 5.15, extends verbatim.

Proposition 8.66. The Riemannian Hessian is self-adjoint with respect to the

Riemannian metric. That is, for all x ∈M and u, v ∈ TxM,

⟨Hessf(x)[u], v⟩x = ⟨u,Hessf(x)[v]⟩x .

Likewise, considerations for connections on product manifolds from Exer-

cises 5.4 and 5.13 also extend to the general case.
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8.12 Covariant derivatives and geodesics

Recall Definition 5.28: given a smooth curve c : I → M on a manifold M, the

map Z : I → TM is a smooth vector field on c if Z(t) is in Tc(t)M for all t ∈ I
and Z is smooth as a map from I (open in R) to TM. The set of smooth vector

fields on c is denoted by X(c).

Theorem 5.29, both a definition of covariant derivatives and a statement of

their existence and uniqueness, extends to general manifolds as is. So does its

proof, provided we use local frames on general manifolds (Proposition 8.51) and

we reaffirm the notation (5.14) justified in the embedded case.

Theorem 8.67. Let c : I →M be a smooth curve on a manifold equipped with

a connection ∇. There exists a unique operator D
dt : X(c)→ X(c) which satisfies

the following properties for all Y, Z ∈ X(c), U ∈ X(M), g ∈ F(I), and a, b ∈ R:

1. R-linearity: D
dt (aY + bZ) = a D

dtY + b D
dtZ;

2. Leibniz rule: D
dt (gZ) = g′Z + g D

dtZ;

3. Chain rule:
(
D
dt (U ◦ c)

)
(t) = ∇c′(t)U for all t ∈ I.

We call D
dt the induced covariant derivative. If moreover M is a Riemannian

manifold and ∇ is compatible with its metric ⟨·, ·⟩ (e.g., if ∇ is the Riemannian

connection), then the induced covariant derivative also satisfies:

4. Product rule: d
dt ⟨Y, Z⟩ =

〈
D
dtY , Z

〉
+
〈
Y, D

dtZ
〉
,

where ⟨Y,Z⟩ ∈ F(I) is defined by ⟨Y,Z⟩(t) = ⟨Y (t), Z(t)⟩c(t).

Recall the notion of velocity c′ of a smooth curve c stated in Definition 8.50.

Clearly, c′ is a smooth vector field along c, that is, c′ ∈ X(c). Then, using the in-

duced covariant derivative D
dt , we may define acceleration along a curve similarly

to Definition 5.36, and geodesics as in Definition 5.38.

Definition 8.68. Let c : I →M be a smooth curve. The acceleration of c is the

smooth vector field c′′ ∈ X(c) defined by:

c′′ =
D

dt
c′.

A geodesic is a smooth curve c : I →M such that c′′(t) = 0 for all t ∈ I.

Exercises 5.34 and 5.39 regarding covariant derivatives on product manifolds

extend as is, as does Exercise 5.35 for reparameterizations.

8.13 Taylor expansions and second-order retractions

Using the general tools constructed thus far, the reasoning that led to second-

order Taylor expansions for embedded submanifolds and which culminated in

eq. (5.26) extends to a general Riemannian manifold M. Hence, we can state in
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general that, for f ∈ F(M) and any smooth curve c on M such that c(0) = x

and c′(0) = v,

f(c(t)) = f(x) + t ⟨gradf(x), v⟩x +
t2

2
⟨Hessf(x)[v], v⟩x

+
t2

2
⟨gradf(x), c′′(0)⟩x +O(t3). (8.23)

Definition 5.42 extends as is to the general case.

Definition 8.69. A second-order retraction R on a Riemannian manifold M is

a retraction such that, for all x ∈M and all v ∈ TxM, the curve c(t) = Rx(tv)

has zero acceleration at t = 0, that is, c′′(0) = 0.

In turn, this allows us to extend Propositions 5.44 and 5.45 to the general case

with the same proofs, verbatim.

Proposition 8.70. Consider a Riemannian manifold M equipped with any re-

traction R, and a smooth function f : M→ R. If x is a critical point of f (that

is, if gradf(x) = 0), then

f(Rx(s)) = f(x) +
1

2
⟨Hessf(x)[s], s⟩x +O(∥s∥3x). (8.24)

If R is a second-order retraction, then for any point x ∈M we have

f(Rx(s)) = f(x) + ⟨gradf(x), s⟩x +
1

2
⟨Hessf(x)[s], s⟩x +O(∥s∥3x). (8.25)

Proposition 8.71. If the retraction is second order or if gradf(x) = 0, then

Hessf(x) = Hess(f ◦ Rx)(0),

where the right-hand side is the Hessian of f ◦ Rx : TxM→ R at 0 ∈ TxM.

8.14 Submanifolds embedded in manifolds

In Chapter 3, we defined our first class of smooth sets, which we called embedded

submanifolds of linear spaces. In Section 8.3, we showed that embedded subman-

ifolds of linear spaces are manifolds. Now, we define the concept of embedded

submanifold of a manifold: this includes embedded submanifolds of linear spaces

as a special case. This will serve us well in Chapter 9.

Given a subset M of a manifold M, there may exist many smooth structures

for M. These may or may not interact nicely with the smooth structure of M.

Let us make this precise.

Consider the inclusion map i : M→M: it maps points ofM to themselves in

M, that is, i(x) = x. Depending on the smooth structure we choose forM, this

map may or may not be smooth. If it is, then we can differentiate it and Di(x)

is a linear map from TxM to TxM. If that map is injective (for all x), we call

M a submanifold of M.
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8.14 Submanifolds embedded in manifolds 207

Below, notice how, in order to define whether or not M is a submanifold of

M, we first need M to be a manifold in its own right.

Definition 8.72. Consider two manifolds, M and M, such that M (as a set)

is included inM. If the inclusion map i : M→M is smooth and Di(x) has rank

equal to dimM for all x ∈M, we say M is an (immersed) submanifold of M.

Under the rank condition, dimM≤ dimM and the kernel of Di(x) is trivial.

This is just as well, because otherwise there exists a smooth curve c : I → M
passing through c(0) = x with nonzero velocity c′(0), yet the ‘same’ curve c̄ =

i◦c : I →M onM (smooth by composition) passes through x with zero velocity

c̄′(0) = Di(x)[c′(0)]. The definition excludes such peculiarities.

Among the submanifold structures of M (if any), there may exist at most

one such that the atlas topology on M coincides with the subspace topology

induced byM [Lee12, Thm. 5.31]. WhenM admits such a smooth structure, we

callM (with that structure) an embedded submanifold of M. (The ‘figure-eight’

example shows this is not always the case [Lee12, Fig. 4.3].)

Definition 8.73. If M is a submanifold of M and its atlas topology coincides

with the subspace topology of M ⊆ M (that is, every open set of M is the

intersection of some open set of M with M), then M is called an embedded

submanifold of M, while M is called the ambient or embedding space.

Theorem 8.74. A subset M of a manifold M admits at most one smooth

structure that makes M an embedded submanifold of M.

Hence, ⋆it makes sense to say that a subset of a manifold is or is not an em-

bedded submanifold, where in the affirmative we implicitly mean to endow M
with that (unique) smooth structure.

The next result gives a complete characterization of embedded submanifolds.

It reduces to Definition 3.10 when M is a linear space E .

Theorem 8.75. Let M be a manifold. A non-empty subset M of M is an

embedded submanifold of M if and only if either of the following holds:

1. M is an open subset of M. Then, dimM = dimM and we also call this an

open submanifold as in Definition 8.24; or

2. For a fixed integer k ≥ 1 and for each x ∈ M, there exists a neighborhood U
of x in M and a smooth function h : U → Rk such that

h−1(0) =M∩U and rank Dh(x) = k.

Then, dimM = dimM− k and h is called a local defining function.

The tangent spaces of M are linear subspaces of those of M:

TxM = ker Dh(x) ⊆ TxM, (8.26)

where h is any local defining function forM around x. Formally, the identification

is done through Di(x) : TxM→ TxM.
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In Theorem 8.75, there is nothing special about Rk: we could just as well

consider local defining maps into an arbitrary manifold of dimension k, as this

is locally equivalent to Rk through a chart. In particular, it often happens that

an embedded submanifold can be defined with a single defining map, motivating

the next corollary.

Corollary 8.76. Let h : M→ N be a smooth map and consider its non-empty

level set M = h−1(α). If Dh(x) has rank equal to dimN for all x ∈M, then M
is closed in M, it is an embedded submanifold of M with dimension dimM =

dimM− dimN , and TxM = ker Dh(x).

Above, the set h−1(α) is closed since it is the pre-image of the singleton {α}
through the continuous map h, and a singleton is closed in atlas topology since it

maps to a singleton through a chart. An embedded submanifold which is closed

in the embedding space is called properly embedded [Lee12, Prop. 5.5].

If the differential of h is not surjective at all points of M, a version of Corol-

lary 8.76 still holds provided the rank of the differential is constant in a neigh-

borhood ofM. Crucially, it is not sufficient for this condition to hold just onM:

see Section 3.10.

Proposition 8.77. LetM = h−1(α) be a non-empty level set of the smooth map

h : M→N . If rank Dh(x) = r for all x in a neighborhood ofM inM, thenM is

closed, it is an embedded submanifold ofM with dimension dimM = dimM−r,
and TxM = ker Dh(x).

In Definition 3.30, we defined smooth maps to and from embedded subman-

ifolds of linear spaces as those maps which admit a smooth extension to and

from the embedding spaces. Now that we understand embedded submanifolds

as manifolds, we must verify that our early definition of smooth map agrees

with the general notion in Definition 8.5. That is indeed true: Propositions 8.79

and 8.80 below assert as much for the general case of embedded submanifolds of

manifolds. To prove them, we introduce a powerful technical result first.

Lemma 8.78. If M is an embedded submanifold of M, there exists a neighbor-

hood U of M in M and a smooth map r : U → M such that r(x) = x for all

x ∈M.

Proof sketch. EndowM with a Riemannian metric: this is always doable [Lee18,

Prop. 2.4]. Since M is embedded in M, it has a tubular neighborhood U [Lee18,

Thm. 5.25]. It is straightforward to construct r from the properties of tubular

neighborhoods. Note: r is a (topological) retraction. This is different from (but

related to) our retractions.

Proposition 8.79. Let M be an embedded submanifold of M and let N be a

manifold.

1. If F̄ : M→N is smooth (at x ∈M), then F = F̄ |M is smooth (at x).
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2. There exists a neighborhood U of M in M such that any map F : M → N
can be extended to a map F̄ : U → N with the property that F̄ is smooth if F

is smooth, and F̄ is smooth at x ∈M if F is smooth at x.

Proof. The first part holds because the inclusion map i : M→M is smooth for

submanifolds hence F̄ |M = F̄ ◦ i inherits the smoothness of F̄ by composition.

For the second part, summon the map r : U → M provided by Lemma 8.78.

Define F̄ = F ◦ r; note that F̄ |M = F .

As a side note, a map defined on any subset of a manifold is said to be smooth if

it can be smoothly extended to a neighborhood of its domain. This is compatible

with the notion of smooth maps on embedded submanifolds.

Proposition 8.80. Let M be an embedded submanifold of M and let N be a

manifold. A map F : N →M is smooth (at x) if and only if F̄ : N →M, defined

by F̄ (y) = F (y), is smooth (at x).

Proof. Smoothness of F implies smoothness of F̄ since F̄ = i◦F , where i : M→
M is the inclusion map. The other way around, summon the map r : U → M
provided by Lemma 8.78. Through charts, it is easy to confirm that we may

restrict the codomain of F̄ to U without affecting its smoothness. Since F = r◦F̄ ,

it follows that smoothness of F̄ implies that of F . See also [Lee12, Cor. 5.30].

As we discovered in Chapters 3 and 5, geometric tools for Riemannian sub-

manifolds of Euclidean spaces are related to their counterparts in that Euclidean

space in a straightforward way. This is true more generally for Riemannian sub-

manifolds of manifolds, and the proofs we have considered extend to the general

case with little friction. We now summarize these results.

Assume M is a Riemannian manifold and M is embedded in M. We know

from eq. (8.26) that TxM is a linear subspace of TxM. Equip the submanifold

M with a Riemannian metric by restricting the metric ⟨·, ·⟩x ofM to the tangent

spaces of M. This makes M a Riemannian submanifold of M. Assume ⋆these

structures for the remainder of the section.

Let Projx denote the linear map which projects vectors from TxM to TxM
orthogonally with respect to ⟨·, ·⟩x. This object features abundantly in the for-

mulas below.

Consider a smooth function f : M→ R and any smooth extension f̄ : U → R
defined on a neighborhood U of M in M. Then, for all x ∈M,

gradf(x) = Projx
(
gradf̄(x)

)
. (8.27)

For any two smooth vector fields U, V ∈ X(M) and corresponding smooth ex-

tensions Ū , V̄ ∈ X(U), the Riemannian connection ∇ on M is related to the

Riemannian connection ∇̄ on M through the identity (valid along M):

∇UV = Proj(∇̄Ū V̄ ). (8.28)

On a technical note: Ū , V̄ are not necessarily defined on all of M. We interpret
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∇̄Ū V̄ in the usual way, using the fact that (∇̄Ū V̄ )(x) depends on Ū , V̄ only

locally around x. See also [Lee18, Thm. 8.2]. In pointwise notation, we have for

all u ∈ TxM:

∇uV = Projx(∇̄uV̄ ). (8.29)

As a result, the Hessian of the function f above is related to the gradient and

Hessian of f̄ through these relations: let G(x) = gradf(x) be the gradient vector

field of f on M, and let Ḡ be a smooth extension of G to a neighborhood of M
in M. Then, for all u ∈ TxM⊆ TxM,

Hessf(x)[u] = ∇ugradf = Projx
(
∇̄uḠ

)
. (8.30)

A similarly simple expression is valid for covariant derivatives of vector fields

along curves, in analogy to (5.18):

D

dt
Z(t) = Projc(t)

(
D̄

dt
Z(t)

)
, (8.31)

where c is a smooth curve onM (hence also onM), Z is a smooth vector field on

c (which can be understood both inM and inM), D̄
dt is the covariant derivative

for vector fields on c in M, and D
dt is the covariant derivative for vector fields

on c in M. From this expression we also recover a convenient formula for the

acceleration c′′ = D
dtc
′ of a curve c on M in terms of its acceleration c̈ = D̄

dt ċ in

the embedding space M, akin to (5.23):

c′′(t) = Projc(t)(c̈(t)). (8.32)

Moreover, the objects and results presented in Section 5.11 extend to the general

case of Riemannian submanifolds of Riemannian manifolds. In particular, the

second fundamental form II and the Weingarten map W are defined in the same

way and lead to the same formulas for the Hessian and for the decomposition of

∇̄ and D̄
dt in tangent and normal parts.

8.15 Notes and references

Main references for this chapter are the books by Lee [Lee12, Lee18], Brickell

and Clark [BC70], O’Neill [O’N83], and Absil et al. [AMS08].

Brickell and Clark define manifolds to be what we call manifolds*. As a result,

topological assumptions are always stated explicitly, which is instructive to track

their importance in various aspects of the theory. O’Neill defines a manifold

to be a Hausdorff topological space equipped with a maximal atlas, without

requiring second-countability (though see pp21–22 of that reference). Lee defines

topological manifolds first—imposing both Hausdorff and second-countability—

and defines smooth manifolds as an additional layer of structure on those spaces,

requiring the atlas topology to match the existing topology. We use the same

definition as Absil et al.: this is compatible with Lee’s definitions.
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All of these references also lay out basics of topology. The relevance of the

topological conditions imposed in Section 8.2 for optimization is spelled out

in [AMS08, §3.1.2].

A closed manifold is a compact manifold (Definition 8.27) without bound-

ary [Lee12, p27]. As we do not discuss manifolds with boundary, compact and

closed manifolds coincide in our treatment, but the latter terminology may be

confusing as the manifold itself is always closed with respect to its own topology

(by Definition 8.15).

We defined tangent vectors as equivalence classes of curves, which is one of

the standard approaches. Another standard definition of tangent vectors, favored

notably by Lee and O’Neill, is through the notion of derivation. These definitions

are equivalent. A (brief) discussion of the link between these two definitions

appears in [Lee12, p72].

Embedded submanifolds are called regular submanifolds by Brickell and Clark,

and simply submanifolds by O’Neill. Furthermore, we mean Riemannian subman-

ifolds to be embedded (as does O’Neill), whereas Lee allows them to be merely

immersed, pointing out when it is necessary for them to be embedded [Lee18,

p15].

Theorem 8.75 for embedded submanifolds follows [Lee12, Prop. 4.1 and 5.16].

The ensuing characterization of tangent spaces stated in (8.26) matches [Lee12,

Prop. 5.38]. Corollary 8.76 for embedded submanifolds defined by a single defin-

ing map appears as [Lee12, Cor. 5.14]. The related Proposition 8.77 is a conse-

quence of the constant-rank level set theorem [Lee12, Thm. 5.12].
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9 Quotient manifolds

The Grassmannian Gr(n, p) is the set of linear subspaces of dimension p in Rn.

(Many authors write Gr(p, n).) Perhaps the best-known example of an optimiza-

tion problem over Gr(n, p) is principal component analysis (PCA) (Section 2.4).

Given k points y1, . . . , yk ∈ Rn, the goal is to find a linear subspace L ∈ Gr(n, p)

which fits the data as well as possible, in the sense that it solves

min
L∈Gr(n,p)

k∑
i=1

dist(L, yi)
2, (9.1)

where dist(L, y) is the Euclidean distance between y and the point in L closest

to y. This particular formulation of the problem admits an explicit solution

involving the SVD of the data matrix M = [y1, . . . , yk]. This is not the case

for other cost functions, which may be more accommodating of outliers in the

data, or more amenable to the inclusion of priors. For these, we may need more

general optimization algorithms to address (9.1). Thus we ask: how can one solve

optimization problems over Gr(n, p)?

Any iterative algorithm to minimize a function f : Gr(n, p) → R generates

a sequence of subspaces L0, L1, L2, . . . The first point of order is to choose how

these subspaces are to be represented in memory. A reasonable idea is to represent

L ∈ Gr(n, p) with a matrix X ∈ Rn×p whose columns form a basis for L. For

each L, many matrices X fit this requirement. For numerical reasons, it is often

beneficial to use orthonormal bases. Thus, we decide to represent L with a matrix

X in St(n, p), that is, L = span(X) and X⊤X = Ip.

Even working with orthonormal bases to represent subspaces, there are still

many possible choices. To be definite, we define an equivalence relation ∼ over

St(n, p). Two matrices X,Y ∈ St(n, p) are deemed equivalent if their columns

span the same subspace:

X ∼ Y ⇐⇒ span(X) = span(Y ) ⇐⇒ X = Y Q for some Q ∈ O(p),

where O(p) is the orthogonal group: the set of orthogonal matrices of size p× p.
Formally, this allows us to identify subspaces with equivalence classes: if L =

span(X), we identify L with

[X] = {Y ∈ St(n, p) : Y ∼ X} = {XQ : Q ∈ O(p)}.

This identification establishes a one-to-one correspondence between Gr(n, p) and
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the set of equivalence classes, called the quotient set :

St(n, p)/∼ = {[X] : X ∈ St(n, p)}. (9.2)

It is also common to denote this quotient set by St(n, p)/O(p), to highlight the

special role of the orthogonal group in the equivalence relation: we discuss this

more below.

Given X ∈ St(n, p) such that L = span(X), the distance function in (9.1)

admits an explicit expression: XX⊤ is the matrix which represents orthogonal

projection from Rn to L, so that, in the Euclidean norm ∥ · ∥,

dist(L, y)2 = ∥y −XX⊤y∥2 = ∥y∥2 − ∥X⊤y∥2.

Hence, with A = MM⊤, ∥ · ∥ denoting the Frobenius norm for matrices and

f̄(X) =

k∑
i=1

∥X⊤yi∥2 = ∥X⊤M∥2 = Tr(X⊤AX), (9.3)

we may rewrite (9.1) equivalently as

max
[X]∈St(n,p)/∼

f([X]), with f([X]) = f̄(X). (9.4)

Crucially, f : St(n, p)/∼ → R is well defined on the quotient set since f̄(X) =

f̄(Y ) whenever X ∼ Y : we say f̄ is invariant under ∼.

On the one hand, problem (9.4) is closely related to

max
X∈St(n,p)

f̄(X), (9.5)

which we know how to handle using our optimization tools for embedded sub-

manifolds, generating a sequence of matrices X0, X1, . . . in St(n, p).

On the other hand, a practical implementation of a (yet to be determined)

optimization algorithm on St(n, p)/∼, which generates a sequence of equivalence

classes [X0], [X1], . . ., would also actually generate matrices X0, X1, . . . in Stiefel

to represent these equivalence classes. One wonders then: in practical terms,

what distinguishes an algorithm on St(n, p)/∼ from one on St(n, p)?

The key consideration is preservation of invariance. To illustrate this notion,

let us consider how gradient descent proceeds to minimize f̄ on St(n, p) as a

Riemannian submanifold of Rn×p with the usual Euclidean metric. Using the

projector to the tangent spaces of Stiefel, ProjStX (7.27), the gradient is given by

1

2
gradf̄(X) = ProjStX (AX) (9.6)

= (In −XX⊤)AX +X
X⊤AX −X⊤AX

2
= (In −XX⊤)AX.

(Notice how the second term vanishes: we will see that this is not by accident.)

Assuming constant step-size α for simplicity, Riemannian gradient descent iter-

ates

Xk+1 = G(Xk), with G(X) = RX(−αgradf̄(X)).
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214 Quotient manifolds

When is it legitimate to think of this sequence of iterates as corresponding to a

sequence on the quotient set? Exactly when the equivalence class of Xk+1 depends

only on the equivalence class of Xk, and not on Xk itself. Indeed, only then can

we claim that the algorithm iterates from [Xk] to [Xk+1].

To assess the latter, we must determine how [Xk+1] changes if Xk is replaced

by another representative of the same equivalence class, that is, if Xk is replaced

by XkQ for some orthogonal Q. A first observation is that

∀X ∈ St(n, p), Q ∈ O(p), gradf̄(XQ) = gradf̄(X) ·Q.

Hence, if the retraction has the property1 that

∀(X,V ) ∈ TSt(n, p), Q ∈ O(p), [RXQ(V Q)] = [RX(V )], (9.7)

then it follows that, for all Q ∈ O(p),

[G(XQ)] = [RXQ(−αgradf̄(XQ))] = [RX(−αgradf̄(X))] = [G(X)].

Thus, under that condition, [Xk+1] is indeed a function of [Xk]:

X ∼ Y =⇒ G(X) ∼ G(Y ). (9.8)

We already know retractions which satisfy property (9.7). For example, the

polar retraction (7.24) can be written as

Rpol
X (V ) = (X + V )(Ip + V ⊤V )−1/2,

so that

Rpol
XQ(V Q) = (X + V )Q ·

(
Q⊤
[
Ip + V ⊤V

]
Q
)−1/2

= Rpol
X (V ) ·Q. (9.9)

Also, the QR retraction (7.22) is such that RQR
X (V ) is a matrix whose columns

form an orthonormal basis for span(X + V ). As a result, RQR
XQ(V Q) is a matrix

whose columns form a basis for span((X + V )Q), which of course is the same

subspace (it does not, however, satisfy the stronger property that RXQ(V Q) =

RX(V ) ·Q as the polar one did).

These considerations allow us to conclude that Riemannian gradient descent

for f̄ on St(n, p) with either of these retractions induces a well-defined sequence

on the quotient set St(n, p)/∼, defined by

[Xk+1] = F ([Xk]), with F ([X]) = [G(X)].

At this point, a few questions come naturally:

1. Is the sequence defined by [Xk+1] = F ([Xk]) itself a “gradient descent” se-

quence of sorts for the optimization problem (9.4) on the quotient set?

2. Can we devise more sophisticated algorithms such as the trust-regions method

to operate on the quotient set?

3. Are other quotient sets similarly amenable to optimization?

1 This property makes sense because if V is tangent to St(n, p) at X then V Q is tangent to

St(n, p) at XQ.
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We answer all questions in the affirmative. The crux of this chapter is to ar-

gue that quotient sets such as St(n, p)/∼ are themselves Riemannian manifolds

in a natural way, called Riemannian quotient manifolds. This identification of

Gr(n, p) with St(n, p)/∼ gives meaning to the claim that Gr(n, p) is a quotient

manifold; it is called the Grassmann manifold. All the tools and algorithms we

have developed for optimization on general manifolds apply in particular to quo-

tient manifolds. The iterative method described above turns out to be a bona

fide Riemannian gradient descent method in that geometry, and with more work

we can similarly describe second-order optimization algorithms.

Parts of this chapter focus on a particular class of Riemannian quotient man-

ifolds obtained through group actions on manifolds, as is the case for Gr(n, p)

constructed here. Particular attention is given to the practical representation of

points and tangent vectors for quotient manifolds, and to the computation of

objects such as gradients and Hessians.

What do we stand to gain from the quotient approach? First, it should be clear

that nothing is lost: Riemannian quotient manifolds are Riemannian manifolds,

hence all algorithms and accompanying theory apply. Second, optimization on

the quotient achieves a natural goal: if the cost function of an optimization

problem is insensitive to certain transformations, then it is reasonable to require

an algorithm for that problem to be similarly unfazed.

Sometimes, this property leads to computational advantages. Even when it

does not, the quotient perspective can yield better theoretical understanding.

Specifically, consider the local convergence rates we discussed for gradient de-

scent (Theorem 4.20), Newton’s method (Theorem 6.7) and trust regions (The-

orem 6.30): for all of these, the fast convergence guarantees hold provided the

algorithm converges to a critical point where the Hessian of the cost function is

positive definite. It is easy to come up with counter-examples showing that the

condition is necessary in general. For example, with f(x) = x4 on the real line,

gradient descent with (appropriate) constant step-size converges sublinearly, and

Newton’s method converges only linearly to zero.

As we show in Lemma 9.41, if the cost function on the total space (the set

before we pass to the quotient) is invariant under the quotient, then its Hessian

cannot possibly be positive definite at critical points. This is because the cost

function is constant along the equivalence classes: directions tangent to these

equivalence classes are necessarily in the kernel of the Hessian. Thus, the standard

fast convergence results do not ever apply on the total space.

Yet, it often happens that we do see fast convergence on the total space empir-

ically. This is the case notably for problem (9.5) above, on the Stiefel manifold.

Why is that?

As transpires from the discussion above and as we detail further in this chapter,

the reason is that, under certain circumstances, optimization algorithms on the

total space can be interpreted as matching algorithms on the quotient manifold.

Moreover, the spurious directions tangent to equivalence classes are quotiented

out in their own way, so that they do not appear in the kernel of the Hessian
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on the quotient manifold: that Hessian can be positive definite. In that scenario,

the quotient approach does not confer a computational advantage over the total

space approach (the two are algorithmically equivalent or close), but it does

provide the stronger theoretical perspective, aptly explaining why we do get fast

local convergence. As for second-order methods, the quotient perspective can

deliver genuinely new and crisply motivated algorithms.

Throughout the chapter, we use the Grassmann manifold as a running exam-

ple. For convenience, we collect our findings about it in Section 9.16. In that

section, we also show that the same geometry for Gr(n, p) can be realized as a

Riemannian submanifold of a Euclidean space, so that we could have also dis-

cussed this manifold in Chapter 7. The hope is that by then it will be clear

that the quotient perspective carries many conceptual (and aesthetic) advan-

tages, and that it provides a firm grasp of symmetries beyond the Grassmann

manifold.

9.1 A definition and a few facts

Let ∼ be an equivalence relation on a manifold M with equivalence classes

[x] = {y ∈M : x ∼ y},

and let

M =M/∼ = {[x] : x ∈M} (9.10)

be the resulting quotient set. The canonical projection or natural projection links

the total space M to its quotient M:

π : M→M : x 7→ π(x) = [x]. (9.11)

The quotient set M inherits a topology from M called the quotient topology,

turning M into a quotient space. This topology is defined as follows:

U ⊆M is open ⇐⇒ π−1(U) is open in M.

This notably ensures that π, then called the quotient map, is continuous.

Say we equip the quotient space M with a smooth structure as in Chapter 8

(assuming this is possible). Then, it makes sense to ask whether π is smooth

and, accordingly, whether its differential at some point has full rank. These

considerations enter into the definition of quotient manifold.

Definition 9.1. The quotient setM =M/∼ equipped with a smooth structure is

a quotient manifold ofM if the projection π (9.11) is smooth and its differential

Dπ(x) : TxM→ T[x]M has rank dimM for all x ∈M.

As an exercise, one can show that the projective space RPn−1 with smooth

structure as in Example 8.11 is a quotient manifold of Rn\{0} with the equiva-

lence relation that deems two points to be equivalent if they belong to the same
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line through the origin. However, this way of identifying quotient manifolds is

impractical, as it requires first to know that the quotient space is a manifold with

a certain atlas, then to check explicitly that π has the required properties using

that particular smooth structure. In this chapter, we discuss more convenient

tools.

By construction, π is continuous with respect to the quotient space topology.

With a quotient manifold structure onM, π is smooth and hence also continuous

with respect to the atlas topology. In fact, the atlas topology coincides with the

quotient topology in that case. We have the following remarkable result [Lee12,

Thm. 4.31].

Theorem 9.2. A quotient space M =M/∼ admits at most one smooth struc-

ture that makes it a quotient manifold of M. When this is the case, the atlas

topology of M is the quotient topology.

This statement should be compared to Theorem 8.74 for embedded submani-

folds: a subset of a manifold admits at most one smooth structure that makes it

an embedded submanifold. Thus, just as it made sense to say that a subset of a

manifold is or is not an embedded submanifold, so it makes sense to say that a

quotient space of a manifold is or is not a quotient manifold.

A direct consequence of Definition 9.1 and Corollary 8.76 is that equivalence

classes are embedded submanifolds of the total space. As we discuss this, it

appears that we must sometimes distinguish between [x] as a point of M and

[x] as a subset of M. When in need, we adopt this convention: [x] = π(x) is a

point of M, whereas [x] = π−1(π(x)) is a subset of M.

Proposition 9.3. Let M =M/∼ be a quotient manifold. For any x ∈ M, the

equivalence class F = π−1(π(x)), also called a fiber, is closed in M and it is an

embedded submanifold of M. Its tangent spaces are given by

TyF = ker Dπ(y) ⊆ TyM. (9.12)

In particular, dimF = dimM− dimM.

Proof. Apply Corollary 8.76 with π : M → M as the defining map, and F as

the level set {y ∈M : π(y) = [x]}.

Thus, when an equivalence relation yields a quotient manifold, that equiv-

alence relation partitions the total space into closed, embedded submanifolds

called fibers. In particular, notice that all fibers have the same dimension. This

sometimes allows one to determine quickly that a given quotient space cannot

possibly be a quotient manifold—see Exercise 9.8. In the following example, we

illustrate Proposition 9.3 through the spaces that featured in the introduction.

Example 9.4. Consider the set M = St(n, p)/∼ as in (9.2). We have not

yet argued that this is a quotient manifold: we do so in the next section. For

now, let us assume that M indeed is a quotient manifold. Then, given a point
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218 Quotient manifolds

X ∈ St(n, p), Proposition 9.3 tells us that the fiber

F = {Y ∈ St(n, p) : X ∼ Y } = {XQ : Q ∈ O(p)}

is an embedded submanifold of St(n, p). (We could also show this directly.)

The tangent space to F at X is a subspace of TXSt(n, p), corresponding to the

kernel of the differential of π at X (9.12). As Dπ(x) is an abstract object, it is

often more convenient to approach TXF as follows: all tangent vectors in TXF
are of the form c̄′(0) for some smooth curve c̄ : I → F with c̄(0) = X. Moreover,

any such curve is necessarily of the form c̄(t) = XQ(t) with Q : I → O(p) a

smooth curve on the manifold O(p) with Q(0) = Ip. Thus, all tangent vectors in

TXF are of the form XQ′(0). Now we recall that the tangent space to O(p) at

Q(0) = Ip is the set of skew-symmetric matrices of size p (7.32) to conclude that

TXF = {XΩ : Ω + Ω⊤= 0} ⊂ TXSt(n, p).

We can connect this to π: by design, c(t) ≜ π(c̄(t)) = [X] is a constant curve on

St(n, p)/∼. Since we are assuming M is a quotient manifold, π is smooth too.

This allows us to use the chain rule, writing Q′(0) = Ω:

0 = c′(0) = Dπ(c̄(0))[c̄′(0)] = Dπ(X)[XΩ].

This confirms that any matrix of the form XΩ is in the kernel of Dπ(X).

Theorem 9.2 tells us that a quotient space may be a quotient manifold in at

most one way. When it is, we sometimes want to have access to charts of the

resulting smooth structure on the quotient manifold. The next result provides

such charts. It constitutes one part of the rank theorem in differential geome-

try [Lee12, Thm. 4.12].

Proposition 9.5. Let M = M/∼ be a quotient manifold with canonical pro-

jection π and dimM = n + k, dimM = n. For all x ∈ M, there exists a chart

(U , φ̄) of M around x and a chart (U , φ) of M around π(x) = [x] such that

π(U) ⊆ U and the coordinate representation of π,2

π̃ = φ ◦ π ◦ φ̄−1 : φ̄(U) ⊆ Rn+k → φ(U) ⊆ Rn, (9.13)

is simply the function π̃(z1, . . . , zn+k) = (z1, . . . , zn).

It is an exercise to check that π is an open map, that is, it maps open sets

of M to open sets of M [Lee12, Prop. 4.28]. We may thus replace U with π(U)

in Proposition 9.5 when convenient. By Definition 9.1, we also know that π is

surjective, and that its differentials Dπ(x) are surjective as well. (The latter

makes it a submersion.)

Given our focus on optimization, when facing quotient manifolds, we are natu-

rally led to consider pairs of problems: one which consists in minimizing f : M→
R, and a companion problem which consists in minimizing f̄ = f ◦ π : M→ R.

2 Note that U is not guaranteed to contain whole fibers, that is, π−1(π(U)) may not be

included in U .
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The properties of π provide strong links between the salient points of both prob-

lems. The following proposition states those links beyond the context of quo-

tients. Notice that it does not require any Riemannian structures. The proof is

deferred to Section 9.17.

Proposition 9.6. Let M and M be two manifolds with a map π : M → M.

Consider a function f : M → R and its lift f̄ = f ◦ π : M → R. The two

optimization problems miny∈M f(y) and minx∈M f̄(x) are related as follows:

1. If π is surjective, then x is a global minimizer of f̄ if and only if π(x) is a

global minimizer of f .

2. If π is continuous and open, then x is a local minimizer of f̄ if and only if

π(x) is a local minimizer of f .

3. If π is smooth and its differential at each point is surjective, then:

(a) x is a first-order critical point of f̄ if and only if π(x) is a first-order

critical point of f , and

(b) x is a second-order critical point of f̄ if and only if π(x) is a second-order

critical point of f .

If M is a quotient manifold of M with projection π, all of the above hold.

Exercise 9.7. Show that the projective space RPn−1 with the smooth structure

of Example 8.11 is a quotient manifold of Rn\{0} with the equivalence relation

x ∼ y ⇐⇒ x = αy for some α ∈ R.

Exercise 9.8. Consider the following equivalence relation overM = Rn×p, with

1 ≤ p < n: X ∼ Y if and only if Y = XQ for some Q ∈ O(p). Argue that M/∼
is not a quotient manifold. (Contrast with the introduction of this chapter, where

M = St(n, p).)

Exercise 9.9. Let M be a quotient manifold of M with canonical projection π.

Show that π is an open map, that is, if U is open in M, then π(U) is open in

M.

9.2 Quotient manifolds through group actions

There exists an explicit characterization of which equivalence relations on a man-

ifoldM yield quotient manifolds (see Section 9.17). Using this characterization,

however, is not straightforward. Fortunately, there exists a special class of suit-

able equivalence relations defined through group actions on manifolds that are

both simple to identify and important in practice. This covers our approach to

the Grassmann manifold in the introduction of this chapter (where the group is

O(p)) and other examples we discuss below (see Exercise 9.20).

We start with a few definitions regarding groups, Lie groups and group actions.

A set G equipped with an operation · : G×G→ G is a group if:
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1. The operation is associative: a · (b · c) = (a · b) · c for all a, b, c ∈ G;

2. There exists a unique element e ∈ G (called the identity) such that e · g =

g · e = g for all g ∈ G; and

3. For each g ∈ G there is an element g−1 ∈ G (called the inverse of g) such that

g · g−1 = g−1 · g = e.

If the set G is further equipped with a smooth structure—making it a manifold

G—and the group operation plays nicely with the smooth structure, then we call

G a Lie group.

Definition 9.10. Let G be both a manifold and a group with operation ·. If the

product map

prod: G × G → G : (g, h) 7→ prod(g, h) = g · h

and the inverse map

inv : G → G : g 7→ inv(g) = g−1

are smooth, then G is a Lie group. Smoothness of prod is understood with respect

to the product manifold structure on G × G (see Exercise 8.31).

Example 9.11. Some examples of Lie groups include O(n) (the orthogonal

group), SO(n) (the rotation group) and GL(n) (the general linear group, which

is the set of invertible matrices of size n × n), with group operation given by

the matrix product, and smooth structure as embedded submanifolds of Rn×n.

Their identity is the identity matrix In. Another example is the group of trans-

lations, Rn, whose group operation is vector addition. Its identity is the zero

vector. Yet another common example is the special Euclidean group, SE(n),

whose elements are of the form (R, t) ∈ SO(n) × Rn, with group operation

(R, t) · (R′, t′) = (RR′, Rt′ + t). The identity element is (In, 0). Equivalently,

we may represent (R, t) as the matrix [ R t
0 1 ], in which case the group operation

is the matrix product.

Elements of a group can sometimes be used to transform points of a manifold.

For example, X ∈ St(n, p) can be transformed into another element of St(n, p)

by right-multiplication with an orthogonal matrix Q ∈ O(p). Under some condi-

tions, these transformations are called group actions.

Definition 9.12. Given a Lie group G and a manifold M, a left group action

is a map θ : G ×M→M such that:

1. For all x ∈M, θ(e, x) = x (identity), and

2. For all g, h ∈ G and x ∈M, θ(g · h, x) = θ(g, θ(h, x)) (compatibility).

As a consequence, for all g ∈ G, the map x 7→ θ(g, x) is invertible on M, with

inverse x 7→ θ(g−1, x). The group action is smooth if θ is smooth as a map on

the product manifold G ×M to the manifold M. We then say the group G acts

smoothly on M.
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Similarly, a right group action is a map θ : M×G →M such that θ(x, e) = x

and θ(x, g · h) = θ(θ(x, g), h), for all g, h ∈ G and x ∈ M, and this action is

smooth if θ is smooth as a map between manifolds.

A group action induces an equivalence relation, as follows.

Definition 9.13. The orbit of x ∈ M through the left action θ of G is the set

Gx ≜ {θ(g, x) : g ∈ G}. This induces an equivalence relation ∼ on M:

x ∼ y ⇐⇒ y = θ(g, x) for some g ∈ G,

that is, two points of M are equivalent if they belong to the same orbit. As such,

orbits and equivalence classes coincide. We denote the quotient space M/∼ as

M/G (also called the orbit space), where the specific group action is indicated

by context. The definition is similar for right actions.

Some authors write G\M orM/G to distinguish between left and right action

quotients. We always write M/G.

Example 9.14. The map θ(X,Q) = XQ defined on St(n, p)×O(p) is a smooth,

right group action. Its orbits are the equivalence classes we have considered thus

far, namely, [X] = {XQ : Q ∈ O(p)}. Thus, St(n, p)/O(p) is one-to-one with

the Grassmann manifold Gr(n, p).

We have already discussed that not all equivalence relations on manifolds

lead to quotient manifolds. Unfortunately, neither do all smooth group actions:

further properties are required. Specifically, it is sufficient for the actions also to

be free and proper.

Definition 9.15. A group action θ is free if, for all x, acting on x with any

group element which is not the identity results in a point different from x. For

instance, a left action is free if, for all x ∈M, θ(g, x) = x =⇒ g = e.

If the action is not free, then different orbits could have different dimensions,

which is impossible for a quotient manifold.

For the following definition, recall Definition 8.26 for compact sets.

Definition 9.16. A left group action θ is proper if

ϑ : G ×M→M×M : (g, x) 7→ ϑ(g, x) = (θ(g, x), x)

is a proper map, that is, all compact subsets of M×M map to compact subsets

of G ×M through ϑ−1. The definition is similar for right actions.

The reason we require the action to be proper is topological: if the action is

smooth and proper, then the quotient topology is Hausdorff [Lee12, Prop. 21.4].

On the other hand, there exist smooth, free actions that are not proper and

for which the quotient topology ends up not being Hausdorff [Lee12, Ex. 21.3,

Pb. 21-5].

Checking whether an action is free is often straightforward. Checking for
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properness, on the other hand, can be more delicate. Fortunately, if the group G
is compact (which is the case for SO(n) and O(n)), then every smooth action is

proper [Lee12, Cor. 21.6].

Proposition 9.17. Every smooth action by a compact Lie group is proper.

If the group is not compact, see Section 9.17 for some pointers, specifically

Proposition 9.60.

We can now state the main theorem of this section. This is our tool of choice

to identify quotient manifolds [Lee12, Thm. 21.10].

Theorem 9.18. If the Lie group G acts smoothly, freely and properly on the

smooth manifold M, then the quotient space M/G is a quotient manifold of

dimension dimM− dimG; orbits (that is, fibers) have dimension dimG.

Example 9.19. Continuing our running example, we now check that the Grass-

mann manifold, seen as the quotient space St(n, p)/O(p), is indeed a quotient

manifold. We already checked that the action θ(X,Q) = XQ is smooth. By

Proposition 9.17, it is proper since O(p) is compact. It is also free since XQ =

X implies Q = Ip (by left-multiplying with X⊤). Thus, Theorem 9.18 implies

Gr(n, p), identified with St(n, p)/O(p), is a quotient manifold. More explicitly:

the theorem tells us there exists a unique smooth structure which turns Gr(n, p)

into a manifold such that

π : St(n, p)→ Gr(n, p) : X 7→ π(X) ≜ [X] = {XQ : Q ∈ O(p)}

has the properties laid out in Definition 9.1. Additionally, we know that

dim Gr(n, p) = dim St(n, p)− dim O(p) = p(n− p).

By Proposition 9.3, the fibers are closed, embedded submanifolds of St(n, p) with

dimension p(p−1)
2 : this is compatible with our work in Example 9.4 where we

showed the tangent space to a fiber at X is {XΩ : Ω ∈ Skew(p)}.
In contrast, one can check that the group action underlying Exercise 9.8 is

smooth and proper, but it is not free: not all orbits have the same dimension,

hence the quotient space is not a quotient manifold.

Exercise 9.20. In each item below, a Lie group G (recall Example 9.11) acts

on a manifold M through some action θ (the first one is a right action, the

other two are left actions). Check that these are indeed group actions and that

the quotient spaces M/G are quotient manifolds. (Recall that Rm×n
k is the set of

matrices of size m× n and rank k.)

1. M = SO(n)
k
, G = SO(n), θ((R1, . . . , Rk), Q) = (R1Q, . . . , RkQ).

2. M = Rm×r
r × Rn×r

r , G = GL(r), θ(J, (L,R)) = (LJ−1, RJ⊤).

3. M = Rd×n
d , G = SE(d), θ((R, t), X) = RX + t1⊤.

Describe the equivalence classes and the significance of the quotient manifolds.
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M

M

N
F

π
F̄ = F ◦ π

M

MN
F̄

F = π ◦ F̄
π

Figure 9.1 Commutative diagrams for Theorem 9.21 (left) and Proposition 9.23 (right)
about lifting a map F on or to a quotient manifold.

9.3 Smooth maps to and from quotient manifolds

Smooth maps on a quotient manifold M/∼ can be understood entirely through

smooth maps on the corresponding total space M. See Figure 9.1.

Theorem 9.21. Given a quotient manifoldM =M/∼ with canonical projection

π and any manifold N , a map F : M → N is smooth if and only if F̄ = F ◦
π : M→N is smooth.

One direction is clear: if F is smooth on the quotient manifold, then F̄ = F ◦π
is smooth on the total space by composition: we call F̄ the lift of F . Consider the

other direction: if F̄ onM is invariant under ∼, then it is of the form F̄ = F ◦π
for some map F on the quotient and we say F̄ descends to the quotient. To

argue that F is smooth if F̄ is smooth we introduce the notion of local section: a

map S which smoothly selects a representative of each equivalence class in some

neighborhood. One can establish their existence using the special charts afforded

by Proposition 9.5—see [Lee12, Thm. 4.26].

Proposition 9.22. For any x ∈ M there exists a neighborhood U of [x] on the

quotient manifold M = M/∼ and a smooth map S : U → M (called a local

section) such that π ◦ S is the identity map on U and S([x]) = x.

Proof of Theorem 9.21. If F is smooth, then F̄ is smooth by composition. The

other way around, if F̄ is smooth, let us show that F is smooth at an arbitrary

[x]. Use Proposition 9.22 to pick a local section S defined on a neighborhood U
of [x]. Since F̄ = F ◦π, we find that F |U = F̄ ◦S: this is smooth by composition.

Thus, F is smooth in some neighborhood around any point [x], that is, F is

smooth.

We note another result, this one about maps into quotient manifolds.

Proposition 9.23. Let F̄ : N →M be a map from one manifold into another,

and letM =M/∼ be a quotient manifold ofM with projection π. If F̄ is smooth,

then F = π ◦ F̄ : N → M is smooth. The other way around, if F : N → M is

smooth, then for all [x] ∈ M there exists a neighborhood U of [x] such that

F |F−1(U) = π ◦ F̄ for some smooth map F̄ : F−1(U)→M.
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Proof. The first part is through composition of smooth maps. For the second

part, consider F̄ = S ◦ F with a local section S defined on U , as provided by

Proposition 9.22: the domain F−1(U) is open in N since F is continuous, F̄ is

smooth by composition, and it is indeed the case that π ◦ F̄ is equal to F on

F−1(U) since π ◦ S is the identity on U .

The first part states that a smooth map into the total space yields a smooth

map into the quotient manifold after composition with π. In particular, if c̄ : I →
M is a smooth curve on the total space, then c = π ◦ c̄ is a smooth curve on the

quotient manifold.

The second part offers a partial converse. For example, if c : I → M is a

smooth curve on the quotient, then for any t0 ∈ I there exists an interval J ⊆ I
around t0 and a smooth curve c̄ : J →M such that c(t) = π(c̄(t)).

9.4 Tangent, vertical and horizontal spaces

Tangent vectors to a quotient manifold M =M/∼ are rather abstract objects:

a point [x] ∈ M is an equivalence class for ∼, and a tangent vector ξ ∈ T[x]M
is an equivalence class of smooth curves on M passing through [x] as defined

in Section 8.4. Fortunately, we can put the total space M to good use to select

concrete representations of tangent vectors.

In all that follows, it is helpful to think of the case where M is itself an

embedded submanifold of a linear space E (in our running example,M = St(n, p)

is embedded in Rn×p). Then, tangent vectors toM can be represented easily as

matrices, as we did in early chapters.

Accordingly, our goal is to establish one-to-one correspondences between cer-

tain tangent vectors ofM and tangent vectors ofM. Owing to Definition 9.1, a

tool of choice for this task is Dπ(x): it maps TxM onto T[x]M. This map, how-

ever, is not one-to-one. To resolve this issue, we proceed to restrict its domain

Consider a point x ∈ M and its fiber F . We know from Proposition 9.3 that

TxF is a subspace of TxM and that it coincides with the kernel of Dπ(x). We call

it the vertical space Vx. In some sense, vertical directions are the “uninteresting”

directions of TxM from the standpoint of the quotient manifold. If M is a

Riemannian manifold, we have access to an inner product ⟨·, ·⟩x on TxM. This

naturally suggests that we also consider the orthogonal complement of Vx.

Definition 9.24. For a quotient manifold M = M/∼, the vertical space at

x ∈M is the subspace

Vx = TxF = ker Dπ(x),

where F = {y ∈ M : y ∼ x} is the fiber of x. If M is Riemannian, we call the

orthogonal complement of Vx the horizontal space at x:

Hx = (Vx)⊥ =
{
u ∈ TxM : ⟨u, v⟩x = 0 for all v ∈ Vx

}
.
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Then, TxM = Vx ⊕Hx is a direct sum of linear spaces.

Since ker Dπ(x) = Vx, the restricted linear map

Dπ(x)|Hx
: Hx → T[x]M (9.14)

is bijective. Via this map, we may use (concrete) horizontal vectors at x to

represent (abstract) tangent vectors at [x] unambiguously. The former are called

horizontal lifts of the latter.

Definition 9.25. Consider a point x ∈ M and a tangent vector ξ ∈ T[x]M.

The horizontal lift of ξ at x is the (unique) horizontal vector u ∈ Hx such that

Dπ(x)[u] = ξ. We write

u = (Dπ(x)|Hx
)
−1

[ξ] = liftx(ξ). (9.15)

The following compositions are often useful:

Dπ(x) ◦ liftx = Id and liftx ◦Dπ(x) = ProjHx , (9.16)

where ProjHx is the orthogonal projector from TxM to Hx.

Conveniently, this definition also allows us to understand smooth curves that

represent ξ on the quotient manifold. Indeed, since the horizontal lift u of ξ at x

is a tangent vector to M at x, there exists a smooth curve c̄ : I →M such that

c̄(0) = x and c̄′(0) = u. Push this curve to the quotient manifold as follows:

c = π ◦ c̄ : I →M.

This is a curve on M, smooth by composition. Moreover, c(0) = [x] and, by the

chain rule,

c′(0) = Dπ(c̄(0))[c̄′(0)] = Dπ(x)[u] = ξ. (9.17)

In other words: c = π ◦ c̄ is a smooth curve on the quotient space which passes

through [x] with velocity ξ.

Of course, the horizontal lift depends on the point at which the vector is

lifted, but there is no ambiguity as to which abstract tangent vector it represents.

Specifically, for a tangent vector ξ ∈ T[x]M, if x ∼ y, we may consider horizontal

lifts ux ∈ Hx and uy ∈ Hy. While ux and uy are generally different objects, they

represent the same tangent vector of M:

Dπ(x)[ux] = ξ = Dπ(y)[uy]. (9.18)

The following example illustrates the concept of vertical and horizontal spaces

for St(n, p)/O(p) and shows how horizontal lifts of a same vector at two different

points of a fiber are related.

Example 9.26. In Example 9.19 we determined the tangent spaces of fibers of

M = St(n, p)/O(p). That reveals the vertical spaces:

VX = {XΩ : Ω ∈ Skew(p)}.
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With the usual Riemannian metric on St(n, p), namely, ⟨U, V ⟩X = Tr(U⊤V ), we

can determine the horizontal spaces:

HX = {U ∈ TXSt(n, p) : ⟨U,XΩ⟩X = 0 for all Ω ∈ Skew(p)}.

In this definition, we conclude that X⊤U must be symmetric. Yet, from (7.17) we

also know that U ∈ Rn×p is in TXSt(n, p) exactly when X⊤U is skew-symmetric.

Hence, we deduce that

HX = {U ∈ Rn×p : X⊤U = 0}.

For a given ξ ∈ T[X]M, say UX is its horizontal lift at X. Consider another

point in [X], namely, Y = XQ for some Q ∈ O(p). What is the horizontal lift of

ξ at Y ? To determine this, as a first step, we select a smooth curve c̄ on St(n, p)

such that c̄(0) = X and c̄′(0) = UX . From eq. (9.17) we know that

ξ = (π ◦ c̄)′(0).

Now, consider another smooth curve on St(n, p): c̃(t) = c̄(t)Q. Clearly, c̃(0) =

XQ = Y and c̃′(0) = c̄′(0)Q = UXQ. Since by construction π ◦ c̄ and π ◦ c̃ are

the same curve on M, we may conclude that

ξ = (π ◦ c̄)′(0) = (π ◦ c̃)′(0) = Dπ(c̃(0))[c̃′(0)] = Dπ(Y )[UXQ].

Crucially, UXQ is a horizontal vector at Y since Y ⊤UXQ = Q⊤X⊤UXQ = 0

owing to X⊤UX = 0. Uniqueness of horizontal lifts then tells us that UY = UXQ

is the horizontal lift of ξ at Y , that is,

liftXQ(ξ) = liftX(ξ) ·Q. (9.19)

That formula proves useful later on.

9.5 Vector fields

A vector field on a quotient manifold M is defined in the usual way as a suit-

able map from M to the tangent bundle TM. In light of the above discussion

regarding horizontal lifts of vectors, it is natural to relate vector fields on M
to horizontal vector fields on M, that is, vector fields on the total space whose

tangent vectors are horizontal.

Specifically, if V is a vector field on M =M/∼, then

V̄ (x) = liftx(V ([x])) (9.20)

uniquely defines a vector field V̄ on M called the horizontal lift of V . We also

write more compactly

V̄ = lift(V ). (9.21)

Conveniently, a vector field is smooth exactly if its horizontal lift is smooth

(Figure 9.2).
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M

M

TM

TM

V

π

V̄

Dπ

Figure 9.2 Commutative diagram for Theorem 9.27 about lifted vector fields.

Theorem 9.27. A vector field V on a quotient manifold M = M/∼ with

canonical projection π is related to its horizontal lift V̄ by:

V ◦ π = Dπ ◦ V̄ . (9.22)

Moreover, V is smooth on M if and only if V̄ is smooth on M.

The “if” direction of this proposition is fairly direct. To establish the “only

if” part, we need one additional technical result first. From Proposition 9.5,

recall that for all x′ ∈ M there exists a chart (U , φ̄) of M around x′ and a

chart (U , φ) of M around π(x′) = [x′] such that π̃ = φ ◦ π ◦ φ̄−1 is simply

π̃(z1, . . . , zn+k) = (z1, . . . , zn), with dimM = n+ k and dimM = n. Recall also

the definition of coordinate vector fields given by equation (8.15).

Proposition 9.28. The coordinate vector fields W̄1, . . . , W̄n+k for the chart φ̄

have the property that (with e1, . . . , en the canonical basis vectors of Rn):

Dπ(x)
[
W̄i(x)

]
=

{
(Dφ(π(x)))

−1
[ei] if i ∈ {1, . . . n},

0 if i ∈ {n+ 1, . . . , n+ k}.

In particular, W̄n+1, . . . , W̄n+k are vertical.

Proof. Each coordinate vector field W̄i is defined for z ∈ φ̄(U) by (8.15):

W̄i(φ̄
−1(z)) = Dφ̄−1(z)[ēi], (9.23)

where ēi is the ith canonical basis vector of Rn+k. Differentiate π̃ at z along the

direction ż ∈ Rn+k: using the simple expression of π̃ on one side, and the chain

rule for π̃ = φ ◦ π ◦ φ̄−1 on the other side, we get

(ż1, . . . , żn) = Dπ̃(z)[ż]

= Dφ(π(φ̄−1(z)))
[
Dπ(φ̄−1(z))

[
Dφ̄−1(z)[ż]

]]
.

Introducing the notation x = φ̄−1(z), the expression simplifies to:

(ż1, . . . , żn) = Dφ(π(x))
[
Dπ(x)

[
Dφ̄−1(z)[ż]

]]
. (9.24)

In particular, for ż = ēi we recognize the coordinate vector fields as in (9.23) so
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228 Quotient manifolds

that

Dφ(π(x))
[
Dπ(x)

[
W̄i(x)

]]
=

{
ei if i ∈ {1, . . . , n},
0 if i ∈ {n+ 1, . . . , n+ k}.

To conclude, note that Dφ(π(x)) is invertible since φ is a chart.

We can now give a proof for Theorem 9.27 characterizing smoothness of vector

fields on quotient manifolds.

Proof of Theorem 9.27. Equation (9.22) follows from the definition of V̄ (9.21)

and from the properties of horizontal lifts (9.16). Using Theorem 9.21 then equa-

tion (9.22), we find the following equivalences:

V is smooth ⇐⇒ V ◦ π is smooth ⇐⇒ Dπ ◦ V̄ is smooth.

Since Dπ is smooth by Proposition 8.44, if V̄ is smooth, then V is smooth by

composition.

The other way around, if V is smooth, then Dπ ◦ V̄ is smooth. We want to

deduce that V̄ is smooth. To this end, for any x′ ∈ M, summon the coordinate

vector fields W̄1, . . . , W̄n+k afforded by Proposition 9.28 and defined on some

neighborhood U of x′. By Corollary 8.52, there exist unique functions gi : U → R
such that, on the domain U ,

V̄ (x) =

n+k∑
i=1

gi(x)W̄i(x), (9.25)

and V̄ is smooth on U if (and only if) these functions are smooth.

We first show g1, . . . , gn are smooth. Since Dπ ◦ V̄ is smooth,

x 7→
n+k∑
i=1

gi(x)Dπ(x)[W̄i(x)]

is smooth. Using properties of Dπ ◦ W̄i specified by Proposition 9.28, we further

find that

x 7→
n∑

i=1

gi(x) (Dφ(π(x)))
−1

[ei] = (Dφ(π(x)))
−1

[(g1(x), . . . , gn(x))]

is smooth, where ei is the ith canonical basis vector of Rn. Since Dφ(π(x)) is

smooth as a function of x (because it is part of a chart for TM, see Theo-

rem 8.43), it follows that g1, . . . , gn are smooth.

It only remains to show gn+1, . . . , gn+k are also smooth. To this end, we es-

tablish linear equations relating the coordinate functions. With j ∈ {1, . . . , k},
we get k equations by taking an inner product of (9.25) against W̄n+j . Since V̄
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is horizontal and each W̄n+j is vertical, we find:0
...

0

 =


〈
W̄1, W̄n+1

〉
· · ·

〈
W̄n, W̄n+1

〉
...

...〈
W̄1, W̄n+k

〉
· · ·

〈
W̄n, W̄n+k

〉

g1...
gn



+


〈
W̄n+1, W̄n+1

〉
· · ·

〈
W̄n+k, W̄n+1

〉
...

...〈
W̄n+1, W̄n+k

〉
· · ·

〈
W̄n+k, W̄n+k

〉

gn+1

...

gn+k

 .
Since (a) the functions

〈
W̄i, W̄j

〉
are smooth for all i and j (by definition of

Riemannian metrics and smoothness of coordinate vector fields), (b) the coor-

dinate functions g1, . . . , gn are smooth, and (c) the k × k coefficient matrix is

positive definite (by linear independence of the coordinate vector fields) and thus

smoothly invertible, we conclude that gn+1, . . . , gn+k are indeed smooth. This

confirms that V̄ is smooth at an arbitrary x′, hence V̄ is smooth.

In light of the above result, actions (recall (8.14)) of smooth vector fields on

smooth functions on the quotient manifold are easily understood in the total

space.

Proposition 9.29. For a quotient manifold M = M/∼ with canonical pro-

jection π, consider a smooth vector field V ∈ X(M) and a smooth function

f ∈ F(M) together with their lifts V̄ ∈ X(M) and f̄ ∈ F(M). Then, the lift of

V f is V̄ f̄ , that is,

(V f) ◦ π = V̄ f̄ . (9.26)

In words: we may lift then act, or act then lift.

Proof. By definition of the action of a smooth vector field on a smooth func-

tion (8.14), for all [x] ∈M,

(V f)([x]) = Df([x])[V ([x])].

On the other hand, by the chain rule on f̄ = f ◦ π and (9.22),

(V̄ f̄)(x) = Df̄(x)[V̄ (x)] = Df([x])[Dπ(x)[V̄ (x)]] = Df([x])[V ([x])].

Hence, (V̄ f̄)(x) = (V f)(π(x)) for all x ∈M.

Another useful consequence of Theorem 9.27 is that we can construct local

frames (Definition 3.68) for M that separate into horizontal and vertical parts.

We use this and the next proposition to argue smoothness of certain retractions

in Theorem 9.33 below. Recall the definition of orthonormal local frame given in

Exercise 3.72.

Proposition 9.30. Let M =M/∼ be a quotient manifold with canonical pro-

jection π and dimM = n, dimM = n + k. For every x ∈ M, there exists an
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230 Quotient manifolds

orthonormal local frame Ŵ1, . . . , Ŵn+k ofM smoothly defined on a neighborhood

U of x in M such that

1. Ŵ1, . . . , Ŵn are horizontal vector fields, and

2. Ŵn+1, . . . , Ŵn+k are vertical vector fields.

Also, Wi = Dπ[Ŵi] for i = 1, . . . , n form a local frame for M on π(U).

Proof. By Proposition 8.51, the coordinate vector fields W̄1, . . . , W̄n+k provided

by Proposition 9.28 already form a local frame. Moreover, W̄n+1, . . . , W̄n+k

are already vertical. However, W̄1, . . . , W̄n may not be horizontal. To build

Ŵ1, . . . , Ŵn+k, apply Gram–Schmidt orthogonalization to W̄1, . . . , W̄n+k in re-

verse order: it is an exercise to verify that this achieves the desired result and

preserves smoothness.

See Section 9.7 for a comment regarding orthonormality of the local frame

W1, . . . ,Wn constructed in Proposition 9.30.

We can use this last proposition to show that the lift map is smooth. To make

sense of this statement, we resort to local sections (Proposition 9.22).

Proposition 9.31. For every [x′] on a quotient manifold M = M/∼, there

exists a local section S : U →M on a neighborhood U of [x′] such that

ℓ : TU → TM : ([x], ξ) 7→ ℓ([x], ξ) = liftS([x]) (ξ)

is smooth.

Proof. Using Proposition 9.30, select a local frame Ŵ1, . . . , Ŵn+k on a neigh-

borhood U of x′ in M. This also yields a corresponding local frame W1, . . . ,Wn

on U = π(U) (a neighborhood of [x′]) defined by Wi = Dπ[Ŵi]. By construc-

tion, Ŵ1, . . . , Ŵn are horizontal and Ŵn+1, . . . , Ŵn+k are vertical. Select a local

section S : U → M such that S([x′]) = x′ (if this requires reducing the domain

U , do so and reduce U as well to preserve the relation U = π(U)). Notice that

these domains are still neighborhoods of [x′] and x′, respectively, and the local

frames are well defined on them. Further select a chart (U , φ) of M around [x′]

and a chart (U , φ̄) of M around x′ such that S(U) ⊆ U ; again, reduce domains

if necessary.

Use the local frame W1, . . . ,Wn to build a chart of TU as follows:

([x], ξ) 7→ (φ([x]), a1, . . . , an),

where a1, . . . , an are defined through ξ = a1W1([x]) + · · ·+anWn([x]). That this

is a chart follows from the fact that basic charts of the tangent bundle are defined

using coordinate vector fields (see Theorem 8.43), and changing coordinates be-

tween these and any local frame is a diffeomorphism. Likewise, build a chart of

TM on the domain TU as

(x, u) 7→ (φ̄(x), a1, . . . , an+k),

where ais are uniquely defined by u = a1Ŵ1(x) + · · ·+ an+kŴn+k(x).
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9.6 Retractions 231

We can write ℓ through these charts as ℓ̃ : R2n → R2(n+k). Since

liftS([x])(ξ) = liftS([x]) (a1W1([x]) + · · ·+ anWn([x]))

= a1Ŵ1(S([x])) + · · ·+ anŴn(S([x])),

the coordinates of the vector part of ℓ([x], ξ) are obtained simply by appending

k zeros, so that

ℓ̃(z1, . . . , zn, a1, . . . , an) =
(
φ̄(S(φ−1(z))), a1, . . . , an, 0, . . . , 0

)
.

This is a smooth function, hence ℓ is smooth.

Exercise 9.32. Work out the details for the proof of Proposition 9.30.

9.6 Retractions

Given a retraction R on the total space M, we may try to define a retraction R

on the quotient manifold M =M/∼ as follows:

R[x](ξ) =
[
Rx(liftx(ξ))

]
. (9.27)

If this is well defined, that is, if the right-hand side does not depend on the choice

of lifting point x ∈ [x], this is indeed a retraction.

Theorem 9.33. If the retraction R on the total space M satisfies

x ∼ y =⇒ Rx(liftx(ξ)) ∼ Ry(lifty(ξ)) (9.28)

for all x, y ∈M and ξ ∈ T[x]M, then (9.27) defines a retraction R on M.

Proof. Since liftx(0) = 0, it holds that R[x](0) = [x]. Assuming for now that R

is indeed smooth, by the chain rule, for all ξ ∈ T[x]M we have

DR[x](0)[ξ] = Dπ(x)
[
DRx(0)[Dliftx(0)[ξ]]

]
= ξ,

where we used Dliftx(0) = liftx since it is a linear map, DRx(0) is identity since

R is a retraction, and Dπ(x) ◦ liftx is identity. This confirms that DR[x](0) is the

identity map on T[x]M.

To verify smoothness, invoke Proposition 9.31 to select a local section S : U →
M; then, R[x](ξ) = π

(
RS([x])

(
liftS([x])(ξ)

))
is smooth on TU since π, S and R

are smooth, and so is the map ([x], ξ) 7→ liftS([x])(ξ). To conclude, repeat this

argument on a collection of domains U to cover all of TM.

Example 9.34. As we can guess from the introduction of this chapter, both

the QR retraction and the polar retraction on St(n, p) satisfy the condition in

Theorem 9.33. Indeed, from (9.19) we know that, for all Q ∈ O(p),

XQ+ liftXQ(ξ) = (X + liftX(ξ))Q.
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232 Quotient manifolds

As a result, these are valid retractions on the quotient manifold St(n, p)/O(p):

RQR
[X](ξ) = [qfactor(X + liftX(ξ))] , and (9.29)

Rpol
[X](ξ) = [pfactor(X + liftX(ξ))] , (9.30)

where qfactor extracts the Q-factor of a QR decomposition of a matrix in Rn×p,

and pfactor extracts its polar factor: see (7.22) and (7.24).

9.7 Riemannian quotient manifolds

A quotient manifoldM =M/∼ is a manifold in its own right. As such, we may

endow it with a Riemannian metric of our choosing. As is the case for Riemannian

submanifolds—which inherit their metric from the embedding space—endowing

the quotient manifold with a metric inherited from the total space leads to

nice formulas for objects such as gradients, connections, Hessians and covariant

derivatives.

What does it take for the Riemannian metric of M to induce a Riemannian

metric on the quotient manifold M? A natural idea is to try to work with

horizontal lifts. Specifically, consider ξ, ζ ∈ T[x]M. It is tempting to (tentatively)

define an inner product ⟨·, ·⟩[x] on T[x]M by

⟨ξ, ζ⟩[x] = ⟨liftx(ξ), liftx(ζ)⟩x , (9.31)

where ⟨·, ·⟩x is the Riemannian metric on TxM. For this to make sense, the

definition of ⟨ξ, ζ⟩[x] must not depend on our choice of x: the point at which

tangent vectors are lifted. That is, for all ξ, ζ ∈ T[x]M, we must have

x ∼ y =⇒ ⟨liftx(ξ), liftx(ζ)⟩x = ⟨lifty(ξ), lifty(ζ)⟩y . (9.32)

If this condition holds for all [x], we may ask whether (9.31) defines a Riemannian

metric onM. The answer is yes. Indeed, recall from Definition 8.55 that a metric

is Riemannian if for every pair of smooth vector fields U, V ∈ X(M) the function

f([x]) = ⟨U([x]), V ([x])⟩[x]
is smooth on M. To see that this is the case, consider the horizontal lifts Ū , V̄

of U, V , and the function f̄ =
〈
Ū , V̄

〉
on M:

f̄(x) =
〈
Ū(x), V̄ (x)

〉
x

= ⟨liftx(U([x])), liftx(V ([x]))⟩x
(9.31)

= ⟨U([x]), V ([x])⟩[x] = f([x]).

The function f̄ is smooth since Ū and V̄ are smooth by Theorem 9.27. Further-

more, f̄ = f ◦ π, which shows f is smooth by Theorem 9.21. Thus, if (9.31) is

well defined, then it is a Riemannian metric, and lifting commutes with taking

inner products, that is,

∀U, V ∈ X(M), ⟨U, V ⟩ ◦ π = ⟨lift(U), lift(V )⟩ . (9.33)
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The above discussion supports the following result, which doubles as a definition

of Riemannian quotient manifold (coined in [AMS08, p53]).

Theorem 9.35. If the Riemannian metric on M satisfies (9.32), then (9.31)

defines a Riemannian metric on the quotient manifold M = M/∼. With this

metric, M is called a Riemannian quotient manifold of M.

For a Riemannian quotient manifold, Dπ(x)|Hx
and its inverse liftx are isome-

tries for all x ∈ M; the canonical projection π is then called a Riemannian

submersion [O’N83, Def. 7.44]. One particular consequence is that the vector

fields Wi in Proposition 9.30 are orthonormal.

Example 9.36. With the usual trace inner product on St(n, p) to make it a

Riemannian submanifold of Rn×p, we consider the following tentative metric for

St(n, p)/O(p):

⟨ξ, ζ⟩[X] = ⟨U, V ⟩X = Tr(U⊤V ),

where U = liftX(ξ) and V = liftX(ζ). Using the relationship (9.19) between lifts

at different points of a fiber, we find that, for all Q ∈ O(p),

⟨liftXQ(ξ), liftXQ(ζ)⟩XQ = ⟨UQ, V Q⟩XQ = Tr((UQ)⊤(V Q))

= Tr(U⊤V ) = ⟨U, V ⟩X = ⟨liftX(ξ), liftX(ζ)⟩X .

This confirms that the tentative metric is invariant under the choice of lifting

point: condition (9.32) is fulfilled, thus Theorem 9.35 tells us this is a Rieman-

nian metric on the quotient manifold, turning it into a Riemannian quotient

manifold.

For the special case of a quotient manifold defined through a Lie group action,

condition (9.32) holds if the group action plays nicely with the metric.

Definition 9.37. A smooth left group action θ of a Lie group G on a Riemannian

manifold M is isometric if for all g ∈ G the map F : M → M defined by

F (x) = θ(g, x) is isometric, in the sense that

∀x ∈M,∀u, v ∈ TxM, ⟨DF (x)[u],DF (x)[v]⟩F (x) = ⟨u, v⟩x .

The definition is similar for right actions.

Theorem 9.38. If the Lie group G acts smoothly, freely, properly and isomet-

rically on the Riemannian manifold M, then the quotient space M/G is a Rie-

mannian quotient manifold with the Riemannian metric defined in (9.31).

Proof. In light of Theorem 9.18, it remains to verify condition (9.32). Fix an

arbitrary g ∈ G. Consider the map F : M → M defined by F (x) = θ(g, x)

(assuming without loss of generality that we are dealing with a left action). Fix

an arbitrary point x ∈ M. Let c : I →M be an arbitrary smooth curve on M
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satisfying c(0) = x, and let u ≜ c′(0). It holds that π ◦c = π ◦F ◦c. In particular,

their derivatives at t = 0 are equal; by the chain rule, this translates into:

Dπ(x)[u] = Dπ(F (x))[DF (x)[u]].

This holds for all u ∈ TxM. Apply liftF (x) to both sides on the left to deduce

that

liftF (x) ◦Dπ(x) = ProjHF (x) ◦DF (x). (9.34)

From this expression, it is clear that DF (x) transforms vertical vectors at x

into vertical vectors at F (x). Moreover, since DF (x) is a linear isometry and

since Vx and VF (x) have the same dimension, it follows that DF (x) maps any

orthonormal basis of Vx to an orthonormal basis of VF (x). Consequently, DF (x)

also transforms horizontal vectors at x into horizontal vectors at F (x). Therefore,

liftF (x) ◦Dπ(x)|Hx = DF (x)|Hx , (9.35)

where DF (x)|Hx : Hx → HF (x) is a linear isometry. It is now clear that con-

dition (9.32) holds: given y ∼ x, pick g such that y = F (x) and use ξ =

Dπ(x)[u], ζ = Dπ(x)[v] for some horizontal vectors u, v ∈ Hx.

With this last result, we can revisit Example 9.36. For any Q ∈ O(p), consider

the map F : St(n, p)→ St(n, p) defined by F (X) = XQ—this captures the group

action. Of course, DF (X)[U ] = UQ. Thus,

∀X ∈ St(n, p),∀U, V ∈ TXSt(n, p),

⟨DF (X)[U ],DF (X)[V ]⟩F (X) = ⟨UQ, V Q⟩XQ = ⟨U, V ⟩X .

This confirms that F is an isometry: apply Theorem 9.38 to conclude.

9.8 Gradients

The gradient of a smooth function on a quotient manifold equipped with a Rie-

mannian metric is defined in the same way as for any manifold, see Defini-

tion 8.57. Being a smooth vector field on the quotient manifold, the gradient is

an abstract object. Prompted by the discussions of the past few sections, we aim

to represent the gradient via a horizontal lift. In the important special case of

a Riemannian quotient manifold as defined through Theorem 9.35, this can be

done rather easily, as we now show.

Consider f : M→ R and its lift f̄ = f ◦ π. On the one hand, the gradient of

f with respect to the metric on M satisfies:

∀([x], ξ) ∈ TM, Df([x])[ξ] = ⟨gradf([x]), ξ⟩[x] .

On the other hand, the gradient of the lifted function f̄ with respect to the

metric on the total space M obeys:

∀(x, u) ∈ TM, Df̄(x)[u] =
〈
gradf̄(x), u

〉
x
.
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Fix a point x ∈ M. Starting with the latter, using the chain rule on f̄ = f ◦ π,

and concluding with the former we find:

∀u ∈ TxM,
〈
gradf̄(x), u

〉
x

= Df̄(x)[u]

= Df(π(x))[Dπ(x)[u]]

= ⟨gradf([x]),Dπ(x)[u]⟩[x] .

This holds for all tangent vectors. Thus, for horizontal vectors in particular, using

the definition of metric on a Riemannian quotient manifold given by (9.31) and

the relations (9.16), we get

∀u ∈ Hx,
〈
gradf̄(x), u

〉
x

= ⟨gradf([x]),Dπ(x)[u]⟩[x]
= ⟨liftx(gradf([x])), u⟩x .

This tells us that the horizontal part of gradf̄(x) is equal to the lift of gradf([x])

at x. What about the vertical part? That one is necessarily zero, owing to the

fact that f̄ is constant along fibers. Indeed,

∀v ∈ Vx,
〈
gradf̄(x), v

〉
x

= Df̄(x)[v] = Df([x])[Dπ(x)[v]] = 0, (9.36)

since Dπ(x)[v] = 0 for v ∈ Vx. This leads to a simple conclusion.

Proposition 9.39. The Riemannian gradient of f on a Riemannian quotient

manifold is related to the Riemannian gradient of the lifted function f̄ = f ◦ π
on the total space via

liftx(gradf([x])) = gradf̄(x), (9.37)

for all x ∈M.

In words: to compute the horizontal lift of the gradient of a smooth function

f on a Riemannian quotient manifold, we only need to compute the gradient of

the lifted function, f̄ = f ◦ π. In other words: taking gradients commutes with

lifting. Compare with (8.27) for Riemannian submanifolds.

Example 9.40. In the introduction of this chapter, we considered the cost func-

tion f̄ (9.3) defined on St(n, p):

f̄(X) = Tr(X⊤AX).

This function has the invariance f̄(XQ) = f̄(X) for all Q ∈ O(p). Thus,

there is a well-defined smooth function f on the Riemannian quotient mani-

fold St(n, p)/O(p) related to f̄ by f̄ = f ◦ π. Remembering the expression (9.6)

for the gradient of f̄ with respect to the usual Riemannian metric on St(n, p),

and applying Proposition 9.39 to relate it to the gradient of f on the Riemannian

quotient manifold, we find:

liftX(gradf([X])) = gradf̄(X) = 2(In −XX⊤)AX. (9.38)

Notice how the gradient of f̄ is necessarily horizontal: comparing with the explicit
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description of the horizontal and vertical spaces given in Example 9.26, we see

now why one of the terms in (9.6) had to cancel.

9.9 A word about Riemannian gradient descent

Consider a smooth cost function f on a quotient manifold M =M/∼ endowed

with a Riemannian metric and a retraction R. Given an initial guess [x0] ∈ M,

RGD on f iterates

[xk+1] = R[xk](−αkgradf([xk])) (9.39)

with step-sizes αk determined in some way. How can we run this abstract algo-

rithm numerically, in practice?

The first step is to decide how to store the iterates [x0], [x1], [x2], . . . in memory.

An obvious choice is to store x0, x1, x2, . . . themselves. These are points of M:

if the latter is an embedded submanifold of a Euclidean space for example, this

should be straightforward.

With access to xk as a representative of [xk], we turn to computing gradf([xk]).

In the spirit of Section 9.4, we consider its horizontal lift at xk. This is a tangent

vector to M at xk: it should be straightforward to store in memory as well. If

M is a Riemannian quotient manifold ofM, then Proposition 9.39 conveniently

tells us that

liftxk
(gradf([xk])) = gradf̄(xk), (9.40)

where f̄ = f ◦π and π : M→M is the canonical projection. Thus, by computing

gradf̄(xk), we get a hold of gradf([xk]).

With these ingredients in memory, it remains to discuss how we can compute

xk+1. Let us assume that R is related to a retraction R on M through (9.27).

Then, proceeding from (9.39) we deduce that

[xk+1] = R[xk](−αkgradf([xk]))

=
[
Rxk

(−αk liftxk
(gradf([xk])))

]
=
[
Rxk

(−αkgradf̄(xk))
]
. (9.41)

Thus, ifM is a Riemannian quotient manifold ofM and if R and R are related

via (9.27), then numerically iterating

xk+1 = Rxk
(−αkgradf̄(xk)) (9.42)

onM is equivalent to running the abstract iteration (9.39) onM. Interestingly,

iteration (9.42) is nothing but RGD on f̄ . In this sense, and under the stated

assumptions, RGD on M and on M are identical.

As a technical point, note that for (9.42) to be a proper instantiation of (9.39),

we must make sure that the chosen step-size αk depends on xk only through the

equivalence class [xk]. Under the same assumptions as above, this is indeed the
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case so long as αk is determined based on the line-search function (and possibly

other invariant quantities)—this covers typical line-search methods. Explicitly,

the line-search functions for f̄ at x and for f at [x] are the same:

∀t, f̄
(
Rx(−tgradf̄(x))

)
= f

(
R[x](−tgradf([x]))

)
.

Though running RGD on M or on M may be the same, we still reap a theo-

retical benefit from the quotient perspective. We discussed the local convergence

behavior of RGD in Section 4.6, noting that we may expect linear convergence

to a local minimizer if the Hessian of the cost function at that point is positive

definite. Crucially, the cost function f̄ on the total space M cannot admit such

critical points because of its invariance under ∼.

Lemma 9.41. Let M be a Riemannian manifold and let f : M→ R be smooth

on a quotient manifold M = M/∼ with canonical projection π. If x ∈ M is a

critical point for f̄ = f ◦ π, then the vertical space Vx is included in the kernel

of Hessf̄(x). In particular, if dimM < dimM then Hessf̄(x) is not positive

definite.

Proof. Pick an arbitrary vertical vector v ∈ Vx. Since the fiber of x is an em-

bedded submanifold of M with tangent space Vx at x, we can pick a smooth

curve c̄ on the fiber of x such that c̄(0) = x and c̄′(0) = v. With ∇̄ and D̄
dt

denoting the Riemannian connection and induced covariant derivative onM, we

have identities as in (5.17):

Hessf̄(x)[v] = ∇̄vgradf̄ =
D̄

dt
gradf̄(c̄(t))

∣∣∣∣
t=0

.

By Proposition 9.39 , the fact that x is a critical point for f̄ implies that [x] is

a critical point for f . Still using that same proposition, we also see that, for all

t in the domain of c̄,

gradf̄(c̄(t)) = liftc̄(t)(gradf([c̄(t)])) = liftc̄(t)(gradf([x])) = 0.

It follows that Hessf̄(x)[v] = 0.

Thus, the standard theory does not predict fast local convergence for RGD on

f̄ .

The good news is: the trivial eigenvalues of the Hessian of f̄ associated to

vertical directions do not appear in the spectrum of the Hessian of f on the

quotient manifold (see Exercise 9.46). Thus, if the version of RGD we actually

run onM is equivalent to RGD onM, we may apply the local convergence results

of Section 4.6 to f rather than to f̄ . In many instances, the local minimizers of

f do have the property that the Hessian there is positive definite, in which case

we can claim (and indeed observe) fast local convergence.

As a closing remark: bear in mind that, in full generality, given a sequence

x0, x1, x2, . . . on M, it may happen that the sequence of equivalence classes

[x0], [x1], [x2], . . . converges to a limit point in M, while x0, x1, x2, . . . itself does

not converge in M.
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9.10 Connections

LetM be a Riemannian manifold. Recall from Theorem 8.63 thatM is equipped

with a uniquely defined Riemannian connection, here denoted by ∇̄. Likewise,

a Riemannian quotient manifold M =M/∼ is equipped with its own uniquely

defined Riemannian connection, ∇. Conveniently, due to the strong link between

the Riemannian metric onM and that onM, their Riemannian connections are

also tightly related. The main object of this section is to establish the formula:

lift(∇UV ) = ProjH
(
∇̄Ū V̄

)
, (9.43)

where lift : X(M) → X(M) extracts the horizontal lift of a vector field as

in (9.21), Ū = lift(U), V̄ = lift(V ), and ProjH : X(M) → X(M) orthogonally

projects each tangent vector of a vector field to the horizontal space at its base.

The proof of this statement is based on the Koszul formula (5.11), which we

first encountered in the proof of Theorem 5.6. Recall that this formula completely

characterizes the Riemannian connection in terms of the Riemannian metric and

Lie brackets: for all U, V,W ∈ X(M),

2 ⟨∇UV ,W ⟩ = U⟨V,W ⟩+ V ⟨W,U⟩ −W ⟨U, V ⟩
− ⟨U, [V,W ]⟩+ ⟨V, [W,U ]⟩+ ⟨W, [U, V ]⟩ .

To make progress, we must first understand how Lie brackets on the quotient

manifold are related to Lie brackets of horizontal lifts.

Proposition 9.42. For any two smooth vector fields U, V ∈ X(M) and their

horizontal lifts Ū , V̄ ∈ X(M),

lift([U, V ]) = ProjH([Ū , V̄ ]). (9.44)

Proof. From (9.26) and (9.33), recall that for all U, V ∈ X(M) and f ∈ F(M)

and their lifts Ū = lift(U), V̄ = lift(V ) and f̄ = f ◦ π:

(V f) ◦ π = V̄ f̄ , ⟨U, V ⟩ ◦ π =
〈
Ū , V̄

〉
. (9.45)

Then, by definition of Lie brackets,

lift([U, V ])f̄ = ([U, V ]f) ◦ π
= (UV f) ◦ π − (V Uf) ◦ π
= Ū V̄ f̄ − V̄ Ū f̄
= [Ū , V̄ ]f̄

= ProjH([Ū , V̄ ])f̄ ,

where the last equality holds because f̄ is constant along vertical directions. The

fact that this holds for all lifted functions f̄ allows to conclude. Slightly more

explicitly, using V̄ f̄ =
〈
V̄ , gradf̄

〉
twice, the above can be reformulated as:

⟨lift([U, V ]), gradf̄⟩ = ⟨ProjH([Ū , V̄ ]), gradf̄⟩.
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Then, consider for each point x ∈ M a collection of dimM functions f whose

gradients at [x] form a basis for the tangent space T[x]M: the gradients of their

lifts form a basis for the horizontal space Hx, which forces the horizontal parts of

lift([U, V ]) and ProjH([Ū , V̄ ]) to coincide. Since both fields are horizontal, they

are equal.

Let Ū , V̄ , W̄ denote the horizontal lifts of U, V and W . Using identities (9.44)

and (9.45) several times we find that:

(U ⟨V,W ⟩) ◦ π = Ū(⟨V,W ⟩ ◦ π) = Ū
〈
V̄ , W̄

〉
, and

⟨U, [V,W ]⟩ ◦ π =
〈
Ū , lift([V,W ])

〉
=
〈
Ū , [V̄ , W̄ ]

〉
, (9.46)

where in the last equality we used that Ū is horizontal. With these identities in

hand, compare the Koszul formulas for both ∇ and ∇̄: this justifies the second

equality in〈
ProjH(∇̄Ū V̄ ), W̄

〉
=
〈
∇̄Ū V̄ , W̄

〉
= ⟨∇UV ,W ⟩ ◦ π =

〈
lift(∇UV ), W̄

〉
,

while the first equality holds owing to horizontality of W̄ . Once more, since this

holds for all lifted horizontal fields W̄ , we see that (9.43) holds, as announced.

This discussion warrants the following theorem.

Theorem 9.43. Let M be a Riemannian quotient manifold of M. The Rie-

mannian connections ∇ on M and ∇̄ on M are related by

lift(∇UV ) = ProjH
(
∇̄Ū V̄

)
for all U, V ∈ X(M), with Ū = lift(U) and V̄ = lift(V ).

Compare this result to (8.28) for Riemannian submanifolds.

Exercise 9.44. Show that

∇̄Ū V̄ = lift(∇UV ) +
1

2
ProjV([Ū , V̄ ]),

where ProjV = Id−ProjH is the orthogonal projector to vertical spaces. Argue

furthermore that ProjV([Ū , V̄ ]) at x depends only on Ū(x) and V̄ (x).

9.11 Hessians

For a smooth function f on a Riemannian quotient manifold M = M/∼, the

Hessian of f is defined at ([x], ξ) ∈ TM by

Hessf([x])[ξ] = ∇ξgradf. (9.47)

For any vector field V ∈ X(M), Theorem 9.43 tells us that

liftx(∇ξV ) = ProjHx (∇̄uV̄ ), (9.48)
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where u = liftx(ξ) and V̄ = lift(V ). Recall from Proposition 9.39 that

lift(gradf) = gradf̄ , (9.49)

with f̄ = f ◦ π. Combining, we find that

liftx(Hessf([x])[ξ]) = ProjHx
(
∇̄ugradf̄

)
. (9.50)

Finally, since ∇̄ugradf̄ = Hessf̄(x)[u], we get the following result.

Proposition 9.45. The Riemannian Hessian of f on a Riemannian quotient

manifold is related to the Riemannian Hessian of the lifted function f̄ = f ◦ π
on the total space as

liftx(Hessf([x])[ξ]) = ProjHx
(
Hessf̄(x)[u]

)
, (9.51)

for all x ∈M and ξ ∈ T[x]M, with u = liftx(ξ).

See Example 9.49 for an illustration.

We already knew from Proposition 9.6 that second-order criticality is pre-

served between M and M for f and f̄ . This has implications for how their

Hessians relate at critical points. It is an exercise to make this more precise for

the Riemannian structures chosen here.

Exercise 9.46. Let f : M→ R be smooth on a Riemannian quotient manifold

M =M/∼ with canonical projection π, and let f̄ = f ◦π. We know that x ∈M
is a first-order critical point for f̄ if and only if [x] is a first-order critical point

for f . (See Proposition 9.6 or 9.39.)

Show that if x is critical then the eigenvalues of Hessf̄(x) are exactly the eigen-

values of Hessf([x]) together with a set of dimM−dimM additional eigenvalues

equal to zero. (Hint: use Lemma 9.41.)

9.12 A word about Riemannian Newton’s method

We considered Newton’s method on a general Riemannian manifold in Sec-

tion 6.2. Applied to the minimization of a function f on a quotient manifold

M =M/∼ with retraction R, the update equation is

[xk+1] = R[xk](ξk), (9.52)

where ξk ∈ T[xk]M is the solution of the linear equation

Hessf([xk])[ξk] = −gradf([xk]), (9.53)

which we assume to be unique. In the spirit of Section 9.9, we now discuss how

to run (9.52) in practice.

Let us assume that M is a Riemannian quotient manifold with canonical

projection π. We lift both sides of (9.53) to the horizontal space at xk. With
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sk = liftxk
(ξk), Propositions 9.39 and 9.45 tell us that the linear equation is

equivalent to

ProjHxk

(
Hessf̄(xk)[sk]

)
= −gradf̄(xk), (9.54)

where f̄ = f ◦ π. This system is to be solved for sk in the horizontal space Hxk
.

Although ProjHxk
and Hessf̄(xk) are both symmetric maps on Txk

M, their

composition is not necessarily symmetric. This is easily resolved: since sk is

horizontal, we may also rewrite the above as

ProjHxk

(
Hessf̄(xk)

[
ProjHxk

(sk)
])

= −gradf̄(xk). (9.55)

This is a linear system with symmetric linear map

ProjHxk
◦Hessf̄(xk) ◦ ProjHxk

. (9.56)

By construction, if (9.53) has a unique solution ξk, then (9.55) has a unique

horizontal solution sk = liftxk
(ξk). (If we solve (9.55) in the whole tangent space

Txk
M, then all solutions are of the form sk + v with v ∈ Vxk

arbitrary, and sk
is the solution of minimal norm.)

If the retraction R is related to a retraction R onM via (9.27), then continuing

from (9.52) we see that

[xk+1] = R[xk](ξk) =
[
Rxk

(liftxk
(ξk))

]
=
[
Rxk

(sk)
]
. (9.57)

In summary, to run Newton’s method on f in practice, we may iterate

xk+1 = Rxk
(sk) (9.58)

with sk ∈ Hxk
the horizontal solution of (9.55) (unique if and only if the solu-

tion of (9.53) is unique). It is an exercise to check that the conjugate gradients

algorithm (CG) from Section 6.3 is well attuned to the computation of sk.

In contrast, Newton’s method onM also iterates (9.58) but with sk a solution

of the following linear system over Txk
M (if one exists):

Hessf̄(xk)[sk] = −gradf̄(xk). (9.59)

Such a solution may not be horizontal (and its horizontal part may not be a

solution), or it may not be unique. Thus, running Newton’s method in the total

space is not equivalent to running it on the quotient manifold. What is more,

if xk converges to a critical point (which is desirable), Lemma 9.41 tells us that

Hessf̄(xk) converges to a singular map. Thus, we must expect difficulties in

solving the linear system on the total space. (However, see Exercise 9.48 for a

numerical twist.)

The reasoning above extends to see how to run the Riemannian trust-region

method on Riemannian quotient manifolds as well.

Exercise 9.47. In light of eq. (9.55), consider the linear system Hs = b with

H = ProjHx ◦Hessf̄(x) ◦ ProjHx and b = −gradf̄(x)
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defined at some point x ∈M. Show that the eigenvalues of H (a self-adjoint map

on TxM) are those of Hessf([x]) together with an additional dimM− dimM
trivial eigenvalues. In contrast with Lemma 9.41, show this even if x is not a

critical point. Conclude that H is positive definite on Hx exactly if Hessf([x]) is

positive definite. In that scenario, discuss how the iterates of CG (Algorithm 6.2)

behave when applied to the system Hs = b, especially minding horizontality. How

many iterations need to be run at most?

Exercise 9.48. Continuing from Exercise 9.47, assume [x̃] is a strict second-

order critical point: gradf([x̃]) = 0 and Hessf([x̃]) ≻ 0. Newton’s method on

f converges to [x̃] if it ever gets close enough. What happens if we ignore the

quotient structure and optimize f̄ = f ◦ π instead?

Consider the Newton system for f̄ at a point x near x̃ on the total space,

ignoring the quotient structure:

Hessf̄(x)[s] = −gradf̄(x), s ∈ TxM. (9.60)

From Lemma 9.41, we know that Hessf̄(x̃) has a kernel, hence for x close to

x̃ we expect this system to be ill conditioned. And indeed, solving (9.60) exactly

with a standard algorithm (e.g., Matlab’s backslash operator after representing

the Hessian and the gradient in matrix and vector form) can lead to catastrophic

failure when x is close to x̃.

However, it is much more common to (try to) solve (9.60) with CG. A typical

observation then would be that roughly dimM iterations of CG on (9.60) are

fairly well behaved. The next iteration would break CG. Since the iterates of

CG are increasingly better approximate solutions of (9.60), if that happens, it

is reasonable to return the best solution reached so far: that is what Matlab’s

implementation of CG does (pcg). As it turns out, that (approximate) solution

is numerically close to the solution one would compute if working on the quotient

manifold (as in Exercise 9.47).

Explain this observation. (Hint: compare the Krylov space implicitly generated

by CG on (9.60) to the Krylov space that CG would generate for Newton’s method

on the quotient manifold, as per Exercise 9.47. It is helpful to use local frames

as in Proposition 9.30 together with Lemma 9.41 at x̃.)

Exercise 9.48 gives some explanation as to why, empirically, running the trust-

region method with truncated CG as subproblem solver in the total space (ig-

noring the quotient) or on the quotient manifold (with matching retractions)

often yields strikingly similar results, even though the superlinear convergence

guarantees (Section 6.6) break in the total space due to Hessian singularity.

The use of CG (or another Krylov space-based solver) is important here: the

solution of the Newton system in the total space at a point which is close to a

strict (in the quotient) second-order critical point is not, in general, close to a

lift of the Newton step in the quotient space; but numerically the CG algorithm

finds an approximate solution to that linear system which happens to mimic the

quotient approach.
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Thus, the quotient formalism provides us with a basis to understand why run-

ning particular second-order optimization algorithms on the total space behaves

far better than one might reasonably expect if ignoring the quotient. Moreover,

it provides us with a clean alternative that resolves those numerical issues al-

together: running the second-order methods on the quotient manifold, through

horizontal lifts.

9.13 Total space embedded in a linear space

For all quotient manifolds described in Exercise 9.20, the total space M is an

embedded submanifold of a linear space E (a space of matrices). It is often conve-

nient to makeM into a Riemannian submanifold of E , then to makeM =M/∼
into a Riemannian quotient manifold ofM (when possible). In this scenario, the

geometric tools for M can be described directly in terms of objects in E .

Consider a smooth function ¯̄f : E → R (possibly only defined on a neighbor-

hood of M). Its restriction, f̄ = ¯̄f |M, is smooth too. Since M is a Riemannian

submanifold of E , we know from (3.39) that

gradf̄(x) = Projx

(
grad ¯̄f(x)

)
, (9.61)

where Projx is the orthogonal projector from E to TxM.

If furthermore f̄ is invariant under ∼ so that f̄ = f ◦ π for some smooth

function f on the Riemannian quotient manifoldM, then Proposition 9.39 tells

us that

liftx(gradf([x])) = Projx

(
grad ¯̄f(x)

)
. (9.62)

This notably shows that the right-hand side is a horizontal vector, even though

we have only asked for f̄ to be invariant: there is no such requirement for all of
¯̄f , as the equivalence relation ∼ is not even formally defined outside of M. We

exploit this observation to write also:

liftx(gradf([x])) = ProjHx

(
grad ¯̄f(x)

)
, (9.63)

where ProjHx is the orthogonal projector from E to the horizontal space Hx. To

see this, note that ProjHx (u) = u for all u ∈ Hx, and ProjHx ◦Projx = ProjHx since

Hx ⊆ TxM, then apply to (9.62).

Similarly, we can express the Hessian of f in terms of ¯̄f . Indeed, Proposi-

tion 9.45 states

liftx(Hessf([x])[ξ]) = ProjHx
(
Hessf̄(x)[u]

)
(9.64)

with u = liftx(ξ). Moreover, we know from connections on Riemannian subman-

ifolds (5.4) that

Hessf̄(x)[u] = ∇̄ugradf̄(x) = Projx

(
D ¯̄G(x)[u]

)
, (9.65)
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where ¯̄G is a smooth extension of gradf̄ to a neighborhood ofM in E . Note that

to pick the extension ¯̄G we are free to entertain expressions for Projx

(
grad ¯̄f(x)

)
or ProjHx

(
grad ¯̄f(x)

)
as they are both equal to gradf̄(x) but one may lead to

more convenient intermediate expressions than the other. Then,

liftx
(
Hessf([x])[ξ]

)
= ProjHx

(
D ¯̄G(x)[u]

)
. (9.66)

These formulas are best illustrated through an example.

Example 9.49. Let us go a few steps further in Example 9.40. Consider the

Grassmann manifold Gr(n, p) = St(n, p)/O(p) as a Riemannian quotient mani-

fold of St(n, p), itself a Riemannian submanifold of Rn×p equipped with the usual

trace inner product. The cost function ¯̄f(X) = 1
2 Tr(X⊤AX) is smooth on Rn×p,

hence its restriction f̄ = ¯̄f |St(n,p) is smooth too. Since f̄ is invariant under O(p),

we further find that f is smooth on Gr(n, p), with f([X]) = f̄(X). The Euclidean

derivatives of ¯̄f are:

grad ¯̄f(X) = AX and Hess ¯̄f(X)[U ] = AU.

The horizontal spaces are given by HX = {U ∈ Rn×p : X⊤U = 0}, and the

corresponding orthogonal projectors are

ProjHX(Z) = (In −XX⊤)Z = Z −X(X⊤Z). (9.67)

Choosing to work with (9.63) (rather than (9.62)) because ProjHX is somewhat

simpler than ProjX (the projector to tangent spaces of the Stiefel manifold), we

deduce that the lifted gradient of f is:

liftX(gradf([X])) = (In −XX⊤)grad ¯̄f(X)

= AX −X(X⊤AX). (9.68)

An obvious smooth extension to all of Rn×p is simply given by

¯̄G(X) = (In −XX⊤)grad ¯̄f(X),

with directional derivatives

D ¯̄G(X)[U ] = (In −XX⊤)Hess ¯̄f(X)[U ]− (UX⊤+XU⊤)grad ¯̄f(X).

Then, we get the lifted Hessian via (9.66). For any U = liftX(ξ), since U is

horizontal, we get after some simplifications:

liftX
(
Hessf([X])[ξ]

)
= (In −XX⊤)Hess ¯̄f(X)[U ]− UX⊤grad ¯̄f(X)

= AU −X(X⊤AU)− U(X⊤AX). (9.69)

We can also compute with the Hessian in a quadratic form:

⟨ξ,Hessf([X])[ξ]⟩[X] = ⟨U,AU −X(X⊤AU)− U(X⊤AX)⟩X
= ⟨U,AU − U(X⊤AX)⟩,
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where ⟨U, V ⟩ = Tr(U⊤V ) is the usual trace (Frobenius) inner product.

Notice how intermediate formulas in (9.68) and (9.69) provide convenient

expressions directly in terms of the Euclidean gradient and Hessian of ¯̄f . In

Manopt, these formulas are implemented in grassmannfactory as egrad2rgrad

and ehess2rhess.

Example 9.50. In the previous example, projections to horizontal spaces are

more convenient than projections to tangent spaces of the total space. This is not

always the case. For example, let E = Rd×n be the embedding space for

M = {X ∈ Rd×n : det(XX⊤) ̸= 0 and X1 = 0},

that is, rank-d matrices whose columns sum to zero, and let M = M/O(d)

be defined by the equivalence classes [X] = {QX : Q ∈ O(d)}. Equivalence

classes are one-to-one with non-degenerate clouds of n labeled points in Rd up

to rigid motion. Make M into a Riemannian quotient manifold of M, itself a

Riemannian submanifold of E.

In this case,M is an open subset of an affine subspace of E. Consequently, the

tangent spaces TXM are all the same: ProjX is independent of X; let us denote

it with Proj. It is more convenient then to use (9.62) for the gradient:

liftX(gradf([X])) = Proj
(

grad ¯̄f(X)
)
.

The right-hand side offers a suitable smooth extension ¯̄G of gradf̄ . It is easy

to differentiate it since Proj is constant: D ¯̄G(X)[U ] = Proj
(

Hess ¯̄f(X)[U ]
)

. We

conclude via (9.66) that

liftX
(
Hessf([X])[ξ]

)
= ProjHX

(
Hess ¯̄f(X)[U ]

)
,

where U = liftX(ξ) and we used ProjHX ◦ Proj = ProjHX .

Exercise 9.51. Let A ∈ Rn×n be a symmetric matrix. A subspace V is sta-

ble (or invariant) under A if v ∈ V =⇒ Av ∈ V . Show that any such

subspace admits an orthonormal basis composed of eigenvectors of A (and vice

versa). Based on Example 9.49, establish the following facts about the problem

min[X]∈Gr(n,p)
1
2 Tr(X⊤AX) (called Rayleigh quotient optimization):

1. The critical points are the subspaces of dimension p stable under A.

2. The global minimizers are the subspaces spanned by p orthonormal eigenvec-

tors associated to p smallest eigenvalues of A (counting multiplicities).

3. The second-order critical points are the global minimizers.

In particular, all local minimizers are second-order critical hence they are global

minimizers. This is a well-known fact sometimes referred to as the hidden con-

vexity of eigenvalue computation.
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9.14 Horizontal curves and covariant derivatives

Our primary goal in this section is to understand the covariant derivative of

smooth vector fields along smooth curves on a Riemannian quotient manifold

M = M/∼, following their discussion for general manifolds in Section 8.12. In

so doing, we aim to relate the (uniquely defined) covariant derivative D
dt along a

curve c on M to that of M along a related curve c̄, denoted by D̄
dt .

We can push any curve c̄ fromM to a smooth curve c onM, defined through

c = π ◦ c̄. By the chain rule, their velocities are related as:

c′(t) = Dπ(c̄(t))[c̄′(t)]. (9.70)

Since liftc̄(t) ◦Dπ(c̄(t)) is the orthogonal projector to the horizontal space Hc̄(t),

we can also write

liftc̄(t)(c
′(t)) = ProjHc̄(t)(c̄

′(t)). (9.71)

In particular, ∥c′(t)∥c(t) = ∥ProjHc̄(t)c̄
′(t)∥c̄(t) ≤ ∥c̄′(t)∥c̄(t): speed can only de-

crease in going to the quotient.

Expression (9.71) simplifies in a way that proves particularly useful for our

purpose if the velocity of c̄ is everywhere horizontal.

Definition 9.52. A smooth curve c̄ : I →M is a horizontal curve if c̄′(t) is a

horizontal vector for all t, that is, if c̄′(t) ∈ Hc̄(t) for all t.

For a smooth vector field Z ∈ X(c), we define its horizontal lift Z̄ by Z̄(t) =

liftc̄(t)(Z(t)), and we write Z̄ = lift(Z) for short. We use similar definitions for

ProjH acting on vector fields of X(c̄). It is an exercise to show that smoothness

is preserved.

Theorem 9.53. Given a horizontal curve c̄ : I → M and the corresponding

smooth curve c = π ◦ c̄ on the Riemannian quotient manifold M = M/∼, the

covariant derivative of a vector field Z ∈ X(c) is given by

D

dt
Z = Dπ(c̄)

[
D̄

dt
Z̄

]
, (9.72)

where Z̄ = lift(Z) is the horizontal lift of Z to the curve c̄.

Proof. First of all, this is well defined. Indeed, for any Z ∈ X(c), the lift Z̄ ∈ X(c̄)

is uniquely defined, its covariant derivative D̄
dt Z̄ is indeed in X(c̄), and pushing it

through Dπ(c̄) produces a specific smooth vector field in X(c). We need to prove

that this vector field happens to be D
dtZ. To this end, we contemplate the three

defining properties of D
dt in Theorem 8.67.

The first property, R-linearity in Z, follows easily from linearity of lift, D̄
dt and

Dπ(c̄). The second property, the Leibniz rule, does too for similar reasons. More

work is needed to verify the chain rule: we must show that, for all U ∈ X(M),
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the proposed formula (9.72) satisfies

D

dt
(U ◦ c) = ∇c′U.

Since lift(U ◦ c) = Ū ◦ c̄, the right-hand side of (9.72) yields

Dπ(c̄)

[
D̄

dt
lift(U ◦ c)

]
= Dπ(c̄)

[
D̄

dt

(
Ū ◦ c̄

)]
= Dπ(c̄)

[
∇̄c̄′Ū

]
, (9.73)

where we used the chain rule for D̄
dt . Importantly, we now use that c̄′ is horizon-

tal to invoke the pointwise formula for ∇ (9.48). More specifically, using that

vertical vectors are in the kernel of Dπ(c̄) and c̄′ = lift(c′) as in (9.71) owing to

horizontality, we have

Dπ(c̄)
[
∇̄c̄′Ū

]
= Dπ(c̄)

[
ProjH

(
∇̄c̄′Ū

)]
= ∇c′U.

This concludes the proof.

Under the same assumptions, the formula in Theorem 9.53 can be stated

equivalently as:

lift

(
D

dt
Z

)
= ProjH

(
D̄

dt
Z̄

)
, (9.74)

which is more informative regarding numerical representation. See Section 9.17

for a comment about the horizontality assumption in Theorem 9.53.

Exercise 9.54. Consider a smooth curve c̄ : I → M and its projection to M:

c = π ◦ c̄. With Z a vector field along c, show that Z is smooth if and only

if Z̄ = lift(Z) is smooth along c̄. Furthermore, show that if Z̄ is a (not neces-

sarily horizontal) smooth vector field along c̄, then ProjH(Z̄) is a (necessarily

horizontal) smooth vector field along c̄.

9.15 Acceleration, geodesics and second-order retractions

The acceleration c′′ of a smooth curve c on a quotient manifold M is defined—

as it is in the general case—as the covariant derivative of its velocity. Owing to

Theorem 9.53, if c̄ is a horizontal curve related to c by c = π ◦ c̄, and if M is a

Riemannian quotient manifold of M, then

c′′(t) =
D

dt
c′(t) = Dπ(c̄(t))

[
D̄

dt
c̄′(t)

]
= Dπ(c̄(t))[c̄′′(t)] , (9.75)

which we can also write as

liftc̄(t)(c
′′(t)) = ProjHc̄(t)(c̄

′′(t)) . (9.76)

In particular, ∥c′′(t)∥c(t) = ∥ProjHc̄(t)c̄
′′(t)∥c̄(t) ≤ ∥c̄′′(t)∥c̄(t): acceleration can only

decrease in going to the quotient.

Recall that geodesics are curves with zero acceleration. A direct consequence
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of (9.75) is that horizontal geodesics (that is, horizontal curves which are also

geodesics) on the total space descend to geodesics on the quotient manifold.

Corollary 9.55. Let M be a Riemannian quotient manifold of M, with canon-

ical projection π. If c̄ : I →M is a horizontal geodesic on M, then c = π ◦ c̄ is

a geodesic on M.

In this last corollary, one can show that it is sufficient to have c̄ be a geodesic

with horizontal velocity at any single time (e.g., c̄′(0) horizontal) as then it is

necessarily horizontal at all times. Anticipating the definition of completeness

of a manifold (Section 10.1), this notably implies that M is complete if M is

complete [GHL04, Prop. 2.109]. A local converse to Corollary 9.55 also holds. The

proof (omitted) relies on standard results about ordinary differential equations.

See Section 9.17 for a discussion.

Proposition 9.56. Let c : I → M/∼ be a smooth curve on a Riemannian

quotient manifold such that c′(t0) ̸= 0, with I an open interval around t0.

1. For any x0 such that c(t0) = [x0], there exists an open interval J ⊆ I around

t0 and a unique, smooth curve c̄ : J →M such that c|J = π ◦ c̄ (that is, c̄ is

a local lift of c), c̄ is horizontal, and c̄(t0) = x0.

2. On J , the curve c is a geodesic if and only if c̄ is a geodesic.

Example 9.57. Consider the total space of full-rank matrices M = Rd×n
d with

d ≤ n: an open submanifold of Rd×n. Consider also the quotient space M =M/

∼ with equivalence relation X ∼ Y ⇐⇒ X⊤X = Y ⊤Y , that is, two clouds of

n labeled points in Rd are equivalent if they have the same Gram matrix. Equiv-

alence classes are of the form [X] = {QX : Q ∈ O(d)}, that is, two clouds are

equivalent if they are the same up to rotation and reflection. Use Theorem 9.18

to verify that M is a quotient manifold of M. Its points are in one-to-one corre-

spondence with positive semidefinite matrices of size n and rank d. With the usual

metric ⟨U, V ⟩X = Tr(U⊤V ) on Rd×n
d , we can further turnM into a Riemannian

quotient manifold (use Theorem 9.38).

Given X,Y ∈ Rd×n
d , the straight line c̄(t) = (1−t)X+tY is a geodesic on [0, 1]

provided it remains in Rd×n
d . Assuming this is the case, we may further ask: what

does it take for c̄ to be horizontal? Since the fiber of X is the submanifold {QX :

Q ∈ O(d)}, we find that the vertical spaces are VX = {ΩX : Ω ∈ Skew(d)},
hence the horizontal spaces are given by HX = {U ∈ Rd×n : XU⊤ = UX⊤}.
Thus, c̄′(t) = Y −X belongs to Hc̄(t) exactly if the following is symmetric:

c̄(t)c̄′(t)⊤= ((1− t)X + tY )(Y −X)⊤

= XY ⊤− t(XY ⊤+ Y X⊤) + tY Y ⊤− (1− t)XX⊤.

This holds for all t exactly if XY ⊤ is symmetric. If so, c̄ is a horizontal geodesic

and Corollary 9.55 states c(t) = [(1− t)X + tY ] is a geodesic on M.

What is the significance of the condition XY ⊤ = Y X⊤? Consider the Eu-

clidean distance between QX and Y in the total space, where Q ∈ O(d) remains
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unspecified for now:

∥QX − Y ∥2 = ∥X∥2 + ∥Y ∥2 − 2 Tr(Q⊤Y X⊤).

It can be shown that this distance is minimized with respect to Q ∈ O(d) if

Q⊤Y X⊤ is symmetric and positive semidefinite. Specifically, if Y X⊤= UΣV ⊤ is

an SVD decomposition, then the minimum is attained by Q = UV ⊤ (the polar

factor of Y X⊤). Replacing X by QX (which does not change its equivalence

class) “aligns” X to Y in the sense that ∥X − Y ∥ is minimized.

Assume X and Y are aligned as described, so that XY ⊤= Y X⊤⪰ 0. Since X

and Y have full rank, we see that

c̄(t)c̄(t)⊤= (1− t)2XX⊤+ t(1− t)(XY ⊤+ Y X⊤) + t2Y Y ⊤

is positive definite for all t ∈ [0, 1]. In other words: if X and Y are aligned, the

straight line c̄(t) connecting them indeed remains in Rd×n
d for t ∈ [0, 1] and it is

horizontal. Since c̄ is a horizontal geodesic, c is a geodesic too.

Anticipating concepts of length and distance from Section 10.1, we claim that

the length of c̄ on [0, 1] is ∥Y −X∥, and that c has the same length as c̄. Since

no shorter curve connects the same end points, the Riemannian distance between

the equivalence classes [X] and [Y ] is nothing but the Euclidean distance between

their best aligned representatives. See also Exercise 10.15.

Massart and Absil discuss the geometry of M in detail [MA20]. The points

of M (that is, the equivalence classes of M) are one-to-one with the positive

semidefinite matrices of size n and rank d. The latter form an embedded sub-

manifold of the symmetric matrices of size n. The Riemannian metric for that

manifold as constructed here on M is called the Bures–Wasserstein metric when

d = n (sometimes also when d ≤ n by extension). It is different from the Rie-

mannian submanifold metric for that same manifold [VAV09].

Another direct consequence of (9.75) is that second-order retractions (Defini-

tion 8.69) on M which satisfy condition (9.28) and whose curves are horizontal

yield second-order retractions on the quotient manifold.

Corollary 9.58. Let R be a retraction on M such that R as defined by (9.27)

is a retraction on the Riemannian quotient manifold M =M/∼. If R is second

order and its retraction curves,

c̄(t) = Rx(tu),

are horizontal for every x and every u ∈ Hx, then R is second order on M.

Proof. The retraction on the quotient manifold generates curves

c(t) = R[x](tξ) =
[
Rx(tu)

]
with u = liftx(ξ); hence, c = π ◦ c̄. Since c̄ is horizontal, we may apply (9.75) and

evaluate at t = 0. (This also makes it clear that c̄ needs only be horizontal in a

neighborhood of t = 0.)
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Example 9.59. Recall the polar retraction (7.24) on St(n, p):

RX(U) = (X + U)
(
Ip + U⊤U

)−1/2
. (9.77)

This is a second-order retraction. We already checked condition (9.28) for it, so

that it yields a retraction on the quotient manifold Gr(n, p) = St(n, p)/O(p). Fur-

thermore, the retraction curves are horizontal. Indeed, for any U ∈ HX (meaning

X⊤U = 0), consider the curve

c̄(t) = RX(tU) = (X + tU)
(
Ip + t2U⊤U

)−1/2
and its velocity

c̄′(t) = U
(
Ip + t2U⊤U

)−1/2
+ (X + tU)

d

dt

((
Ip + t2U⊤U

)−1/2)
.

This curve is horizontal if, for all t, the matrix

c̄(t)⊤̄c′(t) =
(
Ip + t2U⊤U

)−1/2
(tU⊤U)

(
Ip + t2U⊤U

)−1/2
+
(
Ip + t2U⊤U

)+1/2 d

dt

((
Ip + t2U⊤U

)−1/2)
is zero. Replace U⊤U with its eigendecomposition V DV ⊤, with V ∈ O(p) and D

diagonal: the right-hand side is diagonal in the basis V , and it is a simple exercise

to conclude that it is indeed identically zero. As a result, the polar retraction is

horizontal on St(n, p) and, when used as a retraction on the Grassmann manifold

Gr(n, p), it is second order as well.

9.16 Grassmann manifold: summary*

For convenience, this section collects the various tools we have constructed

throughout the chapter to work on the Grassmann manifold Gr(n, p). Equiv-

alent constructions appear early in [EAS98].

We view Gr(n, p) as a Riemannian quotient manifold of the Stiefel manifold

St(n, p), itself a Riemannian submanifold of Rn×p with the usual trace inner

product ⟨A,B⟩ = Tr(A⊤B). (See the end of this section for an embedded view-

point.) The orthogonal group O(p) acts on St(n, p) as (X,Q) 7→ XQ, so that the

projection

π : St(n, p)→ Gr(n, p) : X 7→ π(X) ≜ [X] = {XQ : Q ∈ O(p)}

is surjective and smooth from St(n, p) to Gr(n, p) = St(n, p)/O(p), and its dif-

ferentials Dπ(X) are surjective. The dimension of Gr(n, p) is

dim Gr(n, p) = dim St(n, p)− dim O(p) = p(n− p).

A point [X] on Gr(n, p) is represented by a matrix X ∈ St(n, p) (an arbitrary

representative of the equivalence class [X]).

For an arbitrary manifold M, a map F : Gr(n, p)→M is smooth if and only
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if F ◦ π : St(n, p)→M is smooth. Likewise, a map G : M→ Gr(n, p) is smooth

at x ∈ M if and only if there exists a neighborhood U of x on M and a map

Ḡ : U → St(n, p) (smooth at x) such that G|U = π ◦ Ḡ. As usual, G is smooth if

it is so at all points.

Given X ∈ St(n, p), the tangent space TXSt(n, p) splits in two components,

orthogonal for the inner product ⟨A,B⟩X = Tr(A⊤B):

TXSt(n, p) = VX + HX , VX = {XΩ : Ω ∈ Skew(p)},
HX = {U ∈ Rn×p : X⊤U = 0}.

The orthogonal projectors to VX and HX (both from Rn×p and from TXSt(n, p))

take the form

ProjVX(Z) = X skew(X⊤Z) = X
X⊤Z − Z⊤X

2
, (9.78)

ProjHX(Z) = (In −XX⊤)Z = Z −X(X⊤Z). (9.79)

The vertical space VX is the tangent space to the fiber π−1(π(X)). The hori-

zontal space HX is one-to-one with the tangent space of Gr(n, p) at [X] via the

differential of π; its inverse is the horizontal lift:

Dπ(X)|HX
: HX → T[X]Gr(n, p),

liftX = (Dπ(X)|HX
)−1 : T[X]Gr(n, p)→ HX .

If [X] ∈ Gr(n, p) is represented by X ∈ St(n, p), then we represent a tangent

vector ξ ∈ T[X]Gr(n, p) with the (unique) matrix U ∈ HX such that Dπ(X)[U ] =

ξ, or equivalently, such that U = liftX(ξ). We could of course represent [X] with

a different matrix; for example, with XQ where Q ∈ O(p) is arbitrary. The

horizontal lifts of ξ at X and at XQ are related by

liftXQ(ξ) = liftX(ξ)Q.

(See Example 9.26.)

Say F : Gr(n, p)→M is smooth, so that F̄ = F ◦π : St(n, p)→M is smooth.

Still equivalently, there exists a smooth extension ¯̄F of F̄ to a neighborhood U
of St(n, p) in Rn×p such that F̄ = ¯̄F |St(n,p). For all (X,U) ∈ TSt(n, p), we have

D ¯̄F (X)[U ] = DF̄ (X)[U ] = DF ([X])[Dπ(X)[U ]]. (9.80)

Stated the other way around, this means that if ([X], ξ) ∈ TGr(n, p) is repre-

sented by (X,U) with U = liftX(ξ), then

DF ([X])[ξ] = DF̄ (X)[U ] = D ¯̄F (X)[U ]. (9.81)

Now, say G : M→ Gr(n, p) is smooth at x ∈M, that is, there exists a neighbor-

hood U of x on M and a smooth map Ḡ : U → St(n, p) such that G|U = π ◦ Ḡ.

Then, for all v ∈ TxM we have

DG(x)[v] = Dπ(Ḡ(x))[DḠ(x)[v]]. (9.82)
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252 Quotient manifolds

Accordingly, the lift of DG(x)[v] ∈ TG(x)Gr(n, p) to the horizontal space at Ḡ(x)

is given by:

liftḠ(x)(DG(x)[v]) = ProjHḠ(x)(DḠ(x)[v]). (9.83)

We turn Gr(n, p) into a Riemannian manifold as a Riemannian quotient by

pushing the metric from St(n, p) to Gr(n, p) through π. This turns Dπ(X)|HX

and liftX into isometries. Explicitly, for all ξ, ζ ∈ T[X]Gr(n, p), we may choose an

arbitrary representative X of [X] and lift ξ, ζ as U = liftX(ξ) and V = liftX(ζ);

then:

⟨ξ, ζ⟩[X] = ⟨U, V ⟩X = Tr(U⊤V ).

This structure provides gradients. Explicitly, if f : Gr(n, p)→ R is smooth, then

f̄ = f ◦ π : St(n, p) → R is smooth and it has a smooth extension ¯̄f to a neigh-

borhood of St(n, p) in Rn×p. Their gradients are related as follows:

liftX(gradf([X])) = gradf̄(X) = (In −XX⊤)grad ¯̄f(X). (9.84)

Let us turn to the Riemannian connection on Gr(n, p). Say W is a smooth

vector field on Gr(n, p), meaning W̄ = lift(W ) is smooth on St(n, p). Recall that

the Riemannian connection ∇̄ on St(n, p) is given by ∇̄UW̄ = ProjX(DW̄ (X)[U ])

for all U ∈ TXSt(n, p), where ProjX is the orthogonal projector from Rn×p to

TXSt(n, p) (and DW̄ (X)[U ] = D ¯̄W (X)[U ] using any smooth extension ¯̄W of W̄

to a neighborhood of St(n, p) in Rn×p). Then, we reason from (9.43) that the

Riemannian connection ∇ on Gr(n, p) satisfies:

liftX(∇ξW ) = ProjHX
(
∇̄UW̄

)
= ProjHX

(
DW̄ (X)[U ]

)
, (9.85)

where U = liftX(ξ).

We can specialize the above discussion to Hessians, with W = gradf and

W̄ = lift(gradf) = gradf̄ , using f̄ = f ◦ π. Then, with ¯̄f a smooth extension of

f̄ as above and with U = liftX(ξ), we have

liftX(Hessf([X])[ξ]) = ProjHX
(
Hessf̄(X)[U ]

)
(9.86)

= (In −XX⊤)Hess ¯̄f(X)[U ]− UX⊤grad ¯̄f(X).

(To obtain the last expression, it is useful to refer to (7.29) for Hessians on

St(n, p), noting that the vertical part of grad ¯̄f(X) is zero.) Treating the Hessian

as a quadratic map yields

⟨ξ,Hessf([X])[ξ]⟩[X] =
〈
U,Hessf̄(X)[U ]

〉
= ⟨U,Hess ¯̄f(X)[U ]− UX⊤grad ¯̄f(X)⟩, (9.87)

still with U = liftX(ξ).

Several retractions on St(n, p) descend to well-defined retractions on Gr(n, p),
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including the QR-based (7.22) and the polar-based (7.24) retractions:

RQR
[X](ξ) = [qfactor(X + liftX(ξ))] , and (9.88)

Rpol
[X](ξ) = [pfactor(X + liftX(ξ))] . (9.89)

What is more, the polar retraction is second order. We build a transporter com-

patible with that retraction in Example 10.67. Expressions for the geodesics of

Gr(n, p) (hence for its exponential map) and for parallel transport along geodesics

appear in [EAS98, Thms 2.3, 2.4].

An embedded geometry for Gr(n, p).
It is instructive to know that the Riemannian quotient geometry detailed above

can also be realized as a Riemannian submanifold of a Euclidean space [MS85,

AMT13, SI14], [BH15, Def. 2.3, §4.2], [BZA20, LLY20]. Interestingly, working

out efficient numerical tools to optimize on the Grassmannian with either per-

spective involves essentially the same steps: below, we only show equivalence of

the geometries without numerical concerns.

Explicitly, consider the set

M = {P ∈ Rn×n : P = P⊤, P 2 = P and Tr(P ) = p}. (9.90)

Each matrix in M is an orthogonal projector to a subspace of dimension p in

Rn. It can be shown that M is a smooth embedded submanifold of Rn×n of

dimension p(n − p): that is the same dimension as Gr(n, p). It is easy to check

that

φ : Gr(n, p)→M : [X] 7→ φ([X]) = XX⊤ (9.91)

is well defined. It is also smooth. Indeed, the map ϕ : St(n, p) → Rn×n defined

by ϕ(X) = XX⊤ is clearly smooth, and ϕ = φ◦π where π is the quotient map of

Gr(n, p). One can further check that φ is bijective, so that φ−1 is well defined.

Endow Rn×n with the trace inner product ⟨A,B⟩R
n×n

= Tr(A⊤B), and letM
be a Riemannian submanifold of Rn×n with that metric: we write ⟨A,B⟩MP =

⟨A,B⟩R
n×n

for the inner product on TPM. Consider two arbitrary tangent vec-

tors ξ, ζ ∈ T[X]Gr(n, p) and their horizontal lifts U, V ∈ HX . Compute Dϕ(X)[U ]

in two different ways: directly as

Dϕ(X)[U ] = UX⊤+XU⊤,

then also via the chain rule as

Dϕ(X)[U ] = D(φ ◦ π)(X)[U ] = Dφ(π(X))[Dπ(X)[U ]] = Dφ([X])[ξ].

Thus,

Dφ([X])[ξ] = UX⊤+XU⊤. (9.92)
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Owing to X⊤X = Ip and X⊤U = X⊤V = 0, it follows that

⟨Dφ([X])[ξ],Dφ([X])[ζ]⟩Mφ([X]) = ⟨UX⊤+XU⊤, V X⊤+XV ⊤⟩R
n×n

= 2 ⟨U, V ⟩St(n,p)X

= 2 ⟨ξ, ζ⟩Gr(n,p)
[X] , (9.93)

where ⟨·, ·⟩St(n,p) and ⟨·, ·⟩Gr(n,p)
denote the Riemannian metrics on St(n, p) and

Gr(n, p), respectively.

We have found that Dφ([X]) is (up to a factor
√

2) a linear isometry between

T[X]Gr(n, p) and Tφ([X])M. The inverse function theorem then implies that φ is

a local diffeomorphism around each point. Since φ is also invertible, it follows that

φ is a global diffeomorphism: Gr(n, p) and M have the same smooth geometry.

Moreover, their Riemannian metrics are identical up to a factor
√

2. Thus, the

Riemannian geometries of Gr(n, p) and M are equivalent.

See [BZA20] for more about these and other representations of the Grassmann

manifold, including discussions about equivalences and numerical aspects.

9.17 Notes and references

The main source for this chapter is the book by Absil et al. [AMS08, §3 and

§5], which gives an original and concise treatment of quotient manifolds for Rie-

mannian optimization, with an emphasis on generality and practicality. The main

sources for differential geometric aspects and proofs are the differential geometry

books by Brickell and Clark [BC70, §6] and Lee [Lee12, §4 and §21]. O’Neill pro-

vides useful results regarding connections on Riemannian submersions [O’N83,

pp212–213], as do Gallot et al. [GHL04]. The recent book by Gallier and Quain-

tance [GQ20] offers an in depth look at the geometry of Lie groups and manifolds

arising through group actions.

Here are further references for results above which included a proof: Theo-

rem 9.21 follows [Lee12, Thm. 4.29]; Theorem 9.27 follows [Lee18, Prop. 2.25];

Theorem 9.33 follows [AMS08, Prop. 4.1.3]; Theorem 9.38 appears in [Lee18,

Cor. 2.29]; Proposition 9.42 appears in [Lee18, p146]; Theorem 9.43 appears

in [O’N83, Lem. 7.45]; and Corollary 9.55 appears in [O’N83, Lem. 7.46]. More-

over, Exercise 9.44 echoes [GHL04, Prop. 3.35], [dC92, Ex. 8.9] and [Lee18, p146].

Many results hold generally for the case where M and M are smooth man-

ifolds (not necessarily related by an equivalence relation) and π : M → M is

a submersion (it is smooth and its differential at each point is surjective) or a

Riemannian submersion (its differential at each point is an isometry once re-

stricted to a horizontal space). Reference books often state results at this level

of generality. In contrast, we also require π to be surjective (it is a quotient

map). For example, while π : R2\{0} → R2 (both with their usual Riemannian

structures) defined by π(x) = x is a Riemannian submersion, it is not a quotient
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map because it is not surjective: we exclude such cases. Certain results that do

not hold for general submersions may hold for surjective submersions.

An advantage of Brickell and Clark’s treatment is that they define smooth

manifolds without topological restrictions (recall Section 8.2). As a result, the

role of the two topological properties (Hausdorff and second countability) is

apparent throughout their developments. This proves helpful here, considering

the fact that certain quotient spaces fail to be quotient manifolds specifically

because their quotient topologies fail to have these properties.

For a full characterization of when a quotient space is or is not a quotient

manifold, see [AMS08, Prop. 3.4.2]. In this chapter, we presented a necessary

condition (Proposition 9.3, which implies fibers of a quotient manifold must all be

submanifolds of the same dimension), and a sufficient condition (Theorem 9.18,

which states free, proper and smooth group actions yield quotient manifolds).

For a partial converse to the latter, see [Lee12, Pb. 21-5].

In Definition 9.24, we summon a Riemannian structure on the total space to

define horizontal spaces. Technically, that structure is not required: one could

just as well define Hx to be any subspace of TxM such that the direct sum of

Vx and Hx coincides with TxM, and still obtain that the restriction of Dπ(x) to

Hx is a bijection to T[x]M. For practical purposes, it is then useful to arrange

the choice of Hx to vary smoothly with x, leading to a horizontal distribution.

However, this leaves a lot of freedom that we do not need. We opt for a more

directive (and quite common) definition of horizontal space, while noting that

other authors use the terminology in a broader sense [AMS08, §3.5.8].

When the group acting on the total space is not compact, it may be delicate

to determine whether its action is proper. The following characterization may

help in this regard [Lee12, Prop. 21.5].

Proposition 9.60. Let G be a Lie group acting smoothly on a manifoldM. The

following are equivalent:

1. The action θ is proper.

2. If x0, x1, x2, . . . is a sequence on M and g0, g1, g2, . . . is a sequence on G such

that both {xk}k=0,1,2,... and {θ(gk, xk)}k=0,1,2,... converge, then a subsequence

of {gk}k=0,1,2,... converges.

3. For every compact K ⊆ M, the set GK = {g ∈ G : θ(g,K) ∩ K ̸= ∅} is

compact.

The smoothness criterion for vector fields on quotient manifolds given in The-

orem 9.27 is an exercise in do Carmo’s book [dC92, Ex. 8.9, p186] and is linked

to the concept of π-related vector fields [Lee12, Pb. 8-18c]. The main difference

for the latter is that Theorem 9.27 states results with respect to the special

horizontal distribution we chose (emanating from the Riemannian metric on the

total space), whereas results regarding π-related vector fields often focus on the

horizontal distribution tied to charts in normal form (Proposition 9.5).

In the proof of Theorem 9.53, one may wonder what goes wrong if c̄ is not hor-
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izontal. In that case, to proceed from (9.73) we separate c̄′(t) into its horizontal

and vertical parts, and we use linearity:

Dπ(c̄)
[
∇̄c̄′Ū

]
= Dπ(c̄)

[
∇̄ProjH(c̄′)Ū

]
+ Dπ(c̄)

[
∇̄ProjV(c̄′)Ū

]
= ∇c′U + Dπ(c̄)

[
∇̄ProjV(c̄′)Ū

]
. (9.94)

For the horizontal part, the same argument as in the proof of Theorem 9.53 based

on (9.48) and (9.71) still applies, yielding the first term. The second term though,

does not vanish in general. This is because, in general, Ū is not “constant” along

fibers: the lift of U([x]) at x need not be the “same” as its lift at y ∼ x. (To make

sense of the quoted terms, see the notion of parallel vector fields in Section 10.3.)

We verify this on an example. Consider Gr(n, p) = St(n, p)/O(p). We know a

horizontally lifted vector field on St(n, p): take for example Ū(X) = gradf̄(X) =

AX−X(X⊤AX), where f̄(X) = 1
2 Tr(X⊤AX). Furthermore, any vertical vector

at X is of the form XΩ for some Ω ∈ Skew(p). Then, using the formula for the

connection ∇̄ on St(n, p) (5.4),

∇̄XΩŪ = ProjX
(
AXΩ−XΩ(X⊤AX)−X(Ω⊤X⊤AX +X⊤AXΩ)

)
= (In −XX⊤)AXΩ,

where ProjX is the orthogonal projector to TXSt(n, p) (7.27). To our point, this

vector is horizontal, and it can be nonzero, hence the vector Dπ(X)[∇̄XΩŪ ] can

be nonzero.

It is useful to add a word about Proposition 9.56: this concerns the possibility

of horizontally lifting curves c : I → M from the quotient manifold to curves c̄

on the total space. That this can be done locally (meaning that we can obtain a

horizontal lift c̄ defined on an open interval around any t0 ∈ I) is relatively direct,

invoking standard results from ordinary differential equations (ODE) [Lee12,

Thm. 9.12].

The argument goes like this: if c′(t0) ̸= 0, then there exists an interval J ⊆ I

around t0 such that c(J) is an embedded submanifold of M. As a result, it is

possible to extend the smooth vector field c′ on c(J) to a smooth vector field V

defined on a neighborhood U of c(J). It satisfies V (c(t)) = c′(t) for all t ∈ J . Pick

x0 ∈ M such that c(t0) = [x0], and consider the ODE below whose unknown is

the curve γ on U :

γ′(t) = V (γ(t)), γ(t0) = [x0].

Clearly, γ(t) = c(t) is a solution for t ∈ J . Since solutions of ODEs are unique,

we deduce that γ|J = c|J . Now we turn to constructing horizontal lifts. Consider

V̄ = lift(V ): this is a smooth vector field on U = π−1(U). We can again write

down an ODE:

c̄′(t) = V̄ (c̄(t)), c̄(t0) = x0.

There exist an open interval J ′ around t0 and a solution c̄ : J ′ → U , smooth and
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unique. Clearly, c̄ is horizontal because c̄′(t) is a horizontal vector by construc-

tion. If we project c̄ to the quotient, then we get a curve γ = π ◦ c̄. Notice that

γ(t0) = [x0] and

γ′(t) = Dπ(c̄(t))[c̄′(t)] = Dπ(c̄(t))[V̄ (c̄(t))] = V ([c̄(t)]) = V (γ(t)).

Thus, γ satisfies the first ODE we considered, and we conclude that π ◦ c̄ =

γ = c|J′ . In words: c̄ is a horizontal lift of c on the interval J ′. Moreover, the

lifted curve depends smoothly on the choice of representative x0 ∈ c(t0) because

solutions of smooth ODEs depend smoothly not only on time but also on initial

conditions.

This argument and a few more elements form the basis of the proof of Propo-

sition 9.56 presented by Gallot et al. [GHL04, Prop. 2.109], where the emphasis

is on the case where c is a geodesic.

It is natural to ask: if c is defined on the interval I, can we not lift it to a

horizontal curve c̄ also defined on all of I? The argument above is not sufficient

to reach this stronger conclusion, in part because it only uses the fact that π is

a Riemannian submersion: it does not use the fact that π is surjective. Hence,

as Gallot et al. point out, we might be in the case where π : R2\{0} → R2 is

the map π(x) = x between the punctured plane and the plane, both equipped

with their usual Riemannian metrics. This is indeed a Riemannian submersion,

but it is not surjective (in particular, it is not a quotient map). It is clear that

a geodesic (a straight line) through the origin in R2 cannot be lifted entirely to

R2\{0}.
Thus, at the very least, we should require π to be surjective (which it is in the

setting of quotient manifolds). Unfortunately, that is not sufficient. John M. Lee

shares3 a counter-example with M = (−1, 1) × R and M = S1 as Riemannian

submanifolds of R2. Consider the map π(x, y) = (cos(2πx), sin(2πx)). This is in-

deed a surjective Riemannian submersion fromM toM. Yet, consider the curve

c : (−2, 2) →M defined by c(t) = (cos(2πt), sin(2πt)). Its unique horizontal lift

satisfying c̄(0) = (0, 0) is given by c̄(t) = (t, 0): evidently, c̄ can only be extended

up to (−1, 1), not up to (−2, 2).

Fortunately, there exist several sufficient conditions. One can read the following

about that question in a classic book by Besse [Bes87, §9.E]. Recall that if M
is a Riemannian quotient manifold of M then the canonical projection π is a

surjective Riemannian submersion. Completeness is defined in Section 10.1. If

M is not connected, apply the claim to each complete connected component.

Proposition 9.61. Let π : M → M be a surjective Riemannian submersion.

If M is connected and complete, then M is also connected and complete, all

fibers are complete (but not necessarily connected), and for every smooth curve

c : I → M with non-vanishing velocity and for every x0 ∈ c(t0) there exists a

unique horizontal lift c̄ : I →M such that c = π ◦ c̄ and c̄(t0) = x0. Moreover, c

is a geodesic if and only if c̄ is a geodesic.

3 math.stackexchange.com/questions/3524475
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If π has this property, namely, that all curves with non-vanishing velocity

can be lifted horizontally on their whole domain and made to pass through

any representative of the equivalence class at some initial point, we say it is

Ehresmann complete. In this same reference, it is also noted that when this

property holds, then π is a smooth fiber bundle. Furthermore, the property may

hold without M being complete.

Here is a special case of interest. If the quotient is obtained as per Theorem 9.18

through a smooth, free and proper Lie group action on a smooth manifold, then

it also forms a fiber bundle [Lee12, Pb. 21-6]—in that case, the fiber bundle is

also called a principal G-bundle, and the standard fiber is the Lie group itself. It

can be shown that if (but not only if) the standard fiber is compact, then the

fiber bundle is Ehresmann complete [Mic08, pp204–206]. This is summarized as

follows.

Proposition 9.62. If G is a compact Lie group acting smoothly and freely on

M, then M = M/G is a quotient manifold, and it has the property that any

smooth curve c : I → M with non-vanishing velocity can be lifted to a unique

horizontal curve c̄ : I →M passing through any x0 ∈ c(t0) at t0. Moreover, c is

a geodesic if and only if c̄ is a geodesic.

See also [Mic08, Lem. 26.11] and [KN63, Prop. II.3.1, p69]. Thanks to P.-A.

Absil, John M. Lee, Mario Lezcano-Casado and Estelle Massart for discussions

on this topic.

Regarding Exercise 9.51: That second-order critical points are global optimiz-

ers is shown in [SI14, Prop. 3.4, Prop. 4.1] under the assumption that there is

a gap between the pth and (p+ 1)st smallest eigenvalues of A. With some care,

the eigengap assumption can be removed (this is part of the exercise). The other

claims in the exercise are standard. It is also possible to control the spectrum of

the Hessian at approximate critical points [LTW22].

We close with a proof of Proposition 9.6 which provides strong links between

the salient points of optimization problems related through a map π (which may

or may not be a quotient map).

Proof of Proposition 9.6. Let us verify each claim in turn:

1. The range of real values attained by f̄ is f̄(M) = f(π(M)), and π(M) =M
since π is surjective. Thus, f̄(M) = f(M).

2. If x is a local minimizer of f̄ , there exists a neighborhood U of x on M such

that f̄(x) = inf f̄(U). Since π is open, the set U = π(U) is open, and it

contains π(x). Thus, U is a neighborhood of π(x). Also, f(π(x)) = f̄(x) =

inf f̄(U) = inf f(π(U)) = inf f(U), hence π(x) is a local minimizer of f .

If π(x) is a local minimizer of f , there exists a neighborhood U of π(x) on

M such that f(π(x)) = inf f(U). Since π is continuous, the set U = π−1(U)

is open, and it contains x. Thus, U is a neighborhood of x. We also have

f̄(U) = f(π(π−1(U))) ⊆ f(U) (with equality if π is surjective), hence f̄(x) =
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f(π(x)) = inf f(U) ≤ inf f̄(U). (In fact, equality holds because x is in U .)

Therefore, x is a local minimizer of f̄ .

3. Recall Definitions 4.4 and 6.1 for first- and second-order critical points. Note

that these do not require any Riemannian structure. For the following, we

tacitly assume that f is once or twice differentiable, as needed.

(a) By the chain rule, Df̄(x) = Df(π(x)) ◦ Dπ(x). If Df(π(x)) = 0, then

Df̄(x) = 0. The other way around, if Df̄(x) = 0, then Df(π(x)) is zero on

the image of Dπ(x). Since Dπ(x) is surjective, this implies Df(π(x)) = 0.

(b) Assume π(x) is second-order critical for f on M. Pick an arbitrary

smooth curve c̄ on M such that c̄(0) = x. Let c = π ◦ c̄: this is a smooth

curve on M such that c(0) = π(x). Notice that f̄ ◦ c̄ = f ◦ π ◦ c̄ = f ◦ c. In

particular, (f̄ ◦ c̄)′(0) = (f ◦c)′(0) and (f̄ ◦ c̄)′′(0) = (f ◦c)′′(0). Since π(x) is

second-order critical, we know that (f ◦c)′(0) = 0 and (f ◦c)′′(0) ≥ 0. Thus,

(f̄ ◦ c̄)′(0) = 0 and (f̄ ◦ c̄)′′(0) ≥ 0, which implies that x is second-order

critical for f̄ .

For the other direction, it is convenient to use that M can always be

endowed with a Riemannian structure [Lee12, Prop. 13.3] (it does not

matter which one). Assume x is second-order critical for f̄ . For v ∈ TxM
(to be determined), we can always select a smooth curve c̄ such that c̄(0) =

x and c̄′(0) = v. The curve c = π ◦ c̄ satisfies c(0) = π(x) and c′(0) =

Dπ(x)[v]. Pick an arbitrary w ∈ Tπ(x)M. Since Dπ(x) is surjective, we

can now choose v such that Dπ(x)[v] = w. From above, we know that π(x)

is (at least) first-order critical. Then, owing to the usual Taylor expansion

of f ◦ c (5.25), we have

⟨w,Hessf(π(x))[w]⟩π(x) = (f ◦ c)′′(0),

where Hessf is the Riemannian Hessian of f with respect to the arbitrarily

chosen metric. Since w is arbitrary and (f◦c)′′(0) = (f̄◦c̄)′′(0) ≥ 0 (because

x is second-order critical for f̄), it follows that Hessf(π(x)) is positive

semidefinite, that is, π(x) is second-order critical for f (Proposition 6.3).

Finally, if π is the projection of a quotient manifold, then it is surjective and

smooth and its differential at each point is surjective by Definition 9.1. The map

π is also open: see Exercise 9.9.

In the spirit of Proposition 9.6, the authors of [LKB22a] study conditions on

a map π which allow one to relate salient points of min f and min f ◦π for all f .
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10 Additional tools

At times, it is useful to resort to some of the more advanced tools Riemannian

geometry has to offer. We discuss some of these here in relation to optimization.

The background on differential geometry given in Chapters 3 and 5 is often

sufficient. We omit classical proofs, pointing to standard texts instead.

We start with the notion of Riemannian distance, which allows us to turn

a (connected) Riemannian manifold into a metric space. It turns out that the

associated metric space topology coincides with the manifold topology, and that

shortest paths between pairs of points are geodesics. From there, we discuss the

Riemannian exponential map: this is a retraction whose curves are geodesics.

Then, we also give a formal and not-so-standard treatment of the inverse of the

exponential map and, more generally, of the inverse of retractions.

Moving on, parallel transports allow us to move tangent vectors around, from

tangent space to tangent space, isometrically. Combined with the exponential

map, this tool makes it possible to define a notion of Lipschitz continuity for the

gradient and the Hessian of a cost function on a Riemannian manifold. This leads

to a sharp understanding of the regularity assumptions we made in Chapters 4

and 6 to control the worst-case behavior of optimization algorithms.

We follow up with the (also not-so-standard) notion of transporter—a poor

man’s version of parallel transport. This is useful to design certain algorithms.

It also affords us a practical notion of finite difference approximation for the

Hessian, which makes it possible to use second-order optimization algorithms

without computing the Hessian.

In closing, we discuss covariant differentiation of tensor fields of any order.

As a notable omission, we do not discuss curvature at all: see for exam-

ple [Lee18, Ch. 1, 7] for an introduction.

10.1 Distance, geodesics and completeness

Two points of M belong to the same connected component if there exists a

continuous curve on M joining them. We say M is connected if it has a single

connected component. A manifold has finitely many, or countably infinitely many

connected components, owing to second-countability of the atlas topology (see

Section 8.2).

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.
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Definition 10.1. A distance on a set M is a function dist : M×M→ R such

that, for all x, y, z ∈M,

1. dist(x, y) = dist(y, x);

2. dist(x, y) ≥ 0, and dist(x, y) = 0 if and only x = y; and

3. dist(x, z) ≤ dist(x, y) + dist(y, z).

Equipped with a distance, M is a metric space.

A natural topology on a metric space is the metric topology, defined such that

the functions x 7→ dist(x, y) are continuous. Specifically, a subset U ⊆M is open

if and only if, for every x ∈ U , there exists a radius r > 0 such that the ball

{y ∈M : dist(x, y) < r} is included in U .

In this section, we first state without proof that ifM is a Riemannian manifold

then its Riemannian metric induces a distance on (the connected components

of) M, and that the topology of M as a manifold is equivalent to the topology

ofM as a metric space equipped with that distance. Intuitively, dist(x, y) is the

length of the shortest “reasonable” curve onM joining x and y, or the infimum

over the lengths of such curves. To make this precise, we first need to discuss

various types of curves on manifolds [Lee18, pp33–34].

Definition 10.2. A curve segment on a manifold M is a continuous map

c : [a, b]→M, where a ≤ b are real. A curve segment c : [a, b]→M is:

• smooth if c can be extended to a smooth map c̃ : I →M on a neighborhood I

of [a, b], in which case c′(a) and c′(b) denote c̃′(a) and c̃′(b), respectively;

• regular if it is smooth and c′(t) ̸= 0 for all t ∈ [a, b];

• piecewise smooth (resp., piecewise regular) if there exists a finite set of times

a = t0 < t1 < · · · < tk−1 < tk = b such that the restrictions c|[ti−1,ti] are

smooth (resp., regular) curve segments for i = 1, . . . , k.

In particular, piecewise regular curves are piecewise smooth. We say a curve

segment c : [a, b]→M connects x to y if c(a) = x and c(b) = y.

Let M be a Riemannian manifold. Given a piecewise smooth curve segment

c : [a, b]→M, we define the length of c as the integral of its speed ∥c′(t)∥c(t):

L(c) =

∫ b

a

∥c′(t)∥c(t) dt. (10.1)

While c′(ti) may be undefined, the speed of each curve segment c|[ti−1,ti] is

smooth: the integral is computed by summing over these intervals.

The notion of length of a curve leads to a natural notion of distance on M,

called the Riemannian distance:

dist(x, y) = inf
c
L(c), (10.2)

where the infimum is taken over all piecewise regular curve segments onM which
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connect x to y. It is equivalent to take the infimum over all piecewise smooth

curve segments. We have the following important result [Lee18, Thm. 2.55].

Theorem 10.3. If M is connected (meaning each pair of points is connected by

a curve segment), equation (10.2) defines a distance. Equipped with this distance,

M is a metric space whose metric topology coincides with its atlas topology.

If M is not connected, we may consider this result on the connected compo-

nents of M separately. Sometimes, it helps to extend the definition to accept

dist(x, y) =∞ when x, y belong to distinct connected components.

If the infimum in (10.2) is attained1 for some curve segment c, we call c a

minimizing curve. Remarkably, up to parameterization, these are geodesics (Def-

inition 5.38) [Lee18, Thm. 6.4]. In other words, two competing generalizations

of the notion of straight line from linear spaces to manifolds turn out to be

equivalent: one based on shortest paths, one based on zero acceleration.

Theorem 10.4. Every minimizing curve admits a constant-speed parameteriza-

tion such that it is a geodesic, called a minimizing geodesic.

This theorem admits a partial converse [Lee18, Thm. 6.15]. It could not have a

full converse since, for example, two nearby points on a sphere can be connected

through both a short and a long geodesic.

Theorem 10.5. Every geodesic γ on M is locally minimizing, that is, every t

in the domain of γ has a neighborhood I in the domain of γ such that, if a, b ∈ I
satisfy a < b, then the restriction γ|[a,b] is a minimizing curve.

Equipped with a distance, we define a first notion of completeness. Recall that

a sequence x0, x1, x2, . . . is Cauchy if for every ε > 0 there exists an integer k

such that, for all m,n > k, dist(xm, xn) < ε.

Definition 10.6. A connected Riemannian manifold is metrically complete if

it is complete as a metric space equipped with the Riemannian distance, that is,

if every Cauchy sequence on the manifold converges on the manifold.

There exists another useful notion of completeness for manifolds.

Definition 10.7. A Riemannian manifold is geodesically complete if every

geodesic can be extended to a geodesic defined on the whole real line.

The following theorem is an important classical result: see [Lee18, Thm. 6.19,

Pb. 6-14] for a proof. It justifies omitting to specify whether we mean met-

ric or geodesic completeness. The last part of the statement is the Heine–

Borel property : recall Definition 8.26 for compact sets; a set S is bounded if

supx,y∈S dist(x, y) is finite.

1 This is not always the case: think of M = R2\{0} as a Riemannian submanifold of R2, and

connect x and −x.
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Theorem 10.8 (Hopf–Rinow). A connected Riemannian manifold M is met-

rically complete if and only if it is geodesically complete. Additionally, M is

complete (in either sense) if and only if its compact subsets are exactly its closed

and bounded subsets.

For disconnected manifolds, complete refers to geodesic completeness, which

is equivalent to metric completeness of each connected component. For example,

the orthogonal group O(n), which has two connected components, is complete

in this sense.

On a complete manifold, two points in the same connected component can

always be connected by a (not necessarily unique) geodesic which attains the

infimum in (10.2) [Lee18, Cor. 6.21].

Theorem 10.9. If M is complete, then any two points x, y in the same con-

nected component are connected by a minimizing geodesic segment c : [0, 1]→M
such that c(0) = x, c(1) = y and dist(x, y) = L(c).

The converse of Theorem 10.9 does not hold: consider M = (0, 1) as a Rie-

mannian submanifold of R.

Example 10.10. Compact Riemannian manifolds are complete.

Example 10.11. A finite-dimensional Euclidean space E is connected and com-

plete. The unique minimizing geodesic from x to y is the line segment t 7→
(1 − t)x + ty on [0, 1], and the Riemannian distance dist(x, y) is equal to the

Euclidean distance ∥x− y∥.

Exercise 10.12. Let M be a Riemanian submanifold of N . Show that if N is

complete and if M is a closed subset of N , then M is complete. In particular,

Riemannian submanifolds of Euclidean spaces which are closed are complete.

Exercise 10.13. Show that the length of a piecewise smooth curve segment

c : [a, b]→M is independent of parameterization, in that L(c◦h) = L(c) for any

monotone, piecewise regular h : [0, 1] → [a, b] such that h(0) = a and h(1) = b.

Further show that if c is a piecewise regular curve segment then h can be chosen

such that c ◦ h is piecewise regular with speed (whenever it is defined) equal to

the constant L(c).

Exercise 10.14. Show that the distance on a Riemannian product manifold

M =M1 × · · · ×Mn is given by

dist(x, y) =

√√√√ n∑
i=1

dist(xi, yi)2,

where dist denotes Riemannian distance on M and M1, . . . ,Mn alike, as indi-

cated by context. Hint: the equality can be established through a pair of matching

inequalities. For one side, Jensen’s inequality may be helpful. For the other side,

it may be helpful to use the results of Exercise 10.13.
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Exercise 10.15. Let M = M/∼ be a Riemannian quotient manifold with

quotient map π : M → M, as in Section 9.7. Let distM and distM denote the

Riemannian distances on M and M, respectively. Show that for all [x], [y] ∈M
the distances satisfy

distM([x], [y]) ≤ inf
x′∼x,y′∼y

distM(x′, y′).

Moreover, show that if M is connected and complete then the inequality holds

with equality. Hint: for the second part, use Proposition 9.61.

10.2 Exponential and logarithmic maps

Using standard tools from the study of ordinary differential equations, one can

show that on a Riemannian manifold, for every (x, v) ∈ TM, there exists a

unique maximal geodesic [Lee18, Cor. 4.28]

γv : I →M, with γv(0) = x and γ′v(0) = v.

Here, maximal refers to the fact that the interval I is as large as possible (this

is not in contrast to the notion of minimizing geodesic we just defined in the

previous section). We use these geodesics to define a special map.

Definition 10.16. Consider the following subset of the tangent bundle:

O = {(x, v) ∈ TM : γv is defined on an interval containing [0, 1]}.

The exponential map Exp: O →M is defined by

Exp(x, v) = Expx(v) = γv(1).

The restriction Expx is defined on Ox = {v ∈ TxM : (x, v) ∈ O}.

For example, in a Euclidean space, Expx(v) = x + v. By Definition 10.7, a

manifold M is (geodesically) complete exactly if the domain of the exponential

map is the whole tangent bundle TM.

Given t ∈ R, it holds that γtv(1) = γv(t) whenever either is defined. This

allows us to express the exponential map as

Expx(tv) = γv(t), (10.3)

which is often more practical. In particular, the domain of Expx is star-shaped

around the origin in TxM, that is,

v ∈ Ox =⇒ tv ∈ Ox for all t ∈ [0, 1].

Conveniently, Exp is smooth [Lee18, Lem. 5.18, Prop. 5.19].

Proposition 10.17. The exponential map is smooth on its domain O, which is

open in TM.
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The domain O contains all tangent space origins. We say that O is a neigh-

borhood of the zero section of the tangent bundle:

{(x, 0) ∈ TM : x ∈M} ⊂ O. (10.4)

The exponential map is a retraction on its domain. More precisely:

Proposition 10.18. The exponential map is a second-order retraction, with a

possibly restricted domain O ⊆ TM.

Proof. Proposition 10.17 claims smoothness of Exp. By definition, for all (x, v)

in TM the curve c(t) = Expx(tv) = γv(t) satisfies c(0) = x and c′(0) = v so

that Exp is a retraction. Finally, it is clear that this retraction is second order

(Definition 5.42) since γ′′v (t) is zero for all t, hence in particular c′′(0) = 0.

Given a point x and a (sufficiently short) tangent vector v, the exponential

map produces a new point y = Expx(v). One may reasonably wonder whether,

given the two points x, y, one can recover the tangent vector v. In what follows,

we aim to understand to what extent the exponential map can be (smoothly)

inverted.

A first observation, rooted in the inverse function theorem for manifolds (see

Theorem 4.16), is that any retraction R at a point x is locally a diffeomorphism

around the origin in the tangent space at x, because Rx is smooth and DRx(0)

is the identity (hence invertible). This applies in particular to the exponential

map. For the latter, the injectivity radius quantifies how large the local domains

can be.

When ⋆we say a map F is a diffeomorphism on an open domain U , we mean

that F (U) is open and F is a diffeomorphism from U to F (U).

Definition 10.19. The injectivity radius of a Riemannian manifold M at a

point x, denoted by inj(x), is the supremum over radii r > 0 such that Expx is

defined and is a diffeomorphism on the open ball

B(x, r) = {v ∈ TxM : ∥v∥x < r}.

By the inverse function theorem, inj(x) > 0.

Consider the ball U = B(x, inj(x)) in the tangent space at x. Its image

U = Expx(U) is a neighborhood of x in M. By definition, Expx : U → U is

a diffeomorphism: it has a well-defined smooth inverse Exp−1x : U → U . With

these choices of domains, v = Exp−1x (y) is the unique shortest tangent vector at

x such that Expx(v) = y. Indeed, if there existed another vector u ∈ TxM such

that Expx(u) = y and ∥u∥x ≤ ∥v∥x, then u would be included in U , which would

contradict invertibility. This motivates the following definition.2

2 Note that Logx may be discontinuous (think of x and y close to each other on a sphere from
which we remove the midpoint (x + y)/∥x + y∥). Nevertheless, see below for smoothness

properties on restricted domains (Corollary 10.25 in particular), and see also [Lee18, §10]
for a related discussion of cut locus and conjugate points.
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Definition 10.20. For x ∈M, let Logx denote the logarithmic map at x,

Logx(y) = arg min
v∈Ox

∥v∥x subject to Expx(v) = y, (10.5)

with domain such that this is uniquely defined.

For example, in a Euclidean space, Logx(y) = y − x for all x, y. In particu-

lar, with domains U = B(x, inj(x)) and U = Expx(U) as above, the inverse of

Expx : U → U is the (possibly restricted) map Logx : U → U , which is then a

diffeomorphism. With different domain restrictions however, the inverse of Expx

may be different from Logx. This is illustrated in the following example.

Example 10.21. On the sphere Sn−1, the exponential map is (Example 5.37)

v 7→ Expx(v) = cos(∥v∥)x+
sin(∥v∥)
∥v∥

v.

This is smooth over the whole tangent bundle, with the usual smooth extension

sin(t)/t = 1 at t = 0. Given x, y ∈ Sn−1, we seek an expression for Exp−1x (y).

Since x⊤x = 1 and x⊤v = 0, considering y = Expx(v) as above, we deduce that

x⊤y = cos(∥v∥). Thus, the following vector (which is readily computed given x

and y) is parallel to v:

u ≜ y − (x⊤y)x = Projx(y) =
sin(∥v∥)
∥v∥

v.

It has norm | sin(∥v∥)| and is parallel to v. Let us exclude the case u = 0 which

is easily treated separately. Then, dividing u by its norm yields:

u

∥u∥
= sign(sin(∥v∥)) v

∥v∥
.

If we restrict the domain of Expx to contain exactly those tangent vectors v

whose norm is strictly less than π, then sign(sin(∥v∥)) = 1. Furthermore, the

equation x⊤y = cos(∥v∥) then admits the unique solution ∥v∥ = arccos(x⊤y),

where arccos : [−1, 1]→ [0, π] is the principal inverse of cos. Overall, this yields

the following expression:

y 7→ Exp−1x (y) = arccos(x⊤y)
u

∥u∥
, (10.6)

smooth over Sn−1\{−x}. Since the chosen domain for Expx is B(x, π), the in-

verse is the logarithm: Exp−1x = Logx. Also, dist(x, y) = arccos(x⊤y).

The crucial point is that, in deriving this expression, we made the (somewhat

arbitrary) choice of defining the domain of Expx in a specific way. This leads

to a particular formula for the inverse, and a particular domain for Exp−1x . If

we choose the domain of Expx differently, we may very well obtain a different

formula for Exp−1x (not equal to Logx) and a different domain for it as well.

For example, on the circle S1, we could decide that if y is ahead of x (counter-

clockwise) by an angle less than π/2, then Exp−1x (y) returns a vector of length
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less than π/2, and otherwise it returns a vector of length less than 3π/2, pointing

in the clockwise direction. In short, domains matter.

Before moving on to broader smoothness concerns, we quote useful relations

between Exp, Log and dist [Lee18, Prop. 6.11].

Proposition 10.22. If ∥v∥x < inj(x), the geodesic c(t) = Expx(tv) on the

interval [0, 1] is the minimizing curve connecting x to y = Expx(v), unique up

to parameterization. In particular, dist(x, y) = ∥v∥x, and Logx(y) = v.

So far, we have fixed the point x, allowing us to claim that, on some domains,

the map y 7→ Exp−1x (y) is smooth in y. In order to discuss smoothness jointly

in x and y, we need more work. We start with a general discussion valid for all

retractions, and specialize to the exponential map later on.

Proposition 10.23. Let M be a manifold with retraction R defined on a neigh-

borhood O of the zero section of TM. Consider the following map:

E : O →M×M : (x, v) 7→ E(x, v) = (x,Rx(v)). (10.7)

If T ⊆ O is open in TM such that, for all x, Rx is a diffeomorphism on Tx =

{v ∈ TxM : (x, v) ∈ T }, then V = E(T ) is open in M×M and E : T → V is

a diffeomorphism.

Proof. First, to see that E : T → V is invertible, consider any pairs (x, v), (y, w) ∈
T such that E(x, v) = E(y, w). In other words, we have (x,Rx(v)) = (y,Ry(w)),

so that x = y and v, w ∈ Tx. By assumption, Rx is injective on Tx, hence we

deduce from Rx(v) = Rx(w) that v = w.

Second, to show that V is open and E : T → V is a diffeomorphism, it re-

mains to check that the differential of E is invertible everywhere in T (the result

then follows from applying the inverse function theorem at each point of T , see

Theorem 4.16). To this end, consider any (x, v) ∈ T . Somewhat informally, the

differential DE(x, v) is a block matrix of size two-by-two as displayed below. (To

be formal, we should give a more precise description of the tangent space to TM
at (x, v). Here, it is identified with TxM× TxM.)

DE(x, v) ≃
[
I 0

∗ DRx(v)

]
Indeed, the differential of the first entry of E(x, v) = (x,Rx(v)) with respect

to x is the identity, and it is zero with respect to v. The second entry has

some unspecified differential with respect to x, while its differential with respect

to v is DRx(v). Crucially, since v is in Tx, we know by assumption that Rx is a

diffeomorphism around v, hence DRx(v) is invertible. We conclude that DE(x, v)

is invertible for all (x, v) ∈ T , as announced.

In particular, under the stated conditions, (x, y) 7→ (x,R−1x (y)) is a diffeo-

morphism from V to T , meaning the inverse retraction can be defined smoothly

jointly in x and y (with care when it comes to domains).

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

268 Additional tools

In this last proposition, the fact that T is open is crucial: this is what ties the

domains Tx together. Without this assumption, we can still have an inverse, but

not necessarily a smooth inverse. Furthermore, it is natural to want to include

the tangent space origins in T , that is, to make T a neighborhood of the zero

section in TM. It is convenient to make this happen using a continuous function

∆: M→ (0,∞]:

T =
{

(x, v) ∈ TM : ∥v∥x < ∆(x)
}
. (10.8)

If Rx is defined and is a diffeomorphism on the open ball B(x,∆(x)) in TxM
for all x, then Proposition 10.23 applies, and V contains the diagonal {(x, x) :

x ∈M}.
Conveniently, for the exponential map, we can take ∆ to be as large as one

could possibly hope, namely: we can choose ∆ to be the injectivity radius func-

tion. (This holds even if M is not connected or complete, see Section 10.8.)

Proposition 10.24. On a Riemannian manifoldM, the injectivity radius func-

tion inj : M→ (0,∞] is continuous.

Corollary 10.25. The map (x, v) 7→ (x,Expx(v)) is a diffeomorphism from

T =
{

(x, v) ∈ TM : ∥v∥x < inj(x)
}

to

V =
{

(x, y) ∈M×M : dist(x, y) < inj(x)
}
.

Its inverse is (x, y) 7→ (x,Logx(y)), smooth from V to T .

Under this corollary, we see that (x, y) 7→ Logx(y) is smooth jointly in x and

y over some domain. This is apparent in Example 10.21 for the sphere, where

inj(x) = π for all x.

More generally, we show that for any retraction there exists a positive and

continuous function ∆ which can be used to argue existence of a smooth inverse.

Proposition 10.26. On a Riemannian manifoldM, consider the following open

subsets of the tangent bundle TM:

Vδ(x) = {(x′, v′) ∈ TM : dist(x, x′) < δ and ∥v′∥x′ < δ} .

(In particular, x and x′ must be in the same connected component.) Notice that

(x, 0) is in Vδ(x) for all δ > 0. For any retraction R on M defined on a neigh-

borhood O of the zero section in TM, define ∆: M→ (0,∞] by:

∆(x) = sup
{
δ > 0 : Vδ(x) ⊆ O and E is a diffeomorphism on Vδ(x)

}
,

where E is as defined in (10.7). Then, ∆ is positive and continuous, and Rx is

defined and is a diffeomorphism on B(x,∆(x)) for all x.

Proof. To see that ∆(x) is positive at every x, apply the inverse function theorem
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to the fact that the differential of E at (x, 0) is invertible, since it is of the form

DE(x, 0) ≃ [ I 0
∗ I ] (same as in the proof of Proposition 10.23).

It is sufficient to reason on each connected component ofM separately, hence

we may assumeM is connected. If ∆(x) =∞ for some x, then O = TM and E is

a diffeomorphism on that domain, so that ∆(x) =∞ for all x: this is compatible

with the claim. We can now assume ∆(x) is finite for all x.

To see that ∆ is continuous, we show that ∆(x) − ∆(x′) ≤ dist(x, x′) for

every two points x, x′ ∈ M. Then, switching the roles of x and x′, we find

|∆(x) − ∆(x′)| ≤ dist(x, x′), which shows ∆ is continuous with respect to the

Riemannian distance. This is equivalent to continuity with respect to the atlas

topology by Theorem 10.3.

Pick any two points x, x′ ∈ M. If dist(x, x′) ≥ ∆(x), the claim is clear. So

assume dist(x, x′) < ∆(x), and define δ = ∆(x)− dist(x, x′). We claim that

Vδ(x′) ⊂ V∆(x)(x).

Indeed, pick any (x′′, v′′) ∈ Vδ(x′). Then,

1. ∥v′′∥x′′ < δ ≤ ∆(x), and

2. dist(x′′, x) ≤ dist(x′′, x′) + dist(x′, x) < δ + dist(x′, x) = ∆(x).

We know E is a diffeomorphism on V∆(x)(x). Thus, E is also a diffeomorphism

on Vδ(x′). By definition of ∆(x′), this implies ∆(x′) ≥ δ = ∆(x) − dist(x, x′),

which is what we needed to show.

The conclusion about Rx follows from the fact that E is a diffeomorphism on

each V∆(x)(x) (which covers B(x,∆(x))) and from the form of DE, as in the

proof of Proposition 10.23.

For general retractions, we obtain the following corollary which notably means

that, over some domain of M ×M which contains all pairs (x, x), the map

(x, y) 7→ R−1x (y) can be defined smoothly jointly in x and y. There is no need

to require that M be a Riemannian manifold because the existence of a Rie-

mannian metric is guaranteed [Lee12, Prop. 13.3]: that is sufficient to apply

Proposition 10.26.

Corollary 10.27. For any retraction R on a manifold M there exists a neigh-

borhood T of the zero section of the tangent bundle TM on which

(x, v) 7→ (x,Rx(v))

is a diffeomorphism; T can be taken of the form (10.8) (with respect to an arbi-

trary Riemannian metric) with ∆: M→ (0,∞] continuous.

We close with the notion of injectivity radius of a whole manifold. It may be

zero, positive or infinite. The set of manifolds with positive injectivity radius is

strictly included in the set of complete manifolds: Exercise 10.30. See [Lee18,

Lem. 6.16] for a proof of Proposition 10.29.
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Definition 10.28. The injectivity radius inj(M) of a Riemannian manifold M
is the infimum of inj(x) over x ∈M.

Proposition 10.29. For a compact Riemannian manifold, inj(M) ∈ (0,∞).

A Euclidean space has infinite injectivity radius. The unit sphere Sn−1 has

injectivity radius π. Importantly, the manifold Rm×n
r of matrices with fixed rank

r embedded in Rm×n (Section 7.5) has zero injectivity radius. This is in part

due to the fact that there exist matrices in Rm×n
r that are arbitrarily close to

matrices of rank strictly less than r, as measured in the embedding space (Rm×n
r

is not complete).

Exercise 10.30. Show that if inj(M) is positive then M is complete. The con-

verse is not true: give an example of a complete, connected manifold whose in-

jectivity radius is zero.

Exercise 10.31. Let K be any subset of a Riemannian manifold M and let

r : K → R+ be continuous, with R+ = {t ∈ R : t ≥ 0}. Show that

T = {(x, s) ∈ TM : x ∈ K and ∥s∥x ≤ r(x)}

is compact in TM if and only if K is compact in M.

Exercise 10.32. Let M =M1 ×M2 be a Riemannian product manifold, as in

Example 3.57. Let O1,O2 be the domains of the exponential maps on M1,M2,

respectively. Show that the domain of the exponential map onM is O = O1×O2,

with the identification of tangent bundles on product manifolds as in (3.31). For

(x1, v1) ∈ O1 and (x2, v2) ∈ O2, show that

Expx(v) =
(
Expx1

(v1),Expx2
(v2)

)
,

where x = (x1, x2) and v = (v1, v2), and Exp denotes the exponential map on

each respective manifold. Hint: use Exercise 5.39.

10.3 Parallel transport

Consider a manifold M equipped with a connection ∇, and a tangent vector

u ∈ TxM.3 In several situations, it is desirable to somehow transport u from x

to another point y ∈ M. In so doing, we would like for u and its transported

version to be related in some meaningful way.

The geometric tool of choice for this task is called parallel transport (or parallel

translation). Let c : I →M be a smooth curve such that

c(0) = x and c(1) = y.

Consider a smooth vector field Z ∈ X(c) on this curve with Z(0) = u. If Z does

3 In this section, M may or may not be Riemannian, and ∇ may or may not be the Riemannian
connection.
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c(t)

Z(t)

M

Figure 10.1 Parallel transports ‘move’ tangent vectors from one tangent space to an-
other, along a specified curve. They can be used to compare or combine tangent vectors
at different points by transporting them to a common tangent space.

not ‘vary’ too much, it is tempting to consider Z(1) as a transport of u to y. One

convenient way to formalize this is to require that Z be parallel with respect to

the chosen connection ∇. Explicitly, using the covariant derivative D
dt induced

by ∇ (Theorem 5.29), we require

Z ∈ X(c), Z(0) = u, and
D

dt
Z = 0. (10.9)

Using standard tools from linear ordinary differential equations, one can show

that such a vector field exists and is unique [Lee18, Thm. 4.32].

Definition 10.33. A vector field Z ∈ X(c) such that D
dtZ = 0 is parallel.

Theorem 10.34. On a manifold M with a connection and induced covariant

derivative D
dt , for any smooth curve c : I → M, t0 ∈ I and u ∈ Tc(t0)M, there

exists a unique parallel vector field Z ∈ X(c) such that Z(t0) = u.

This justifies the following definition of parallel transport (Figure 10.1).

Definition 10.35. Given a smooth curve c on M, the parallel transport of

tangent vectors at c(t0) to the tangent space at c(t1) along c is the map

PTc
t1←t0 : Tc(t0)M→ Tc(t1)M

defined by PTc
t1←t0(u) = Z(t1), where Z ∈ X(c) is the unique parallel vector field

such that Z(t0) = u.

In particular, t 7→ PTc
t←t0(u) is a parallel vector field along c. Also, if Z is

parallel along c, then Z(t1) = PTc
t1←t0(Z(t0)) for all t0, t1 in the domain of c.

On occasion, we may write PTc
y←x or even PTy←x when the times t0, t1 and

the curve c such that x = c(t0) and y = c(t1) are clear from context, but beware:

even if we use the Riemannian connection,

Parallel transport from x to y depends on the choice of curve connecting x and

y.
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Indeed, think of a tangent vector at the equator pointing North. Transport it to

the North pole via the shortest path. Alternatively, transport the same vector

by first moving along the equator for some distance before going to the North

pole: the results are different. This is, in fact, a crucial feature of Riemannian

geometry, intimately related to the notion of curvature [Lee18, Ch. 7].

On a Riemannian manifold, when the curve c is not specified, one often implic-

itly means to move along the minimizing geodesic connecting x and y, assuming

it exists and is unique.

Proposition 10.36. The parallel transport operator PTc
t1←t0 is linear. Also,

PTc
t2←t1 ◦ PTc

t1←t0 = PTc
t2←t0 and PTc

t←t is the identity. In particular, the

inverse of PTc
t1←t0 is PTc

t0←t1 . If M is Riemannian and ∇ is compatible with

the Riemannian metric, then4 parallel transport is an isometry, that is,

∀u, v ∈ Tc(t0)M, ⟨u, v⟩c(t0) =
〈
PTc

t1←t0(u),PTc
t1←t0(v)

〉
c(t1)

.

Stated differently, the adjoint and the inverse of PTc
t1←t0 coincide.

Proof. For linearity, consider u, v ∈ Tc(t0)M and a, b ∈ R, arbitrary. By The-

orem 10.34, there exist unique parallel vector fields Zu, Zv ∈ X(c) such that

Zu(t0) = u and Zv(t0) = v. Since Z = aZu + bZv ∈ X(c) is also parallel and

Z(t0) = au + bv, we conclude that Z is the unique parallel vector field used in

the definition of

PTc
t1←t0(au+ bv) = Z(t1) = aZu(t1) + bZv(t1)

= aPTc
t1←t0(u) + bPTc

t1←t0(v),

which shows linearity. The composition rule is clear, as is the fact that PTc
t←t is

the identity. Then, the inverse follows by setting t2 = t0 in the composition rule.

To verify isometry, notice that

d

dt
⟨Zu(t), Zv(t)⟩c(t) =

〈
D

dt
Zu(t), Zv(t)

〉
c(t)

+

〈
Zu(t),

D

dt
Zv(t)

〉
c(t)

= 0,

using compatibility of the covariant derivative with the Riemannian metric and

the fact that Zu, Zv are parallel. Thus, the inner product is constant along c.

One convenient tool afforded to us by parallel transports is the notion of

parallel frames along a curve c. Consider an arbitrary basis e1, . . . , ed for the

tangent space at c(t̄), for an arbitrary t̄ in the domain of definition of c. Construct

the parallel vector fields

Ei(t) = PTc
t←t̄(ei), i = 1, . . . , d. (10.10)

Since parallel transports are invertible, for all t, the vectors Ei(t) form a basis for

the tangent space at c(t). (Also, if the manifold is Riemannian and we transport

via a connection that is compatible with the metric, then orthonormality would

4 The converse also holds: if parallel transport is an isometry, then ∇ is compatible with the

metric [Lee18, Prop. 5.5].
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be preserved.) As a result, for any Y ∈ X(c) there exist unique, real functions αi

such that

Y (t) =

d∑
i=1

αi(t)Ei(t). (10.11)

These functions are smooth since Y is smooth. Owing to linearity,

PTc
t1←t0(Y (t0)) =

d∑
i=1

αi(t0)Ei(t1).

In particular, we see that this is smooth in both t0 and t1.

Using parallel frames, we can show that covariant derivatives admit a con-

venient expression in terms of parallel transports: transport the vector field to

a common tangent space, differentiate in the usual way (in that fixed tangent

space), then transport back.

Proposition 10.37. Consider a smooth curve c : I →M. Given a vector field

Z ∈ X(c) and t0 ∈ I, let z : I → Tc(t0)M be z(t) = PTc
t0←tZ(t). Then,

D

dt
Z(t) = PTc

t←t0

(
d

dt
z(t)

)
= lim

δ→0

PTc
t←t+δZ(t+ δ)− Z(t)

δ
.

Proof. Transport any basis e1, . . . , ed of Tc(t0)M along c to form a frame Ei(t) =

PTc
t←t0ei. There exist unique, smooth, real functions α1, . . . , αd such that Z(t) =∑d
i=1 αi(t)Ei(t). Then, by the properties of covariant derivatives (Theorem 5.29)

and D
dtEi = 0,

D

dt
Z(t) =

d∑
i=1

α′i(t)Ei(t)

= PTc
t←t0

d∑
i=1

α′i(t)ei

= PTc
t←t0

d

dt

d∑
i=1

αi(t)ei = PTc
t←t0

d

dt
z(t),

as announced. The important point is that z is a map between (fixed) linear

spaces, which is why we can take a classical derivative d
dt .

Exercise 10.38. On the sphere Sn−1 as a Riemannian submanifold of Rn with

the usual metric and connection, parallel transport along the geodesic c(t) =

Expx(tv) admits the following explicit expression [QGA10a]:

PTc
t←0(u) =

(
In + (cos(t∥v∥)− 1)

vv⊤

∥v∥2
− sin(t∥v∥)xv

⊤

∥v∥

)
u.

Verify this claim. (Recall Example 5.37 for the exponential.)
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Exercise 10.39. Let c = (c1, c2) be a smooth curve on a Riemannian product

manifold M =M1×M2. Verify that parallel transport along c is given in terms

of parallel transports along c1 and c2 as

PTc
tb←ta(v) =

(
PTc1

tb←ta(v1),PTc2
tb←ta(v2)

)
,

where v = (v1, v2) is tangent to M at c(ta). Hint: recall Exercise 5.34.

10.4 Lipschitz conditions and Taylor expansions

One of the most convenient regularity assumptions one can make regarding the

cost function f of an optimization problem is that it or its derivatives be Lipschitz

continuous. Indeed, in the Euclidean case, it is well known that such properties

lead to global bounds on the discrepancy between f and its Taylor expansions

of various orders. These, in turn, ease worst-case iteration complexity analyses.

Here, we consider definitions of Lipschitz continuity on Riemannian manifolds,

and we derive Taylor bounds analogous to their Euclidean counterparts. In so

doing, we are careful not to require the manifold to be complete.

In this section,⋆

1. We implicitly assume all of our manifolds are Riemannian,

2. We usually omit subscripts for inner products and norms (writing ⟨·, ·⟩ and

∥ · ∥ instead of ⟨·, ·⟩x and ∥ · ∥x), and

3. We state explicitly how many times we need maps to be (continuously) differ-

entiable, thus not assuming smoothness (infinite differentiability) by default:

recall Remark 8.6.

Let A,B be two metric spaces. A map F : A→ B is L-Lipschitz continuous if

L ≥ 0 is such that

∀x, y ∈ A, distB(F (x), F (y)) ≤ LdistA(x, y), (10.12)

where distA, distB denote the distances on A and B. In particular:

Definition 10.40. A function f : M → R on a connected manifold M is L-

Lipschitz continuous if

∀x, y ∈M, |f(x)− f(y)| ≤ Ldist(x, y), (10.13)

where dist is the Riemannian distance on M. If M is disconnected, we require

the condition to hold on each connected component separately.

The definition above can be reformulated as we show below. This second formu-

lation is more convenient to study iterates of optimization algorithms presented

as xk+1 = Expxk
(sk) for some sk ∈ Txk

M.
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c(t)

γ(t)

M

not M

Figure 10.2 In Lemma 10.42, the curve γ is made of a finite number of minimizing
geodesic segments, with endpoints on c.

Proposition 10.41. A function f : M → R is L-Lipschitz continuous if and

only if

∀(x, s) ∈ O, |f(Expx(s))− f(x)| ≤ L∥s∥, (10.14)

where O ⊆ TM is the domain of the exponential map (Definition 10.16).

To prove this, we first introduce a lemma which states that any continuous

curve c can be interpolated by a ‘broken geodesic’ γ. Also, if c is piecewise smooth

it has a length and we have L(γ) ≤ L(c). See Figure 10.2.

Lemma 10.42. Given c : [0, 1] → M continuous on a manifold M, there ex-

ist a finite number of times 0 = t0 < t1 < · · · < tn−1 < tn = 1 such that

dist(c(ti), c(ti+1)) < inj(c(ti)) for i = 0, . . . , n− 1.

These times define a piecewise regular curve γ : [0, 1]→M satisfying γ(ti) =

c(ti) and such that γ|[ti,ti+1] is the minimizing geodesic connecting its endpoints.

As such, there exist tangent vectors s0, . . . , sn−1 such that γ(ti+1) = Expγ(ti)(si)

and
∑n−1

i=0 ∥si∥ = L(γ).

Proof. Consider the recursive routine construct with inputs a, b which proceeds

as follows: if dist(c(a), c(b)) < inj(c(a)), return (a, b); if not, return the results

of construct(a, (a + b)/2) and construct((a + b)/2, b) merged. We claim that

construct(0, 1) is an appropriate selection. Indeed, the routine terminates after

a finite number of steps because inj◦c is continuous and positive on the compact

domain [0, 1] so that it is bounded away from zero, and c is continuous so that for

ε > 0 small enough we can have dist(c(t), c(t+ε)) arbitrarily small. Furthermore,

for all selected ti, ti+1, we have dist(c(ti), c(ti+1)) < inj(c(ti)). Hence, there exists

a (unique) minimizing geodesic connecting c(ti) to c(ti+1), for all i, and ∥si∥ =

L(γ|[ti,ti+1]). (We used Proposition 10.22.)

Proof of Proposition 10.41. Under condition (10.13), the claim is clear:

∀(x, s) ∈ O, |f(Expx(s))− f(x)| ≤ Ldist(Expx(s), x) ≤ L∥s∥

since t 7→ Expx(ts) is a smooth curve defined on [0, 1] with length ∥s∥.
The other way around, let us assume condition (10.14) holds. IfM is complete
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(that is, O = TM) the claim is also clear: by Theorem 10.9, for all x, y ∈ M
in the same connected component there exists s in TxM such that y = Expx(s)

and ∥s∥ = dist(x, y).

If M is not complete, we proceed as follows: by definition of distance (10.2),

for all x, y ∈ M in the same connected component and for all ε > 0, there

exists a piecewise regular curve c : [0, 1] →M with length L(c) ≤ dist(x, y) + ε

such that c(0) = x and c(1) = y. Construct a broken geodesic γ as provided

by Lemma 10.42: there exist times 0 = t0 < · · · < tn = 1 and tangent vectors

s0, . . . , sn−1 such that γ(ti) = c(ti) and γ(ti+1) = Expγ(ti)(si) for all i, and∑n−1
i=0 ∥si∥ = L(γ) ≤ L(c). Then,

|f(x)− f(y)| ≤
n−1∑
i=0

|f(γ(ti))− f(γ(ti+1))|
(10.14)

≤
n−1∑
i=0

L · ∥si∥ ≤ L · L(c).

This reasoning holds for all ε > 0, hence condition (10.13) follows.

If f has a continuous gradient, then f is Lipschitz continuous exactly if its

gradient is bounded.

Proposition 10.43. If f : M → R has a continuous gradient, then f is L-

Lipschitz continuous if and only if

∀x ∈M, ∥gradf(x)∥ ≤ L. (10.15)

Proof. For any (x, s) ∈ O, consider c(t) = Expx(ts) for t ∈ [0, 1]. Then,

f(c(1))− f(c(0)) =

∫ 1

0

(f ◦ c)′(t)dt =

∫ 1

0

⟨gradf(c(t)), c′(t)⟩dt.

Thus, if the gradient norm is bounded by L at all points along c,

|f(Expx(s))− f(x)| ≤ L
∫ 1

0

∥c′(t)∥dt = L · L(c) = L∥s∥.

This shows that (10.14) holds.

The other way around, for any x ∈M, assuming (10.14) holds and using that

the domain of Expx is open around the origin, we have:

∥gradf(x)∥ = max
s∈TxM,∥s∥=1

⟨gradf(x), s⟩

= max
s∈TxM,∥s∥=1

Df(x)[s]

= max
s∈TxM,∥s∥=1

lim
t→0+

f(Expx(ts))− f(x)

t
≤ L,

since f(Expx(ts))− f(x) ≤ L∥ts∥ = L|t|.

We now turn to defining Lipschitz continuity for the Riemannian gradient of

a function f . Since gradf is a map fromM to TM, to apply the general notion

of Lipschitz continuity directly we would need to pick a distance on the tangent

bundle. However, this would not lead to interesting notions for us. Indeed, the
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distance between gradf(x) and gradf(y) would necessarily have to be positive

if x ̸= y since they would always be distinct points in TM. Contrast this to the

Euclidean case f : E → R, where it is natural to measure gradf(x) − gradf(y)

in the Euclidean metric, disregarding the base points. With this in mind, it

is reasonable to resort to parallel transport (Section 10.3) to compare tangent

vectors at distinct points. Since parallel transport is dependent on paths, this

leaves some leeway in the definition.

The following definition is fairly common. Notice how the restriction by the

injectivity radius allows us to choose a privileged path along which to transport

(owing to Proposition 10.22). For our purpose, the notion below is particularly

relevant with V = gradf , in which case we would say f has an L-Lipschitz

continuous gradient.

Definition 10.44. A vector field V on a connected manifold M is L-Lipschitz

continuous if, for all x, y ∈M with dist(x, y) < inj(x),

∥PTγ
0←1V (y)− V (x)∥ ≤ Ldist(x, y), (10.16)

where γ : [0, 1]→M is the unique minimizing geodesic connecting x to y. If M
is disconnected, we require the condition on each connected component.

Here too, we provide an equivalent definition in terms of the exponential map:

this may be more convenient to analyze optimization algorithms, and has the

added benefit of allowing the comparison of points which are further apart than

the injectivity radius (but still connected by a geodesic).

Proposition 10.45. A vector field V on a manifoldM is L-Lipschitz continuous

if and only if

∀(x, s) ∈ O, ∥P−1s V (Expx(s))− V (x)∥ ≤ L∥s∥, (10.17)

where O ⊆ TM is the domain of Exp and Ps denotes parallel transport along

γ(t) = Expx(ts) from t = 0 to t = 1.

Proof. For any x, y ∈ M such that dist(x, y) < inj(x), there exists a unique

s ∈ TxM such that y = Expx(s) and ∥s∥ = dist(x, y). Thus, if condition (10.17)

holds, then (10.16) holds.

The other way around, for any (x, s) ∈ O, consider the geodesic γ(t) =

Expx(ts) defined over [0, 1]. It may or may not be minimizing. In any case, owing

to Lemma 10.42, the interval [0, 1] can be partitioned by 0 = t0 < · · · < tn = 1

such that dist(γ(ti), γ(ti+1)) < inj(γ(ti)). Since

PTγ
0←1 = PTγ

t0←tn−1
◦ PTγ

tn−1←tn
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and since parallel transport is an isometry, we find that

∥PTγ
t0←tnV (γ(tn))− V (x)∥ = ∥PTγ

tn−1←tnV (γ(tn))− PTγ
tn−1←t0V (x)∥

≤ ∥PTγ
tn−1←tnV (γ(tn))− V (γ(tn−1))∥

+ ∥PTγ
tn−1←t0V (x)− V (γ(tn−1))∥

≤ Ldist(γ(tn−1), γ(tn))

+ ∥PTγ
t0←tn−1

V (γ(tn−1))− V (x)∥,

where in the last step we were able to use (10.16) since γ|[tn−1,tn] is the unique

minimizing geodesic connecting γ(tn−1) and γ(tn). Repeat this argument on the

right-most term n− 1 times to see that

∥PTγ
0←1V (Expx(s))− V (x)∥ ≤ L

n−1∑
i=0

dist(γ(ti), γ(ti+1)) = L · L(γ),

using that γ is a geodesic. To conclude, note that L(γ) = ∥s∥ and that PTγ
0←1 =

P−1s , so that condition (10.17) holds.

If the vector field V is continuously differentiable, then Lipschitz continuity of

V is equivalent to boundedness of its covariant derivative. In turn, this makes

it possible to compare the values of V at points connected by curves other than

geodesics.

Proposition 10.46. If V is a continuously differentiable vector field on a man-

ifold M, then it is L-Lipschitz continuous if and only if

∀(x, s) ∈ TM, ∥∇sV ∥ ≤ L∥s∥, (10.18)

where ∇ is the Riemannian connection. In that case, for any smooth curve

c : [0, 1]→M connecting any x to any y, it holds that

∥PTc
0←1V (y)− V (x)∥ ≤ L · L(c). (10.19)

Proof. We first show that (10.18) implies (10.19). Since the latter itself im-

plies (10.17), this also takes care of showing that (10.18) implies V is L-Lipschitz

continuous. To this end, consider an orthonormal basis e1, . . . , ed ∈ TxM and

their parallel transports Ei(t) = PTc
t←0(ei). Then, V (c(t)) =

∑d
i=1 vi(t)Ei(t) for

some continuously differentiable functions vi, and

d∑
i=1

v′i(t)Ei(t) =
D

dt
(V ◦ c)(t) = ∇c′(t)V.

Furthermore,

PTc
0←1V (c(1))− V (c(0)) =

d∑
i=1

(vi(1)− vi(0))ei

=

d∑
i=1

(∫ 1

0

v′i(t)dt

)
ei =

∫ 1

0

PTc
0←t

(
∇c′(t)V

)
dt.
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Consequently, using that parallel transports are isometric,

∥PTc
0←1V (y)− V (x)∥ ≤

∫ 1

0

∥∇c′(t)V ∥dt
(10.18)

≤ L

∫ 1

0

∥c′(t)∥dt = L · L(c).

Now for the other direction: assume V is L-Lipschitz continuous. For any x ∈M,

using that the domain of Expx is open around the origin, we know that for all

s ∈ TxM the smooth curve c(t) = Expx(ts) is defined around t = 0. Then, by

Proposition 10.37,

∇sV =
D

dt
V (c(t))

∣∣∣∣
t=0

= lim
t→0

PTc
0←tV (c(t))− V (c(0))

t
.

By (10.17), the norm of the numerator is bounded by L∥ts∥, which concludes

the proof.

Corollary 10.47. If f : M→ R is twice continuously differentiable on a mani-

foldM, then gradf is L-Lipschitz continuous if and only if Hessf(x) has operator

norm bounded by L for all x, that is, if for all x we have

∥Hessf(x)∥ = max
s∈TxM
∥s∥=1

∥Hessf(x)[s]∥ ≤ L.

Let us summarize these findings.

Corollary 10.48. For a vector field V on a manifold M, these are equivalent:

1. V is L-Lipschitz continuous.

2. For all x, y in the same component with dist(x, y) < inj(x), it holds that

∥PTγ
0←1V (y) − V (x)∥ ≤ Ldist(x, y) with γ the unique minimizing geodesic

connecting x to y.

3. For all (x, s) in the domain of Exp, ∥P−1s V (Expx(s))−V (x)∥ ≤ L∥s∥, where

Ps is parallel transport along c(t) = Expx(ts) from t = 0 to t = 1.

If V is continuously differentiable, the above are equivalent to the following:

4. For all smooth c : [0, 1]→M, ∥PTc
0←1V (c(1))− V (c(0))∥ ≤ L · L(c).

5. For all (x, s) ∈ TM, ∥∇sV ∥ ≤ L∥s∥.

Particularizing the above to V = gradf provides a good understanding of

functions f with Lipschitz continuous gradients.

Going one degree higher, we now define and (begin to) discuss functions with

a Lipschitz continuous Hessian. The Hessian of f associates to each x a linear

map Hessf(x) from TxM to itself. The following definition applies.

Definition 10.49. For each x ∈ M, let H(x) : TxM→ TxM be linear. If M
is connected, we say H is L-Lipschitz continuous if for all x, y ∈ M such that

dist(x, y) < inj(x) we have

∥PTγ
0←1 ◦H(y) ◦ PTγ

1←0 −H(x)∥ ≤ Ldist(x, y), (10.20)

where ∥ · ∥ denotes the operator norm with respect to the Riemannian metric,
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and γ : [0, 1]→M is the unique minimizing geodesic connecting x to y. If M is

disconnected, we require the condition on each connected component.

Recall the operator norm is ∥H(x)∥ = maxs∈TxM,∥s∥=1 ∥H(x)[s]∥. The proof

of the following proposition is left as an exercise.

Proposition 10.50. For each x ∈ M, let H(x) : TxM→ TxM be linear. The

map H is L-Lipschitz continuous if and only if

∀(x, s) ∈ O, ∥P−1s ◦H(Expx(s)) ◦ Ps −H(x)∥ ≤ L∥s∥, (10.21)

where O ⊆ TM is the domain of Exp and Ps denotes parallel transport along

γ(t) = Expx(ts) from t = 0 to t = 1.

In Section 10.7, we define what it means for a map H as above to be differ-

entiable, and we define its covariant derivative ∇H. Then, as a particular case

of Proposition 10.83 we get the following claim, analogous to Proposition 10.46

above.

Proposition 10.51. For each x ∈M, let H(x) : TxM→ TxM be linear. If H

is continuously differentiable, it is L-Lipschitz continuous if and only if

∀(x, s) ∈ TM, ∥∇sH∥ ≤ L∥s∥, (10.22)

where ∇ is the Riemannian connection and ∇sH : TxM → TxM is linear. In

that case, for any smooth curve c : [0, 1]→M connecting x to y, we have

∥PTc
0←1 ◦H(y) ◦ PTc

1←0 −H(x)∥ ≤ L · L(c). (10.23)

Corollary 10.52. If f : M→ R is three times continuously differentiable on a

manifold M, then Hessf is L-Lipschitz continuous if and only if

∀(x, s) ∈ TM, ∥∇sHessf∥ ≤ L∥s∥,

where ∇sHessf is a self-adjoint linear map on TxM defined by (10.49).

A summary of the same kind as Corollary 10.48 holds here as well.

In Section 10.7, we show how to cast f , gradf and Hessf as tensor fields of

order zero, one and two, respectively. We show how the Riemannian connection

can be used to differentiate tensor fields in general, and we discuss Lipschitz

continuity at that level of generality. This provides for the missing details in our

brief discussion of Lipschitz continuous Hessians, and indicates how to deal with

derivatives of arbitrary order.

We can now derive some of the most useful consequences of Lipschitz conti-

nuity, namely, bounds on the difference between a function f (or its derivatives)

and corresponding Taylor expansions.

We use the following notation often: given (x, s) in the domain O of the ex-

ponential map, let γ(t) = Expx(ts) be the corresponding geodesic (defined in

particular on the interval [0, 1]); then, we let

Pts = PTγ
t←0 (10.24)
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denote parallel transport from x to Expx(ts) along γ. Since γ is a geodesic, its

velocity vector field is parallel and we have

γ′(t) = Ptsγ
′(0) = Ptss. (10.25)

This will be helpful a number of times.

Proposition 10.53. Let f : M→ R be continuously differentiable on a manifold

M. Let γ(t) = Expx(ts) be defined on [0, 1] and assume there exists L ≥ 0 such

that, for all t ∈ [0, 1],∥∥P−1ts gradf(γ(t))− gradf(x)
∥∥ ≤ L∥ts∥.

Then, the following inequality holds:

|f(Expx(s))− f(x)− ⟨s, gradf(x)⟩| ≤ L

2
∥s∥2.

Proof. Consider the real function f ◦ γ on [0, 1]; we have:

f(γ(1)) = f(γ(0)) +

∫ 1

0

(f ◦ γ)′(t)dt

= f(x) +

∫ 1

0

⟨gradf(γ(t)), γ′(t)⟩dt

= f(x) +

∫ 1

0

〈
P−1ts gradf(γ(t)), s

〉
dt,

where on the last line we used γ′(t) = Ptss (10.25) and the fact that Pts is an

isometry, so that its adjoint with respect to the Riemannian metric is equal to

its inverse. Moving f(x) to the left-hand side and subtracting ⟨gradf(x), s⟩ on

both sides, we get

f(Expx(s))− f(x)− ⟨gradf(x), s⟩ =

∫ 1

0

〈
P−1ts gradf(γ(t))− gradf(x), s

〉
dt.

Using Cauchy–Schwarz and our main assumption, it follows that

|f(Expx(s))− f(x)− ⟨s, gradf(x)⟩| ≤
∫ 1

0

tL∥s∥2dt =
L

2
∥s∥2,

as announced.

The following corollary shows that the regularity assumptions A4.3 (p59)

and A6.6 (p135) hold for the exponential retraction over its whole domain pro-

vided gradf is L-Lipschitz (Definition 10.44). See also Exercise 10.58.

Corollary 10.54. If f : M→ R has L-Lipschitz continuous gradient, then

|f(Expx(s))− f(x)− ⟨s, gradf(x)⟩| ≤ L

2
∥s∥2

for all (x, s) in the domain of the exponential map.
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Proposition 10.55. Let f : M → R be twice continuously differentiable on a

manifold M. Let γ(t) = Expx(ts) be defined on [0, 1] and assume there exists

L ≥ 0 such that, for all t ∈ [0, 1],∥∥P−1ts ◦Hessf(γ(t)) ◦ Pts −Hessf(x)
∥∥ ≤ L∥ts∥.

Then, the two following inequalities hold:∣∣∣∣f(Expx(s))− f(x)− ⟨s, gradf(x)⟩ − 1

2
⟨s,Hessf(x)[s]⟩

∣∣∣∣ ≤ L

6
∥s∥3,∥∥P−1s gradf(Expx(s))− gradf(x)−Hessf(x)[s]

∥∥ ≤ L

2
∥s∥2.

Proof. The proof is in three steps.

Step 1: a preliminary computation. Pick an arbitrary basis e1, . . . , ed for

TxM and define the parallel vector fields Ei(t) = Ptsei along γ(t). The vectors

E1(t), . . . , Ed(t) form a basis for Tγ(t)M for each t ∈ [0, 1]. As a result, we can

express the gradient of f along γ(t) in these bases,

gradf(γ(t)) =

d∑
i=1

αi(t)Ei(t), (10.26)

with α1(t), . . . , αd(t) differentiable. Using the Riemannian connection ∇ and

associated covariant derivative D
dt , we find on the one hand that

D

dt
gradf(γ(t)) = ∇γ′(t)gradf = Hessf(γ(t))[γ′(t)],

and on the other hand that

D

dt

d∑
i=1

αi(t)Ei(t) =

d∑
i=1

α′i(t)Ei(t) = Pts

d∑
i=1

α′i(t)ei.

Combining with γ′(t) = Ptss (10.25), we deduce that

d∑
i=1

α′i(t)ei =
(
P−1ts ◦Hessf(γ(t)) ◦ Pts

)
[s].

Going back to (10.26), we also see that

G(t) ≜ P−1ts gradf(γ(t)) =

d∑
i=1

αi(t)ei

is a map from (a subset of) R to TxM—two linear spaces—so that we can

differentiate it in the usual way:

G′(t) =

d∑
i=1

α′i(t)ei.

Overall, we conclude that

G′(t) =
d

dt
P−1ts gradf(γ(t)) =

(
P−1ts ◦Hessf(γ(t)) ◦ Pts

)
[s]. (10.27)
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This comes in handy in the next step.

Step 2: Taylor expansion of the gradient. Since G′ is continuous,

P−1ts gradf(γ(t)) = G(t) = G(0) +

∫ t

0

G′(τ)dτ

= gradf(x) +

∫ t

0

(
P−1τs ◦Hessf(γ(τ)) ◦ Pτs

)
[s]dτ.

Moving gradf(x) to the left-hand side and subtracting Hessf(x)[ts] on both

sides, we find

P−1ts gradf(γ(t))− gradf(x)−Hessf(x)[ts]

=

∫ t

0

(
P−1τs ◦Hessf(γ(τ)) ◦ Pτs −Hessf(x)

)
[s]dτ.

Using the main assumption on Hessf along γ, it follows that∥∥P−1ts gradf(γ(t))− gradf(x)−Hessf(x)[ts]
∥∥

≤
∫ t

0

τL∥s∥2dτ =
L

2
∥ts∥2. (10.28)

For t = 1, this is one of the announced inequalities.

Step 3: Taylor expansion of the function value. With the same start as

in the proof of Proposition 10.53 and subtracting the term 1
2 ⟨s,Hessf(x)[s]⟩ on

both sides, we get

f(Expx(s))− f(x)− ⟨gradf(x), s⟩ − 1

2
⟨s,Hessf(x)[s]⟩

=

∫ 1

0

〈
P−1ts gradf(γ(t))− gradf(x)−Hessf(x)[ts], s

〉
dt.

Using (10.28) and Cauchy–Schwarz, it follows that∣∣∣∣f(Expx(s))− f(x)− ⟨s, gradf(x)⟩ − 1

2
⟨s,Hessf(x)[s]⟩

∣∣∣∣
≤
∫ 1

0

t2
L

2
∥s∥3dt =

L

6
∥s∥3,

as announced.

The following corollary shows that the regularity assumption A6.7 (p135)

holds for the exponential retraction over its whole domain provided Hessf is

L-Lipschitz (Definition 10.49). See also Exercise 10.87.

Corollary 10.56. If f : M→ R has L-Lipschitz continuous Hessian, then∣∣∣∣f(Expx(s))− f(x)− ⟨s, gradf(x)⟩ − 1

2
⟨s,Hessf(x)[s]⟩

∣∣∣∣ ≤ L

6
∥s∥3,

and
∥∥P−1s gradf(Expx(s))− gradf(x)−Hessf(x)[s]

∥∥ ≤ L

2
∥s∥2,
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for all (x, s) in the domain of the exponential map.

To close this section, the following statement from [LKB22b] provides Lipschitz-

type bounds for pullbacks through arbitrary retractions so long as we restrict our

attention to a compact subset of the tangent bundle. The proof (omitted) merely

uses the fact that if f ◦ R is sufficiently many times continuously differentiable

then its derivatives are bounded on any compact set. In turn, that can be used

to bound truncation errors on Taylor expansions of f ◦ Rx in TxM uniformly

in x over a compact set. This is convenient to verify typical regularity assump-

tions such as A4.3, A6.6 and A6.7, though it should be noted that the constants

L1, L2 below exist merely owing to the compactness-and-continuity argument:

this provides little insight (let alone control) over those constants.

Lemma 10.57. Consider a retraction R on M, a compact subset K ⊆ M and

a continuous, nonnegative function r : K → R. The set

T = {(x, s) ∈ TM : x ∈ K and ∥s∥ ≤ r(x)}

is compact in the tangent bundle TM (Exercise 10.31). Assume f : M → R is

twice continuously differentiable. There exists a constant L1 such that, for all

(x, s) ∈ T , with f̂x = f ◦ Rx, we have

|f(Rx(s))− f(x)− ⟨s, gradf(x)⟩| ≤ L1

2
∥s∥2,∥∥∥gradf̂x(s)− gradf̂x(0)

∥∥∥ ≤ L1∥s∥,

and ∥Hessf̂x(0)∥ ≤ L1 for all x ∈ K. If additionally f is three times continuously

differentiable, then there exists a constant L2 such that, for all (x, s) ∈ T ,∣∣∣∣f(Rx(s))− f(x)− ⟨s, gradf(x)⟩ − 1

2
⟨s,Hessf̂x(0)[s]⟩

∣∣∣∣ ≤ L2

6
∥s∥3,∥∥∥gradf̂x(s)− gradf̂x(0)−Hessf̂x(0)[s]

∥∥∥ ≤ L2

2
∥s∥2,∥∥∥Hessf̂x(s)−Hessf̂x(0)

∥∥∥ ≤ L2∥s∥.

(Recall gradf̂x(0) = gradf(x) and, if the retraction is second order, Hessf̂x(0) =

Hessf(x).)

The exercise below has clear implications for the regularity assumptions A4.3

(p59) and A6.6 (p135). See also Exercise 10.87.

Exercise 10.58. Let f : M→ R be twice continuously differentiable on a man-

ifold M equipped with a retraction R. Assume we have

|f(Rx(s))− f(x)− ⟨s, gradf(x)⟩| ≤ L

2
∥s∥2 (10.29)

for all (x, s) in a neighborhood of the zero section in the tangent bundle. With

f̂x = f ◦Rx, show that ∥Hessf̂x(0)∥ ≤ L. Deduce that if R is second order then the
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inequalities (10.29) hold only if gradf is L-Lipschitz continuous. With R = Exp

in particular, verify that the three following claims are equivalent:

1. Inequalities (10.29) hold in a neighborhood of the zero section in TM;

2. gradf is L-Lipschitz continuous;

3. Inequalities (10.29) hold over the whole domain of Exp.

Exercise 10.59. Give a proof of Proposition 10.50, for example by adapting

that of Proposition 10.45.

10.5 Transporters

The strong properties of parallel transports (Section 10.3) make them great for

theoretical purposes, and in some cases they can even be computed via explicit

expressions. In general though, computing parallel transports involves numeri-

cally solving ordinary differential equations, which is typically too expensive in

practice. Furthermore, we may want to dispense with the need to choose a curve

connecting x and y explicitly to transport vectors from TxM to TyM, as this

may add to the computational burden (e.g., require computing Logx(y) if we

mean to transport along minimizing geodesics).

As an alternative, we define a poor man’s version of parallel transports called

transporters.5 There is no need for a Riemannian structure or connection. Infor-

mally, for x and y close enough to one another, we aim to define linear maps of

the form

Ty←x : TxM→ TyM,

with Tx←x in particular being the identity map. If M is an embedded subman-

ifold of a Euclidean space, we present a simple transporter based on orthogonal

projections to tangent spaces in Proposition 10.66.

It is natural and convenient to ask that these maps vary smoothly with respect

to x and y. One indirect way to make sense of this statement would be to

require that the map ((x, u), y) 7→ Ty←xu be smooth from (an open submanifold

of) TM ×M to TM. However, it is more instructive (and eventually more

comfortable) to endow the set of linear maps between tangent spaces of two

manifolds with a smooth structure. (Here, the two manifolds are the same.) Once

this is done, we can formalize the notion of smoothness for a map (x, y) 7→ Ty←x.

This is in direct analogy with how we defined the tangent bundle TM as a disjoint

union of tangent spaces, associating a linear space TxM to each point x ∈ M.

Here, we associate to each pair (x, y) ∈ M×N the linear space of linear maps

from TxM to TyN . The proof is an exercise.

5 This is different from the notion of vector transport as defined in [AMS08, §8.1]: we connect

both concepts at the end of this section.
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Proposition 10.60. For manifolds M and N of dimensions m and n, the

disjoint union of linear maps from the tangent spaces of M to those of N ,

L(TM,TN ) = {(x, y,L) |x ∈M, y ∈ Nand L : TxM→ TyN is linear},

is itself a manifold, with charts as follows. For any pair of charts (U , φ) and

(V, ψ) of M and N , respectively, pick local frames on U and V as in Proposi-

tion 8.51; then,

Φ(x, y,L) = (φ(x), ψ(y),Mat(L)) ∈ Rm × Rn × Rn×m

is a chart on π−1(U ×V), where Mat(L) is the matrix that represents L with re-

spect to the bases of TxM and TyN provided by the local frames, and π(x, y,L) =

(x, y) is the projector from L(TM,TN ) to M×N .

The manifold L(TM,TN ) is a vector bundle ofM×N in that it (smoothly)

attaches a linear space to each point of that manifold. Maps such as transporters

defined below have the property that they map (x, y) to (x, y,L) for some L:

these are called sections of the vector bundle. In the same way, vector fields are

called sections of the tangent bundle.

Definition 10.61. Given a manifold M, let V be open in M×M such that

(x, x) ∈ V for all x ∈M. A transporter on V is a smooth map

T: V → L(TM,TM) : (x, y) 7→ Ty←x

such that Ty←x is linear from TxM to TyM and Tx←x is the identity.

In this definition, smoothness of T is understood with V as an open submani-

fold of the product manifoldM×M and L(TM,TM) equipped with the smooth

structure of Proposition 10.60. Formally, this means that for any pair (x̄, ȳ) ∈ V
and local frames defined on neighborhoods Ux̄ and Uȳ, the matrix that represents

Ty←x with respect to these local frames varies smoothly with (x, y) in Ux̄ × Uȳ.

We detail this in the proof of the next proposition, which shows that inverting

the linear maps of a transporter yields a transporter.

Proposition 10.62. For a transporter T on V, let V ′ be the set of pairs (x, y) ∈
V such that Tx←y is invertible. Then, the maps

T′y←x = (Tx←y)−1 : TxM→ TyM

define a transporter T′ on V ′.

Proof. For all x ∈ M, since Tx←x is the identity map, clearly (x, x) ∈ V ′ and

T′x←x is itself the identity. Likewise, for all (x, y) ∈ V ′, it is clear that T′y←x is

linear. It remains to argue that V ′ is open inM×M and that T′ is smooth from

V ′ to L(TM,TM).

To this end, consider an arbitrary pair (x̄, ȳ) ∈ V ′ and let U1, . . . , Ud be a

local frame on a neighborhood Ux̄ of x̄ with d = dimM—see Proposition 8.51.

Likewise, let W1, . . . ,Wd be a local frame on a neighborhood Uȳ of ȳ. If need be,
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reduce Ux̄ and Uȳ to smaller neighborhoods of x̄ and ȳ so that Ux̄×Uȳ ⊆ V. (We

can do this because V is open inM×M, hence it is a union of products of open

sets inM. One of these products, say Ũ×Û , contains (x̄, ȳ), as otherwise it would

not be in V; thus: x̄ ∈ Ũ and ȳ ∈ Û . Replace Ux̄ by its intersection with Ũ , and

similarly for Uȳ: now Ux̄×Uȳ ⊆ V is a neighborhood of (x̄, ȳ) and the local frames

are well defined.) Since T is smooth, the matrix G(x, y) in Rd×d that represents

Tx←y with respect to the bases U1(x), . . . , Ud(x) and W1(y), . . . ,Wd(y) varies

smoothly with (x, y) in Ux̄ × Uȳ. In particular, the function (x, y) 7→ detG(x, y)

is smooth on this domain, so that the subset of Ux̄×Uȳ over which detG(x, y) ̸= 0

(that is, over which Tx←y is invertible) is open, and it contains (x̄, ȳ). In other

words: this subset is a neighborhood of (x̄, ȳ) in V ′. Since each point in V ′ admits

such a neighborhood, we find that V ′ is open. Furthermore, the matrix that

represents T′y←x is simply G(x, y)−1. This is a smooth function of (x, y) on the

open set where the inverse is well defined, confirming that T′ is smooth from V ′
to L(TM,TM).

With similar developments, we also get the following result once we equip the

manifold with a Riemannian metric.

Proposition 10.63. Let M be a Riemannian manifold and let T be a trans-

porter for M on V. Then, T′ defined by the maps

T′y←x = (Tx←y)∗ : TxM→ TyM

is a transporter on V. (As always, the superscript ∗ denotes the adjoint, here

with respect to the Riemannian metric at x and y.)

Proof sketch. Compared to Proposition 10.62 (and using the same notation), an

extra step in the proof is to show that, using local frames, the Riemannian metric

can be represented as a smooth map from x to M(x): a symmetric, positive

definite matrix of size d which allows us to write ⟨u, v⟩x = ū⊤M(x)v̄ with ū, v̄ ∈
Rd denoting the coordinate vectors of u, v in the same local frame. Upon doing

so, it is straightforward to show that the matrix which represents (Tx←y)∗ is

M(y)−1G(x, y)⊤M(x), which is indeed smooth in (x, y).

Upon choosing a smoothly varying collection of curves that uniquely connect

pairs of nearby points on M, it is easy to construct a transporter from parallel

transport along those curves (with respect to some connection). One way of

choosing such families of curves is via a retraction.

Conveniently, the differentials of a retraction also provide a transporter. This

is because, with y = Rx(v), by perturbing v in TxM we perturb Rx(v) away

from y, thus producing a tangent vector in TyM. That is a good alternative

when parallel transports are out of reach.

Proposition 10.64. For a retraction R on a manifold M, let T be a neighbor-

hood of the zero section of TM such that E(x, v) = (x,Rx(v)) is a diffeomor-

phism from T to V = E(T )—such neighborhoods exist by Corollary 10.27. For
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our purpose, this means (x, y) 7→ (x,R−1x (y)) is a diffeomorphism from V to T ,

yielding a smooth choice of curves joining pairs (x, y).

1. Assume Tx = {v ∈ TxM : (x, v) ∈ T } is star-shaped around the origin for

all x. Parallel transport along retraction curves defines a transporter on V via

Ty←x = PTc
1←0, where c(t) = Rx(tv) and v = R−1x (y).

2. The differentials of the retraction define a transporter on V via Ty←x =

DRx(v), where v = R−1x (y).

Proof sketch. The domain V ⊆ M ×M is open and indeed contains all pairs

(x, x) since E(x, 0) = (x, x). For both proposed transporters, it is clear that Tx←x

is the identity and that Ty←x is a linear map from TxM to TyM. Smoothness for

parallel transport can be argued with tools from ordinary differential equations

(it takes some work). Smoothness for the retraction-based transport follows by

composition of smooth maps since Ty←x = DRx(R−1x (y)).

Example 10.65. Transporters can be used to transport linear maps between

certain tangent spaces to other tangent spaces. This is useful notably in defining

a Riemannian version of the famous BFGS algorithm. For example, if A is a

linear map from TxM to TxM, then we may transport it to a linear map from

TyM to TyM in at least three ways using a transporter T:

Ty←x ◦ A ◦ Tx←y, (Tx←y)∗ ◦ A ◦ Tx←y, (Tx←y)−1 ◦ A ◦ Tx←y.

If A is self-adjoint, then so is the second operator. If the transporter is obtained

through parallel transport as in Proposition 10.64 and the curve connecting x

to y is the same as the curve connecting y to x (for example, if we use unique

minimizing geodesics), then all three operators are equal: see Proposition 10.36.

For manifolds embedded in Euclidean spaces, an especially convenient trans-

porter is given by orthogonal projectors to the tangent spaces. In contrast to

Proposition 10.64, it does not involve retractions.

Proposition 10.66. Let M be an embedded submanifold of a Euclidean space

E. For all x, y ∈M, exploiting the fact that both TxM and TyM are subspaces

of E, define the linear maps

Ty←x = Projy
∣∣
TxM

,

where Projy is the orthogonal projector from E to TyM, here restricted to TxM.

This is a transporter on all of M×M.

Proof. By design, Tx←x is the identity and Ty←x is linear from TxM to TyM.

Moreover, T is smooth as can be deduced by an argument along the same lines

as in Exercise 3.66.

For a quotient manifold M = M/∼, in the same way that we discussed

conditions for a retraction R on the total space M to induce a retraction R on

the quotient manifoldM, it is tempting to derive a transporter T onM from a

transporter T on M. We show through an example how this can be done.
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Example 10.67. Consider the Grassmann manifold Gr(n, p) = St(n, p)/ ∼
(Section 9.16). Equip the total space with the polar retraction (7.24), RX(V ) =

pfactor(X + V ), and with the projection transporter,

TY←X = ProjStY |TXSt(n,p),

the orthogonal projector from Rn×p to TY St(n, p) restricted to TXSt(n, p). This

transporter is defined globally on St(n, p)×St(n, p). Our tentative transporter on

Gr(n, p) is:

T[Y ]←[X](ξ) = Dπ(Y )
[
TY←X(liftX(ξ))

]
, (10.30)

where X is an arbitrary representative of [X], and Y is a representative of [Y ]

such that Y = RX(V ) for some V ∈ HX , assuming one exists. When such a

choice of Y and V exists, it is unique. Indeed, consider the map

E : TGr(n, p)→ Gr(n, p)×Gr(n, p)

: ([X], ξ) 7→ E([X], ξ) = ([X], [RX(V )]), (10.31)

where V = liftX(ξ). In Exercise 10.71, we find that E from TGr(n, p) to V =

E(TGr(n, p)) is smoothly invertible. In other words: if [Y ] can be reached from

[X] through retraction, it is so by a unique tangent vector ξ; the latter has a

specific horizontal lift V once we choose a specific representative X. Furthermore,

since E−1 is continuous, V is open. Finally, V contains all pairs of the form

([X], [X]). This set V is meant to be the domain of T.

Now restricting our discussion to V, we rewrite (10.30) equivalently as

liftY
(
T[Y ]←[X](ξ)

)
= ProjHY

(
TY←X(liftX(ξ))

)
= ProjHY (liftX(ξ)) , (10.32)

where we used that ProjHY ◦ProjStY = ProjHY . We must check (a) that T[Y ]←[X] is

well defined, and (b) that it defines a transporter, both on V.

For (a), we must check that the right-hand side of (10.30) does not depend

on our choice of representatives X and Y . To this end, consider (10.32). Recall

from Example 9.26 that if we choose the representative XQ instead of X for [X]

with some arbitrary Q ∈ O(p), then liftXQ(ξ) = liftX(ξ)Q. The representative

Y also changes as a result. Indeed, given V ∈ HX such that RX(V ) = Y , we

know that V Q ∈ HXQ is such that RXQ(V Q) = Y Q (this is specific to the polar

retraction by (9.9)), and this is the only horizontal vector at XQ that maps to

[Y ]. Since ProjHY = In − Y Y ⊤= ProjHY Q, we find that

liftY Q

(
T[Y ]←[X](ξ)

)
= ProjHY Q (liftXQ(ξ))

= (In − Y Y ⊤) liftX(ξ)Q

= liftY
(
T[Y ]←[X](ξ)

)
Q.

This confirms that the lifted vectors correspond to each other in the appropriate

way, that is, the result T[Y ]←[X](ξ) does not depend on our choice of representa-

tive X.
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Regarding (b), it is clear that T[Y ]←[X] is a linear map from T[X]Gr(n, p)

to T[Y ]Gr(n, p), as a composition of linear maps. Likewise, T is smooth as a

composition of smooth maps (this also follows from Exercise 10.71, which shows

that given ([X], [Y ]) ∈ V, for any choice of representative X, there is a smooth

choice of Y and V (horizontal) such that Y = RX(V )). It is easy to see that

T[X]←[X] is the identity. Finally, we already checked that V is an appropriate

domain for a transporter.

How do we use this transporter in practice? If we are simply given two rep-

resentatives X and Y and the lift U of ξ at X, then before applying (10.32) we

must replace Y by Y Q, for the unique Q such that there exists V ∈ HX with

RX(V ) = Y Q. This can be done if and only if X⊤Y is invertible. Explicitly, one

can reason from Exercise 10.71 that Q is nothing but the polar factor of X⊤Y .

Then, we can follow this procedure:

1. Compute Q ∈ O(p) via SVD, as Q = Ũ Ṽ ⊤ with Ũ Σ̃Ṽ ⊤= X⊤Y ;

2. By (10.32), liftY Q

(
T[Y ]←[X](ξ)

)
= ProjHY Q(liftX(ξ)) = U − Y (Y ⊤U);

3. Finally, liftY
(
T[Y ]←[X](ξ)

)
= (U − Y (Y ⊤U))Q⊤.

Often times though, Y is a point that was generated by retraction of some hor-

izontal vector from X. If that retraction is the polar retraction, then using this

transporter is straightforward: X⊤Y is symmetric and positive definite, hence its

polar factor is Q = Ip, and it is sufficient to compute U − Y (Y ⊤U).

In closing, we connect the notion of transporter (used in [HGA15, §4.3]) to

that of vector transport (favored in [AMS08, Def. 8.1.1]).

Definition 10.68. A vector transport on a manifold M is a smooth map

(x, u, v) 7→ VT(x,u)(v)

from the Whitney sum (which can be endowed with a smooth structure)

TM⊕ TM = {(x, u, v) : x ∈M and u, v ∈ TxM}

to TM, satisfying the following for some retraction R on M:

1. VT(x,u) is a linear map from the tangent space at x to the tangent space at

Rx(u) for all (x, u) ∈ TM; and

2. VT(x,0) is the identity on TxM for all x ∈M.

Equivalently, we can define a vector transport associated to a retraction R as

a smooth map VT: TM→ L(TM,TM) such that VT(x,u) is a linear map from

TxM to TRx(u)M and VT(x,0) is the identity on TxM. From this perspective,

it is clear that a transporter T and a retraction R can be combined to define a

vector transport through VT(x,u) = TRx(u)←x. However, not all vector transports

are of this form because in general we could have VT(x,u) ̸= VT(x,w) even if

Rx(u) = Rx(w), which the transporter construction does not allow. The other

way around, a vector transport with associated retraction R can be used to define
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a transporter if we first restrict the domain such that (x, u) 7→ (x,Rx(u)) admits

a smooth inverse (see Corollary 10.27).

Exercise 10.69. Give a proof of Proposition 10.60.

Exercise 10.70. Give a proof of Proposition 10.63.

Exercise 10.71. With notation as in Example 10.67, show that E (10.31) is

invertible. Furthermore, show that given two arbitrary representatives X and Y

of [X] and [RX(V )] (respectively), V is given by

V = Y (X⊤Y )−1 −X, (10.33)

and deduce that the inverse of E is smooth. From this formula, it is also apparent

that [Y ] can be reached from [X] if and only if X⊤Y is invertible. Compare with

Exercise 7.2.

Exercise 10.72. For the orthogonal group (M = O(n)) or the group of rotations

(M = SO(n)) as a Riemannian submanifold of Rn×n (see Section 7.4), it is

natural to consider the following transporter:

TY←X(U) = Y X⊤U, (10.34)

where X,Y ∈ M are orthogonal matrices of size n and U ∈ TXM is such

that X⊤U is skew-symmetric. Show that this is indeed a transporter and that it

is isometric. Then, show that this is not parallel transport along geodesics (see

Exercise 7.3). If we represent tangent vectors U = XΩ simply as their skew-

symmetric part Ω, then this transporter requires no computations.

Exercise 10.73. Let R be a retraction on a Riemannian manifold M. The

differentiated retraction plays a special role as a link between the Riemannian

gradient and Hessian of f : M → R and the (classical) gradients and Hessians

of the pullbacks f̂ = f ◦ Rx : TxM→ R.

Prove the following identities [ABBC20, §6]: if f is differentiable, then

gradf̂(s) = T ∗s gradf(Rx(s)), (10.35)

where Ts = DRx(s) is a linear map from TxM to TRx(s)M, and T ∗s is its adjoint.

If f is twice differentiable, then

Hessf̂(s) = T ∗s ◦Hessf(Rx(s)) ◦ Ts +Ws, (10.36)

with Ws a self-adjoint linear map on TxM defined by

⟨ṡ,Ws(ṡ)⟩x = ⟨gradf(Rx(s)), c′′(0)⟩Rx(s)
, (10.37)

where c′′(0) = D
dtc
′(0) is the initial intrinsic acceleration of the smooth curve

c(t) = Rx(s+ tṡ). Argue that Ws is indeed linear and self-adjoint.

Check that these formulas generalize Propositions 8.59 and 8.71 (as well as

their embedded counter-parts, Propositions 3.59 and 5.45).
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As a comment: For all u, v ∈ TxM, we can use (10.37) to compute ⟨u,Ws(v)⟩x
owing to the polarization identity

⟨u,Ws(v)⟩x =
1

4

(
⟨u+ v,Ws(u+ v)⟩x − ⟨u− v,Ws(u− v)⟩x

)
.

This is why (10.37) fully determines Ws.

10.6 Finite difference approximation of the Hessian

In order to minimize a smooth function f : M→ R on a Riemannian manifold,

several optimization algorithms (notably those in Chapter 6) require computa-

tion of the Riemannian Hessian applied to a vector: Hessf(x)[u]. Since obtaining

an explicit expression for the Hessian may be tedious,6 it is natural to explore

avenues to approximate it numerically. To this end, we consider finite difference

approximations.

For any smooth curve c : I → M such that c(0) = x and c′(0) = u, it holds

that

Hessf(x)[u] = ∇ugradf =
D

dt
(gradf ◦ c)(0). (10.38)

Using Proposition 10.37, we can further rewrite the right-hand side in terms of

parallel transport along c:

Hessf(x)[u] = lim
t→0

PTc
0←t(gradf(c(t)))− gradf(x)

t
. (10.39)

This suggests the approximation

Hessf(x)[u] ≈ PTc
0←t̄(gradf(c(t̄)))− gradf(x)

t̄
(10.40)

for some well-chosen t̄ > 0: small enough to be close to the limit (see Corol-

lary 10.56 to quantify this error), large enough to avoid numerical issues. Of

course, we could also use higher-order finite differences.

In light of Section 10.5, we may ask: is it legitimate to replace the parallel

transport in (10.40) with a transporter? We already verified this for a special

case in Example 5.32, where we considered a Riemannian submanifold M of a

Euclidean space E with the transporter obtained by orthogonal projection to

tangent spaces. In this section, we consider the general setting.

With a transporter T on a Riemannian manifold M, we contemplate the

following candidate approximation for the Hessian:

Hessf(x)[u] ≈
Tx←c(t̄)(gradf(c(t̄)))− gradf(x)

t̄
. (10.41)

Implementing this formula takes little effort compared to the hassle of deriv-

ing formulas for the Hessian by hand. For example, in the Manopt toolbox,

6 See also Section 4.7 for a word regarding automatic differentiation.
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the default behavior when the Hessian is needed but unavailable is to fall back

on (10.41) with c(t̄) = Rx(t̄u) and t̄ > 0 set such that ∥t̄u∥x = 2−14. This costs

one retraction, one gradient evaluation (assuming gradf(x) is available), and one

call to a transporter. Moreover, this satisfies radial linearity as required in A6.1

(p133). To justify (10.41), we generalize Proposition 10.37.

Proposition 10.74. Let c : I →M be a smooth curve on a Riemannian mani-

fold equipped with a transporter T. For a fixed t0 ∈ I, let v1, . . . , vd form a basis

of Tc(t0)M and define the vector fields

Vi(t) =
(
Tc(t0)←c(t)

)−1
(vi). (10.42)

Given a vector field Z ∈ X(c), it holds that

D

dt
Z(t0) = lim

δ→0

Tc(t0)←c(t0+δ)Z(t0 + δ)− Z(t0)

δ
+

d∑
i=1

αi(t0)
D

dt
Vi(t0),

where α1(t0), . . . , αd(t0) are the coefficients of Z(t0) in the basis v1, . . . , vd.

Proof. The vector fields V1, . . . , Vd play a role similar to parallel frames. By

Proposition 10.62, these vector fields depend smoothly on t in a neighborhood I0
of t0. Furthermore, I0 can be chosen small enough so that V1(t), . . . , Vd(t) form

a basis of Tc(t)M for each t ∈ I0. Hence, there exists a unique set of smooth

functions αi : I0 → R such that

Z(t) =

d∑
i=1

αi(t)Vi(t).

On the one hand, using properties of covariant derivatives, we see that

D

dt
Z(t) =

d∑
i=1

α′i(t)Vi(t) + αi(t)
D

dt
Vi(t).

On the other hand, defining G as

G(t) = Tc(t0)←c(t)(Z(t)) =

d∑
i=1

αi(t)vi,

we find that

G′(t) =

d∑
i=1

α′i(t)vi.

Combining both findings at t0 using Vi(t0) = vi, it follows that

D

dt
Z(t0) = G′(t0) +

d∑
i=1

αi(t0)
D

dt
Vi(t0).

Since G is a map between (open subsets of) linear spaces, we can write G′(t0)

as a limit in the usual way.
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Applying this to (10.38) yields a corollary relevant to formula (10.41).

Corollary 10.75. For any smooth curve c on a Riemannian manifold M such

that c(0) = x and c′(0) = u, and for any transporter T, orthonormal basis

v1, . . . , vd of TxM and associated vector fields V1, . . . , Vd defined by

Vi(t) =
(
Tx←c(t)

)−1
(vi), (10.43)

it holds that

Hessf(x)[u] = lim
t→0

Tx←c(t)(gradf(c(t)))− gradf(x)

t

+

d∑
i=1

⟨gradf(x), vi⟩x
D

dt
Vi(0). (10.44)

Thus we see that the approximation (10.41) is justified at or near a critical

point. This is typically sufficient to obtain good performance with second-order

optimization algorithms such as RTR.

The approximation is also justified at a general point x if the vectors D
dtVi(0)

vanish. This is of course the case if we use parallel transport, recovering (10.39).

Likewise, circling back to Example 5.32 for the case where M is a Riemannian

submanifold of a Euclidean space E and the transporter is taken to be simply

orthogonal projection to tangent spaces (Proposition 10.66), we also get the

favorable simplification. As a reminder, this yields the particularly convenient

formula

Hessf(x)[u] = lim
t→0

Projx(gradf(c(t)))− gradf(x)

t
, (10.45)

where Projx is the orthogonal projector from E to TxM, c(t) satisfies c(0) = x

and c′(0) = u, and gradf(c(t)) is interpreted as a vector in E .

10.7 Tensor fields and their covariant differentiation

Given a Riemannian manifold M, we can think of a smooth vector field U ∈
X(M) as a map from X(M) to the set of smooth real-valued functions F(M) as

follows:

V 7→ U(V ) = ⟨U, V ⟩ .

This map is F(M)-linear in its argument, meaning

U(fV + gW ) = fU(V ) + gU(W )

for all V,W ∈ X(M) and f, g ∈ F(M). Likewise, we can think of the Riemannian

metric itself as a map from X(M)× X(M) to F(M):

(U, V ) 7→ ⟨U, V ⟩ .
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This mapping is F(M)-linear in each of its arguments. These two maps are

examples of tensor fields of order one and two, respectively.

Definition 10.76. A smooth tensor field T of order k on a manifold M is a

map

T : X(M)× · · · × X(M)→ F(M)

which is F(M)-linear in each one of its k inputs. The set of such objects is

denoted by Xk(M). If the ordering of the inputs is irrelevant, we say T is a

symmetric (smooth) tensor field. (See also Remark 10.84.)

In our examples above, vector fields are identified with tensor fields of order

one, while the Riemannian metric is a symmetric tensor field of order two. As a

non-example, notice that the Riemannian connection ∇, conceived of as a map

∇ : X(M)× X(M)× X(M)→ F(M) : (U, V,W ) 7→ ⟨∇UV ,W ⟩ ,

is not a tensor field, because it is only R-linear in V , not F(M)-linear. Indeed,

∇U (fV ) = f∇UV + (Uf)V for f ∈ F(M).

Importantly, tensor fields are pointwise objects, in that they associate to each

point x ∈M a well-defined multilinear map (i.e., a tensor) on the tangent space

TxM—hence the name tensor field. In order to see this, consider a tensor field T

of order k and a local frame W1, . . . ,Wd on a neighborhood U of x (Section 3.9).

Then, the input vector fields U1, . . . , Uk ∈ X(M) can each be expanded in the

local frame as

Ui|U = fi,1W1 + · · ·+ fi,dWd =

d∑
j=1

fi,jWj ,

where the fi,j are smooth functions on U . Working only on the domain U and

using the linearity properties of tensor fields, we find7

T (U1, . . . , Uk) =

d∑
j1=1

· · ·
d∑

jk=1

f1,j1 · · · fk,jkT (Wj1 , . . . ,Wjk).

Evaluating this function at x′ ∈ U , the result depends on U1, . . . , Uk only through

the values of the fi,j at x′, that is, T (U1, . . . , Uk)(x′) depends on the vector fields

only through U1(x′), . . . , Uk(x′). Moreover, the dependence is linear in each one.

This offers a useful perspective on tensor fields of order k: they associate to

each point x ofM a k-linear function on the tangent space at that point, namely,

T (x) : TxM× · · · × TxM→ R.

This function is defined by

T (x)(u1, . . . , uk) = T (U1, . . . , Uk)(x),

7 Via bump functions as in Section 5.6, we can extend the vector fields from U to all of M,

which is necessary to apply T . To be formal, we should then also argue why the conclusions
we reach based on these special vector fields generalize—see [Lee12, Lem. 12.24].
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where the Ui ∈ X(M) are arbitrary so long as Ui(x) = ui.

Continuing with our examples, for a vector field U ∈ X(M), the notation

u = U(x) normally refers to a tangent vector at x, while if we think of U as a

tensor field, then U(x) denotes the linear function v 7→ ⟨u, v⟩x on the tangent

space at x. The Riemannian metric is a tensor field of order two; let us call it G.

Then, G(x) is a bilinear function on TxM×TxM such that G(x)(u, v) = ⟨u, v⟩x.

The map x 7→ T (x) is smooth, in a sense we now make precise. Similarly to

Proposition 10.60, we can define a tensor bundle of order k over M as:

TkTM =
{

(x, L) : x ∈M and L ∈ TkTxM
}
, where (10.46)

TkTxM =
{
k-linear functions from (TxM)k to R

}
.

Each tensor bundle can be endowed with a natural smooth manifold structure

such that π : TkTM → M defined by π(x, L) = x is smooth. This is identical

to how we equipped the tangent bundle TM with such a smooth structure.

Then, any section of TkTM, that is, any map T from M to TkTM such that

π(T (x)) = x is called a tensor field of order k. This is commonly taken as the

definition of a tensor field. Smooth tensor fields as we defined them above are

exactly the smooth sections as defined here [Lee12, Prop. 12.19, Lem. 12.24].

By convention, T0TxM = R, so that T0TM =M× R. Notice that T1TxM
can be identified with TxM, and that T2TxM can be identified with the set

of linear maps from TxM into itself. Thus, T1TM can be identified with TM
itself, and T2TM can be identified as:

T2TM≡ {(x, L) : x ∈M and L : TxM→ TxM is linear} . (10.47)

Now that we think of smooth tensor fields as smooth maps on manifolds, it is

natural to ask what happens if we differentiate them. In Chapter 5, we introduced

the notion of connection ∇ on the tangent bundle TM. One can formalize the

idea that ∇ induces a connection on any tensor bundle, unique once we require

certain natural properties [Lee18, Prop. 4.15]. This gives meaning to the notation

∇V T for V ∈ X(M). Omitting quite a few details, we give an opportunistic

construction of this object.

Recall how V f is the derivative of a real function f against a vector field V .

Since T (U1, . . . , Uk) is a smooth function on M, we can differentiate it against

any smooth vector field V to obtain V T (U1, . . . , Uk), also a smooth function

on M. The definition below is crafted to secure a natural chain rule for this

differentiation.

Definition 10.77. Given a smooth tensor field T of order k on a manifold M
with a connection ∇, the total covariant derivative ∇T of T is a smooth tensor
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field of order k + 1 on M, defined for all U1, . . . , Uk, V ∈ X(M) by

∇T (U1, . . . , Uk, V ) = V T (U1, . . . , Uk)

−
k∑

i=1

T (U1, . . . , Ui−1,∇V Ui, Ui+1, . . . , Uk). (10.48)

(If ∇T = 0, we call T parallel.) We also let ∇V T be a smooth tensor field of

order k (symmetric if T is symmetric), defined by

(∇V T )(U1, . . . , Uk) = ∇T (U1, . . . , Uk, V ).

(It is an exercise to check that these are indeed tensor fields.)

As an example, it is instructive to see how gradients and Hessians of scalar

fields fit into the framework of covariant differentiation of tensor fields.

Example 10.78. Let M be a Riemannian manifold with its Riemannian con-

nection ∇. A smooth function f : M→ R is a tensor field of order zero. Differ-

entiating f as a tensor field using Definition 10.77, we find that ∇f is a tensor

field of order one defined by

∇f(U) = Uf = Df(U) = ⟨gradf, U⟩ .

In other words, ∇f is the differential Df , which we identify with the gradient

vector field through the Riemannian metric. We now differentiate ∇f to produce

∇(∇f) = ∇2f : a tensor field of order two defined by

∇2f(U, V ) = V∇f(U)−∇f(∇V U)

= V ⟨gradf, U⟩ − ⟨gradf,∇V U⟩
= ⟨∇V gradf, U⟩
= ⟨Hessf(V ), U⟩ .

In other words, ∇2f and the Riemannian Hessian Hessf are identified through

the Riemannian metric. This also shows that ∇2f is symmetric. Going one step

further, we differentiate ∇2f to produce ∇3f = ∇(∇2f): a tensor field of order

three defined by

∇3f(U, V,W ) = W∇2f(U, V )

−∇2f(∇WU, V )−∇2f(U,∇WV )

= W ⟨Hessf(V ), U⟩
− ⟨Hessf(V ),∇WU⟩ − ⟨Hessf(∇WV ), U⟩

= ⟨∇W (Hessf(V ))−Hessf(∇WV ), U⟩ .

Notice that ∇3f is symmetric in its first two inputs, but not necessarily in its

third input (see also Exercise 10.87). Based on the above, for a given W ∈ X(M)

it is useful to introduce ∇W Hessf : X(M)→ X(M): an operator of the same type
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as the Riemannian Hessian itself given by

∇W Hessf(V ) = ∇W (Hessf(V ))−Hessf(∇WV ). (10.49)

The smooth tensor field (U, V ) 7→ ⟨∇W Hessf(V ), U⟩ = ∇3f(U, V,W ) is sym-

metric in U and V .

Since tensor fields are pointwise objects, we can make sense of the notation

∇vT for v ∈ TxM as follows: ∇T is a (k+1)-tensor field onM, so that (∇T )(x)

is a (k + 1)-linear map on TxM; fixing the last input to be v, we are left with

(∇vT )(u1, . . . , uk) =
(
(∇T )(x)

)
(u1, . . . uk, v). (10.50)

Thus,∇vT is a k-linear map on TxM; if T is symmetric, so is∇vT . In particular,

∇vHessf is self-adjoint on TxM for v ∈ TxM.

Given a curve c onM, we defined the covariant derivative of a vector field along

c in Section 5.7. This extends to tensors, in direct analogy with Theorem 5.29.

Definition 10.79. Let c : I → M be a smooth curve on a manifold M. A

smooth tensor field Z of order k along c is a map

Z : X(c)× · · · × X(c)→ F(I)

that is F(I)-linear in each of its k inputs. We denote the set of such fields Xk(c).

Here too, we can reason that tensor fields are pointwise objects, in that Z(t)

is a k-linear map from (Tc(t)M)k to R: see [Lee18, Thm. 4.24, Prop. 5.15].

Theorem 10.80. Let c : I →M be a smooth curve on a manifold with a con-

nection ∇. There exists a unique operator D
dt : Xk(c) → Xk(c) satisfying these

properties for all Y,Z ∈ Xk(c), T ∈ Xk(M), g ∈ F(I) and a, b ∈ R:

1. R-linearity: D
dt (aY + bZ) = a D

dtY + b D
dtZ;

2. Leibniz rule: D
dt (gZ) = g′Z + g D

dtZ;

3. Chain rule:
(
D
dt (T ◦ c)

)
(t) = ∇c′(t)T for all t ∈ I.

This operator is called the induced covariant derivative.

In the statement above, we understand ∇c′(t)T through (10.50).

As a result of Definition 10.77, we also have the following chain rule: given
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Z ∈ Xk(c) and U1, . . . , Uk ∈ X(c):

d

dt

(
Z(U1, . . . , Uk)

)
=

d

dt

(
Z(t)(U1(t), . . . , Uk(t))

)
=

(
D

dt
Z(t)

)
(U1(t), . . . , Uk(t))

+ Z(t)

(
D

dt
U1(t), U2(t), . . . , Uk(t)

)
+ · · ·

+ Z(t)

(
U1(t), . . . , Uk−1(t),

D

dt
Uk(t)

)
=

(
D

dt
Z

)
(U1, . . . , Uk)

+ Z

(
D

dt
U1, U2, . . . , Uk

)
+ · · ·+ Z

(
U1, . . . , Uk−1,

D

dt
Uk

)
.

(10.51)

Example 10.81. If c : I → M is a geodesic on the Riemannian manifold M
with Riemannian connection ∇ and f : M→ R is smooth, we have:

(f ◦ c)′ = ∇c′f = (∇f ◦ c)(c′),
(f ◦ c)′′ = (∇c′∇f)(c′) + (∇f ◦ c)(c′′) = (∇2f ◦ c)(c′, c′),
(f ◦ c)′′′ = (∇c′∇2f)(c′, c′) + (∇2f ◦ c)(c′′, c′) + (∇2f ◦ c)(c′, c′′)

= (∇3f ◦ c)(c′, c′, c′).

In particular, if c(0) = x and c′(0) = u, then at t = 0 it follows that:

(f ◦ c)′(0) = ∇f(x)(u) = ⟨gradf(x), u⟩x ,
(f ◦ c)′′(0) = ∇2f(x)(u, u) = ⟨Hessf(x)[u], u⟩x ,
(f ◦ c)′′′(0) = ∇3f(x)(u, u, u) = ⟨(∇uHessf)[u], u⟩x ,

with ∇uHessf as defined through (10.49) and (10.50).

Circling back to Section 10.4, let us now discuss Lipschitz continuity of tensor

fields. As afforded by Remark 8.6, here we do not require tensor fields to be

smooth (that is, infinitely differentiable). We understand the differentiability

properties of tensor fields as maps between manifolds, as outlined around (10.46).

We start with a definition.

Definition 10.82. A tensor field T of order k on a Riemannian manifold M
with its Riemannian connection is L-Lipschitz continuous if for all (x, s) in the

domain of the exponential map and for all u1, . . . , uk ∈ TxM we have

|T (Expx(s))(Psu1, . . . , Psuk)− T (x)(u1, . . . , uk)| ≤ L∥s∥x∥u1∥x · · · ∥uk∥x,

where Ps is parallel transport along γ(t) = Expx(ts) from t = 0 to t = 1.

It is an exercise to show that this definition is compatible with the ones we

introduced earlier, for example for f , gradf and Hessf .
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Assume T is differentiable. Let c be a smooth curve onM satisfying c(0) = x

and c′(0) = s. Parallel transport u1, . . . , uk ∈ TxM along c to form Ui(t) =

PTc
t←0ui for i = 1, . . . , k. Then, owing to D

dtUi = 0 for all i we have (using (10.51)

and the chain rule in Theorem 10.80):

d

dt

(
(T ◦ c)(U1, . . . , Uk)

)
=

(
D

dt
(T ◦ c)

)
(U1, . . . , Uk)

= (∇c′T )(U1, . . . , Uk)

= (∇T ◦ c)(U1, . . . , Uk, c
′). (10.52)

In particular, at t = 0 this says:

∇T (x)(u1, . . . , uk, s) = (∇sT )(u1, . . . , uk) =
d

dt
(T ◦ c)(U1, . . . , Uk)

∣∣∣∣
t=0

.

(10.53)

In light of these identities, we have the following simple observations.

Proposition 10.83. Let T be a tensor field of order k on M (Riemannian).

1. If T is differentiable and L-Lipschitz continuous, then ∇T is bounded by L,

that is, for all x ∈M and for all u1, . . . uk, s ∈ TxM,

|∇T (x)(u1, . . . , uk, s)| = |(∇sT )(u1, . . . , uk)| ≤ L∥s∥x∥u1∥x · · · ∥uk∥x.

2. If T is continuously differentiable and ∇T is bounded by L, then T is L-

Lipschitz continuous.

Proof. For the first claim, use (10.53), continuity of the absolute value function

and Definition 10.82 with c(t) = Expx(ts) to see that

|∇T (x)(u1, . . . , uk, s)| = |(∇sT )(u1, . . . , uk)|

= lim
t→0

|T (Expx(ts))(Ptsu1, . . . , Ptsuk)− T (x)(u1, . . . , uk)|
|t|

≤ lim
t→0

1

|t|
L∥ts∥x∥u1∥x · · · ∥uk∥x = L∥s∥x∥u1∥x · · · ∥uk∥x,

as announced.

For the second claim, a bit of standard calculus and (10.52) (including notation

there) yield

T (c(1))(U1(1), . . . , Uk(1))− T (x)(u1, . . . , uk)

=

∫ 1

0

d

dt

(
T (c(t))(U1(t), . . . , Uk(t))

)
dt

=

∫ 1

0

(∇T ◦ c)(U1, . . . , Uk, c
′)(t)dt.
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Therefore, using that ∇T is bounded by L,

|T (c(1))(U1(1), . . . , Uk(1))− T (x)(u1, . . . , uk)|

≤
∫ 1

0

L∥U1(t)∥c(t) · · · ∥Uk(t)∥c(t)∥c′(t)∥c(t)dt

= L∥u1∥x · · · ∥uk∥x · L(c),

where L(c) is the length of the curve c over [0, 1]. The claim follows in particular

by letting c(t) = Expx(ts), in which case L(c) = ∥s∥x.

Remark 10.84. The Riemannian metric establishes a one-to-one correspon-

dence between the tangent vector u ∈ TxM and the linear map v 7→ ⟨u, v⟩x from

TxM to R. In the absence of a metric, we distinguish between these two types

of objects, respectively called vectors and covectors. When doing so, it is useful

to define tensor fields as maps that transform vector fields and/or covector fields

into scalar fields, leading to the notions of covariant, contravariant and mixed

tensor fields. These terms are likely to come up in discussions of tensor fields on

Riemannian manifolds as well, because they are often familiar to readers from

non-Riemannian smooth geometry. See [Lee12, Ch. 12] and [Lee18, Ch. 4, Ch. 5]

for details.

Exercise 10.85. Check that ∇T as provided by Definition 10.77 is indeed a

tensor field of order k+ 1, and that if T is symmetric, then ∇V T is a symmetric

tensor field of order k.

Exercise 10.86. Let M be a Riemannian manifold and let G be the smooth

tensor field of order two defined by G(U, V ) = ⟨U, V ⟩. Check that a connection ∇
on M is compatible with the metric if and only if G is parallel. (See also [Lee18,

Prop. 5.5] for further characterizations of compatibility between the metric and

the connection.)

Exercise 10.87. Let f : M→ R be three times continuously differentiable on a

Riemannian manifold M equipped with a retraction R. Assume∣∣∣∣f(Rx(s))− f(x)− ⟨s, gradf(x)⟩x −
1

2
⟨s,Hessf(x)[s]⟩x

∣∣∣∣ ≤ L

6
∥s∥3x (10.54)

for all (x, s) in a neighborhood of the zero section in the tangent bundle. (Com-

pare with regularity assumption A6.7 on p135; see also Exercise 10.58.) Further

assume R is a third-order retraction, which we define to be a second-order re-

traction for which all curves c(t) = Rx(ts) with (x, s) ∈ TM obey c′′′(0) = 0,

where c′′′ = D
dtc
′′. In particular, the exponential map is a third-order retraction

(see also Exercise 10.88). Show for all (x, s) ∈ TM that

|⟨(∇sHessf)[s], s⟩x| = |∇3f(x)(s, s, s)| ≤ L∥s∥3x. (10.55)

In other words: the symmetric part of ∇3f(x) is bounded by L.

Conversely, show that if (10.55) holds for all (x, s) ∈ TM, then (10.54) holds

with R = Exp for all (x, s) in the domain of Exp.
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We state here without details that ∇3f(x) may not be symmetric when x is

not a critical point of f and also when M is not flat at x (this follows from the

Ricci identity applied to ∇f). Therefore, ∇3f(x) may not be bounded by L even

if its symmetric part is. Consequently, the developments here do not allow us

to conclude as to the Lipschitz properties of Hessf (which would have otherwise

followed from Corollary 10.52 or Proposition 10.83).

Exercise 10.88. Consider a Riemannian submanifold M of a Euclidean space

E. Given (x, v) ∈ TM, let c : I →M be a smooth curve onM such that c(0) = x

and x + tv − c(t) is orthogonal to Tc(t)M for all t: this is the case if c(t) is a

curve obtained through metric projection retraction (see Section 5.12). Show that

c′′′(0) = −2W
(
v, d

dtc
′(0)
)
, where W is the Weingarten map (5.38). In general,

this is nonzero. Thus, we do not expect the metric projection retraction to be

third order in general. Hint: use (5.18) to express c′′′(0) in terms of extrinsic

derivatives of c, and simplify that expression by computing one more derivative

of g in the proof of Proposition 5.55.

Exercise 10.89. Given a vector field V on M (Riemannian), let T = ⟨V, ·⟩ be

the associated tensor field of order one. Show that T is L-Lipschitz continuous

in the sense of Definition 10.82 if and only if V is L-Lipschitz continuous in

the sense of Definition 10.44. Likewise, for each x ∈ M, let H(x) denote a

linear map from TxM into itself, and let T denote the associated tensor field

of order two defined through T (x)(u, v) = ⟨H(x)(u), v⟩x. Show that T is L-

Lipschitz continuous in the sense of Definition 10.82 if and only if H is L-

Lipschitz continuous in the sense of Definition 10.49.

10.8 Notes and references

Considering geodesics as length-minimizing curves, it is possible to generalize

the concept of geodesic to arbitrary metric spaces, specifically, without the need

for a smooth or Riemannian structure. See for example the monograph by Bacák

[Bac14] for an introduction to geodesic metric spaces, and applications in convex

analysis and optimization on Hadamard spaces.

For a connected manifold, there always exists a Riemannian metric which

makes it complete [NO61].

Propositions 10.23 and 10.26 (and their proofs and corollaries) were designed

with Eitan Levin and also discussed with Stephen McKeown. They are inspired

by the proof of the Tubular Neighborhood Theorem in [Lee18, Thm. 5.25] and

[Pet06, Prop. 5.18]. They notably imply that the injectivity radius function

inj : M→ R is lower-bounded by a positive, continuous function, with (one could

argue) fewer technicalities than are required to prove inj itself is continuous.

Many Riemannian geometry textbooks restrict their discussion of the injectiv-

ity radius to connected and complete manifolds. For disconnected manifolds, we

defined complete to mean geodesically complete, i.e., each connected component
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is metrically complete. A function is continuous on a disconnected set if it is

continuous on each connected component. Thus, continuity of inj on connected

and complete manifolds implies continuity on complete manifolds. It is easy to

find a published proof that the function inj : M→ R is continuous ifM is (con-

nected and) complete (see for example [Lee18, Prop. 10.37]), but it has proven

difficult to locate one that applies to incomplete manifolds as well. The claim

appears without proof in [Cha06, Thm. III.2.3]. Following a discussion, Stephen

McKeown provided8 a proof that inj is lower-semicontinuous, then John M. Lee

added a proof that inj is upper-semicontinuous, together confirming that it is

continuous: see Lemmas 10.90 and 10.91 below. Both proofs rely on continuity

in the complete case. They are rearranged to highlight commonalities.

Our main motivation to study continuity of inj is to reach Corollary 10.25,

stating that the map (x, y) 7→ Logx(y) is smooth over the specified domain.

O’Neill makes a similar statement: pick an open set S ⊆M; that set is deemed

convex (by [O’N83, Def. 5.5]) if, for all x ∈ S, the map Expx is a diffeomorphism

from some neighborhood of the origin in TxM to S. Then, (x, v) 7→ (x,Expx(v))

is a diffeomorphism from the appropriate set in TS to S × S [O’N83, Lem. 5.9].

This shows the map L : S × S → TS such that L(x, y) ∈ TxM is the initial

velocity of the (unique) geodesic γ : [0, 1] → S connecting x to y is smooth: L

is also a kind of inverse for the exponential (though not necessarily the same as

Log).

The tool of choice to differentiate the exponential map (and the logarithmic

map) is Jacobi fields [Lee18, Prop. 10.10]. Some examples of this are worked out

in the context of optimization on manifolds in [CB22a] and [LC20].

Parallel transporting a tangent vector u at x to all the points in a normal

neighborhood [Lee18, p131] of x along geodesics through x contained in that

neighborhood results in a smooth vector field. This is a well-known fact; details

of the argument appear notably in [LB20, Lem. A.1].

The Riemannian notion of Lipschitz continuous gradient (and also Lipschitz

continuous vector field) appears in [dCN95, Def. 3.1, p79] and [dCNdLO98,

Def. 4.1], with a definition equivalent to the characterization we give in Proposi-

tion 10.45. This may be their first occurrence in an optimization context. There

too, the motivation is to derive inequalities such as the ones in Proposition 10.53.

Such inequalities appear often in optimization papers, see also [AMS08, §7.4],

[SFF19, App. A] and [ABBC20], among many others. Lipschitz continuous Hes-

sians appear in an optimization context in [FS02, Def. 2.2], in line with our

characterization in Proposition 10.50. A general definition of Lipschitz continu-

ous maps in tangent bundles of any order (covering tensors fields of any order)

appears in [RW12], in the preliminaries on geometry. A general notion of ‘fun-

damental theorem of calculus’ for tensor fields on Riemannian manifolds, based

on parallel transport, is spelled out in [ABM08, eq. (2.3)].

As an alternative to Definition 10.44, one could also endow the tangent bundle

8 mathoverflow.net/questions/335032
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with a metric space structure, so that we can then apply the standard notion of

Lipschitz continuity to vector fields as maps between two metric spaces. A canon-

ical choice would follow from the Sasaki metric [GHL04, §2.B.6]. See [dOF20]

for a comparison of the two concepts.

The notion of vector transport appears in [AMS08, §8]. The related notion

of transporter is introduced in [QGA10a] with reference to a linear structure

space, and further developed in [HGA15] for general manifolds. The constructions

of transporters from other transporters via inversions and adjoints are natural

extensions.

Corollary 10.75 handles finite differences of the Riemannian Hessian using an

arbitrary transporter (Definition 10.61). An analogous result for vector trans-

ports (Definition 10.68) appears in [AMS08, Lem. 8.2.2].

In Exercise 10.73, we contemplate the role of the initial acceleration of curves

of the form c(t) = Rx(s+tṡ). Consider the special case where R is the exponential

map. If s = 0, then c is a geodesic so that c′′(0) = 0; but for s ̸= 0 we expect

c′′(0) ̸= 0 in general. The tangent vector c′′(0) and its norm are tightly related

to curvature of the manifold. See [CB22a, LC20] for a discussion of that vector

and its effects on the Lipschitzness of pullbacks and their derivatives.

In Section 10.7, we follow do Carmo [dC92, §4.5], in that we rely on the Rie-

mannian metric to avoid the need to distinguish between vectors and covectors,

and we build up the differentiation of tensor fields by quoting the desired chain

rule directly, bypassing many technical steps. This simplifies the discussion with-

out loss of generality.

We close this section with the proofs of continuity of the injectivity radius,

as stated in Proposition 10.24. In these proofs, we do not need to worry about

infinite values. Indeed, if inj(x) = ∞ at some point x, then Expx is defined on

all of TxM. Thus, the connected component of x is complete [Lee18, Cor. 6.20],

and it follows by [Lee18, Prop. 10.37] that inj is continuous on that component.

(More specifically: inj is infinite at all points in that component.)

Lemma 10.90. The injectivity radius function inj : M→ (0,∞] is lower-semi-

continuous.

Proof by Stephen McKeown. For contradiction, assume inj is not lower-semi-

continuous at some point x ∈ M. Then, there exists a sequence of points

x0, x1, x2, . . . on M such that

lim
k→∞

xk = x and ∀k, inj(xk) ≤ r < R = inj(x).

Define ε = R−r
3 and r′ = r+ε, r′′ = r+2ε so that r < r′ < r′′ < R. By definition

of R, the exponential map Expx induces a diffeomorphism φ : B(x,R)→ Bd(R):

from the open geodesic ball on M centered at x with radius R to the open

Euclidean ball in Rd centered at the origin with radius R, where d = dimM. (ϕ

is constructed from the inverse of Expx followed by a linear isometry from TxM
to Rd.) Let g denote the Riemannian metric onM, let g̃ denote the pushforward
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of g|B(x,R) to Bd(R) (through φ), and let g0 denote the Euclidean metric on Rd.

Consider a smooth bump function χ : Rd → [0, 1] whose value is 1 on the closed

ball B̄d(r′′) and with support in B̄d(R) [Lee12, Prop. 2.25]. Then,

ĝ = χg̃ + (1− χ)g0

is a Riemannian metric on Rd such that M̂ = (Rd, ĝ) is a (connected) complete

Riemannian manifold [Lee18, Pb. 6-10].

Consequently, the injectivity radius function ˆinj : M̂ → (0,∞] is continu-

ous [Lee18, Prop. 10.37]. Furthermore, since the metrics g and ĝ agree (through

φ) on B̄(x, r′′) and B̄d(r′′), we deduce that for all y ∈M and ρ > 0 it holds that

B(y, ρ) ⊆ B(x, r′′) =⇒

{
ˆinj(ŷ) = inj(y) if inj(y) < ρ,

ˆinj(ŷ) ≥ ρ otherwise,

where ŷ ∈ Rd is the image of y through φ.

We use this fact in two ways:

1. B(x, r′′) ⊆ B(x, r′′) and inj(x) = R > r′′, hence ˆinj(x̂) ≥ r′′, and

2. There exists k0 large enough such that, for all k ≥ k0, dist(xk, x) < ε, so that

B(xk, r
′) ⊂ B(x, r′′). Moreover, inj(xk) ≤ r < r′, so that ˆinj(x̂k) = inj(xk) ≤ r

for all k ≥ k0.

Together with the fact that ˆinj is continuous, these yield:

r < r′′ ≤ ˆinj(x̂) = lim
k→∞

ˆinj(x̂k) ≤ r,

a contradiction.

Lemma 10.91. The injectivity radius function inj : M → (0,∞] is upper-

semicontinuous.

Proof by John M. Lee. The proof parallels that of lower-semicontinuity. For con-

tradiction, assume inj is not upper-semicontinuous at some point x ∈M. Then,

there exists a sequence of points x0, x1, x2, . . . on M such that

lim
k→∞

xk = x and ∀k, inj(xk) ≥ R > r = inj(x).

Define ε = R−r
3 and r′ = r + ε, r′′ = r + 2ε so that r < r′ < r′′ < R. Because

the injectivity radius at x is smaller than at the points in the sequence, it is not

enough to consider Expx to setup a diffeomorphism with a ball in Rd. Instead,

we pick a special point in the sequence to act as a center. Let k0 be large enough

so that dist(xk, x) < ε/2 < ε for all k ≥ k0. By triangular inequality, we also

have dist(xk, xk0
) < ε for all k ≥ k0. Now, use Expxk0

to setup a diffeomorphism

φ : B(xk0 , R) → Bd(R): we can do this since inj(xk0) ≥ R. Let g denote the

Riemannian metric on M, let g̃ denote the pushforward of g|B(xk0
,R) to Bd(R)

(through φ), and let g0 denote the Euclidean metric on Rd. Consider a smooth
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bump function χ : Rd → [0, 1] whose value is 1 on the closed ball B̄d(r′′) and

with support in B̄d(R). Then,

ĝ = χg̃ + (1− χ)g0

is a Riemannian metric on Rd such that M̂ = (Rd, ĝ) is a (connected) complete

Riemannian manifold.

Consequently, the injectivity radius function ˆinj : M̂ → (0,∞] is continuous.

Furthermore, since the metrics g and ĝ agree (through φ) on B̄(xk0
, r′′) and

B̄d(r′′), we deduce that for all y ∈M and ρ > 0 it holds that

B(y, ρ) ⊆ B(xk0 , r
′′) =⇒

{
ˆinj(ŷ) = inj(y) if inj(y) < ρ,

ˆinj(ŷ) ≥ ρ otherwise,

where ŷ ∈ Rd is the image of y through φ.

We use this fact in two ways:

1. B(x, r′) ⊂ B(xk0
, r′′) and inj(x) = r < r′, hence ˆinj(x̂) = inj(x) = r, and

2. For all k ≥ k0, B(xk, r
′) ⊂ B(xk0 , r

′′) and inj(xk) ≥ R > r′, thus ˆinj(x̂k) ≥ r′.

Together with the fact that ˆinj is continuous, these yield:

r = inj(x) = ˆinj(x̂) = lim
k→∞

ˆinj(x̂k) ≥ r′ > r,

a contradiction.
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11 Geodesic convexity

In this chapter, we discuss elementary notions of convexity for optimization on

manifolds. In so doing, we resort to notions of Riemannian distance, geodesics

and completeness as covered in Section 10.1. At times, we also use the exponential

map introduced in Section 10.2 and the concept of Lipschitz continuity from

Section 10.4.

The study of convexity on Riemannian manifolds, called geodesic convexity,

predates optimization on manifolds. In the context of optimization, it attracted

a lot of attention as soon as the 70s. Excellent reference books on this topic

include one by Udrişte [Udr94] and another by Rapcsák [Rap97].

There is some variation in how geodesically convex sets are defined by different

authors. This is partly because the needs for convexity may differ depending on

usage. We favor the permissive definition of Rapcsák [Rap97, §6] and relate it to

two other popular definitions in Section 11.3.

All three definitions turn out to be equivalent for complete, simply connected

Riemannian manifolds with nonpositive curvature. Those are called Cartan–

Hadamard manifolds. They provide the most favorable playground for geodesic

convexity. They include Euclidean spaces, hyperbolic spaces (Section 7.6), the

positive orthant Rn
+ (Section 11.6) and the set of positive definite matrices

Sym(n)+ (Section 11.7), all with the appropriate Riemannian metrics.

Applications of geodesically convex optimization notably include covariance

matrix estimation [Wie12, NSAY+19], Gaussian mixture modeling [HS15, HS19],

matrix square root computation [Sra16], metric learning [ZHS16], statistics and

averaging on manifolds [Moa03, Moa05, Fle13], a whole class of optimization

problems called geometric programming [BKVH07], operator scaling in relation

to the Brascamp–Lieb constant [Vis18, AZGL+18], integrative PCA and matrix

normal models [TA21, FORW21] and Tyler-M estimation [FM20].

Zhang and Sra analyze a collection of algorithms specifically designed for

geodesically convex optimization [ZS16], providing worst-case iteration complex-

ity results. We discuss gradient descent in Section 11.5. See also Section 11.8 for

references to literature about the possibility of accelerating gradient descent on

manifolds.
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308 Geodesic convexity

11.1 Convex sets and functions in linear spaces

Recall that a subset S of a linear space E is a convex set if for all x, y in S the

line segment t 7→ (1− t)x+ ty for t ∈ [0, 1] is in S. Furthermore,1 f : S → R is a

convex function if S is convex and for all x, y ∈ S we have:

∀t ∈ [0, 1], f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y).

Likewise, f is strictly convex if for x ̸= y we have

∀t ∈ (0, 1), f((1− t)x+ ty) < (1− t)f(x) + tf(y).

If E is a Euclidean space with norm ∥ · ∥, we say f is µ-strongly convex for some

µ > 0 if x 7→ f(x) − µ
2 ∥x∥

2 is convex, or equivalently, if for all x, y ∈ S and

t ∈ [0, 1] it holds that:

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)− t(1− t)µ
2

∥x− y∥2. (11.1)

In optimization, our main reason to care about convex functions is that their

local minimizers (if any exist) are global minimizers.

An equivalent way of defining convex functions is to define convexity for one-

dimensional functions first. Then, f : S → R is convex if and only if f is convex

when restricted to all line segments in the convex set S, that is, for all x, y

distinct in S, the composition f ◦c : [0, 1]→ R is convex with c(t) = (1− t)x+ ty.

A similar statement holds for strict and strong convexity.

We adopt the latter perspective in the next section to generalize beyond linear

spaces. To that end, a few basic facts about one-dimensional convex functions

come in handy.

Lemma 11.1. Let g : I → R be defined on a connected set I ⊆ R.

1. If g is convex, then g is continuous in the interior of I, denoted int I.

2. If g is differentiable on I:2

(a) g is convex if and only if g(y) ≥ g(x) + (y − x)g′(x) for all x, y ∈ I.

(b) g is strictly convex if and only if g(y) > g(x)+(y−x)g′(x) for all x, y ∈ I
distinct.

(c) g is µ-strongly convex if and only if g(y) ≥ g(x)+(y−x)g′(x)+ µ
2 (y−x)2

for all x, y ∈ I.

3. If g is continuously differentiable on I and twice differentiable on int I:

(a) g is convex if and only if g′′(x) ≥ 0 for all x ∈ int I.

(b) g is strictly convex if (but not only if) g′′(x) > 0 for all x ∈ int I.

(c) g is µ-strongly convex if and only if g′′(x) ≥ µ for all x ∈ int I.

Proof. For the first point, see [HUL01, p15]. A proof of the second and third

points follows for convenience. Note that it is allowed for I not to be open.

1 With some care, we may allow f to take on infinite values [Roc70, HUL01].
2 If I is not open, we mean differentiable in the sense that there exists an extension ḡ of g

differentiable on a neighborhood of I. Then, g′(x) ≜ ḡ′(x) for all x ∈ I.
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11.1 Convex sets and functions in linear spaces 309

2. (a) Assume the inequalities hold. Then, for x, y ∈ I and t ∈ [0, 1] arbitrary,

define z = (1− t)x+ ty. Both of the following inequalities hold:

g(x) ≥ g(z) + (x− z)g′(z), g(y) ≥ g(z) + (y − z)g′(z).

Add them up with weights 1− t and t, respectively:

(1− t)g(x) + tg(y) ≥ g(z) +
(
(1− t)(x− z) + t(y − z)

)
g′(z)

= g(z)

= g((1− t)x+ ty).

This shows g is convex. The other way around, if g is convex, then for all

x, y ∈ I and t ∈ (0, 1] we have

g(x+ t(y − x)) = g((1− t)x+ ty)

≤ (1− t)g(x) + tg(y) = g(x) + t(g(y)− g(x)).

Move g(x) to the left-hand side and divide by t to find:

g(y) ≥ g(x) +
g(x+ t(y − x))− g(x)

t
.

Since this holds for all x, y, t as prescribed and since g is differentiable at x,

we can take the limit for t → 0 and conclude that the sought inequalities

hold.

(b) Assume the strict inequalities hold. Then, for all x, y ∈ I distinct and

for all t ∈ (0, 1), define z = (1− t)x+ ty; we have:

g(x) > g(z) + (x− z)g′(z), g(y) > g(z) + (y − z)g′(z).

Multiply by 1− t and t, respectively, and add them up:

(1− t)g(x) + tg(y) > g(z) = g((1− t)x+ ty).

This shows g is strictly convex. The other way around, assume g is strictly

convex: it lies strictly below its chords, that is, for all x, y distinct in I,

∀t ∈ (0, 1), g((1− t)x+ ty) < (1− t)g(x) + tg(y).

Since g is convex, it also lies above its first-order approximations:

∀t ∈ [0, 1], g(x+ t(y − x)) ≥ g(x) + t(y − x)g′(x).

The left-hand sides coincide, so that combining we find:

∀t ∈ (0, 1), (1− t)g(x) + tg(y) > g(x) + t(y − x)g′(x).

Subtract g(x) on both sides and divide by t to conclude.

(c) By definition, g is µ-strongly convex if and only if h(x) = g(x) − µ
2x

2

is convex, and we just showed that the latter is convex if and only if

h(y) ≥ h(x)+(y−x)h′(x) for all x, y ∈ I, which is equivalent to the claim.
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3. Taylor’s theorem applies to g: for all x, y distinct in I, there exists z strictly

between x and y such that

g(y) = g(x) + (y − x)g′(x) +
1

2
(y − x)2g′′(z). (11.2)

(a) If g′′(z) ≥ 0 for all z ∈ int I, then g(y) ≥ g(x) + (y − x)g′(x) for all

x, y ∈ I by (11.2), hence g is convex. The other way around, if g is convex,

then for all x, y in I we have:

g(y) ≥ g(x) + (y − x)g′(x) and g(x) ≥ g(y) + (x− y)g′(y).

Rearrange and combine to find

(y − x)g′(y) ≥ g(y)− g(x) ≥ (y − x)g′(x).

We deduce that y ≥ x implies g′(y) ≥ g′(x), that is, g′ is nondecreasing on

I. For all x ∈ int I, consider the following limit, where y goes to x while

remaining in I:

0 ≤ lim
y→x

g′(y)− g′(x)

y − x
= g′′(x).

This shows g′′(x) ≥ 0 for all x in int I. (The same argument also shows

that if g is twice differentiable on I and I has any boundary points, then

g′′ is also nonnegative on those points.)

(b) If g′′(z) > 0 for all z ∈ int I, then g(y) > g(x) + (y − x)g′(x) for all

x, y ∈ I distinct by (11.2), hence g is strictly convex. The converse is not

true: g(x) = x4 is smooth and strictly convex on R, yet g′′(0) = 0.

(c) By definition, g is µ-strongly convex if and only if h(x) = g(x)− µ
2x

2 is

convex, and we just showed that the latter is convex if and only if h′′(x) ≥ 0

for all x ∈ int I, which is equivalent to the claim.

11.2 Geodesically convex sets and functions

In this section, we present a classical generalization of convexity to Riemannian

manifolds. The main idea is to use geodesic segments instead of line segments.

There are, however, a number of subtly different ways one can do this, due to the

fact that, in contrast to line segments in Euclidean spaces, geodesics connecting

pairs of points may not exist, may not be unique, and may not be minimizing.

See Section 11.3 for a discussion of popular alternative definitions.

Definition 11.2. A subset S of a Riemannian manifold M is geodesically con-

vex if, for every x, y ∈ S, there exists a geodesic segment c : [0, 1] → M such

that c(0) = x, c(1) = y and c(t) is in S for all t ∈ [0, 1].

In this definition, c is a geodesic forM, not necessarily for S (which may or may

not be a manifold). In particular, singletons and the empty set are geodesically

convex.
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If M is a Euclidean space, then a subset is convex in the usual sense if and

only if it is geodesically convex, because the only geodesic connecting x to y (up

to reparameterization) is c(t) = (1− t)x+ ty.

By Theorem 10.9, a connected and complete Riemannian manifold is geodesi-

cally convex. This includes spheres, the Stiefel manifold St(n, p) for p < n, and

the group of rotations SO(n)—but we will soon see that such compact mani-

folds are not interesting for convexity unless we restrict our attention to subsets.

More interestingly, any hemisphere of Sn−1, open or closed, is a geodesically con-

vex subset of Sn−1. The hyperbolic space discussed in Section 7.6 is connected

and complete; hence geodesically convex. Likewise, the manifold of positive real

numbers, R+ = {x > 0}, equipped with the metric ⟨u, v⟩x = uv
x2 , is connected

and complete; hence geodesically convex. We consider two generalizations of the

latter in Sections 11.6 and 11.7 to handle Rn
+ and Sym(n)+, that is, entrywise

positive vectors and positive definite matrices, respectively.

For a subset S of a manifold M, we say a curve c on M connects x to y in S

if it is continuous, c(0) = x, c(1) = y and c(t) is in S for all t ∈ [0, 1].

In a geodesically convex set S, any two points are connected in S by at least

one geodesic segment c. Composing a function f : S → R with c yields a real

function on [0, 1]. If all of these compositions are convex in the usual sense, we

say f is convex in a geometric sense. Note that we do not require f to be smooth

or even continuous.

Definition 11.3. A function f : S → R is geodesically (strictly) convex if S

is geodesically convex and f ◦ c : [0, 1]→ R is (strictly) convex for each geodesic

segment c : [0, 1]→M whose image is in S (with c(0) ̸= c(1)).

In the above definition, we are tacitly referring to the Riemannian structure

on M for which S ⊆ M is geodesically convex and for which the curves c are

geodesics. Here too, if M is a Euclidean space, we recover the standard notion

of (strictly) convex function.

In other words, for S a geodesically convex set, we say f : S → R is geodesically

convex if for all x, y ∈ S and all geodesics c connecting x to y in S the function

f ◦ c : [0, 1]→ R is convex, that is,

∀t ∈ [0, 1], f(c(t)) ≤ (1− t)f(x) + tf(y). (11.3)

If additionally whenever x ̸= y we have

∀t ∈ (0, 1), f(c(t)) < (1− t)f(x) + tf(y), (11.4)

then we say f is geodesically strictly convex.

Definition 11.4. We say f : S → R is geodesically (strictly) concave if −f is

geodesically (strictly) convex, and f is geodesically linear if it is both geodesically

convex and concave.

We also extend the notion of strong convexity, in analogy with (11.1). Recall

that the length of a curve segment was defined in Section 10.1.
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Definition 11.5. A function f : S → R is geodesically µ-strongly convex for

some µ > 0 if the set S is geodesically convex and for each geodesic segment

c : [0, 1]→M whose image is in S we have

f(c(t)) ≤ (1− t)f(c(0)) + tf(c(1))− t(1− t)µ
2

L(c)2,

where L(c) = ∥c′(0)∥c(0) is the length of the geodesic segment. This is equivalent

to the requirement that f ◦ c : [0, 1] → R be µL(c)2-strongly convex in the usual

sense.

Clearly, geodesic strong convexity implies geodesic strict convexity.

Same as for standard convexity in linear spaces, geodesic convexity ensures

that local minimizers, if they exist, are global minimizers.

Theorem 11.6. If f : S → R is geodesically convex, then any local minimizer

is a global minimizer.

Proof. For contradiction, assume x ∈ S is a local minimizer that is not a global

minimizer. Then, there exists y ∈ S such that f(y) < f(x). There also exists a

geodesic c connecting c(0) = x to c(1) = y in S such that, for all t ∈ (0, 1],

f(c(t)) ≤ (1− t)f(x) + tf(y) = f(x) + t(f(y)− f(x)) < f(x),

which contradicts the claim that x is a local minimizer.

Strict convexity yields uniqueness of minimizers, when they exist.

Theorem 11.7. If f : S → R is geodesically strictly convex, then it admits at

most one local minimizer, which is necessarily the global minimizer.

Proof. From Theorem 11.6, we know that any local minimizer is a global mini-

mizer. Assume for contradiction that there exist two distinct global minimizers,

x and y, so that f(x) = f(y) = f⋆. There exists a geodesic c connecting them in

S such that, for t ∈ (0, 1),

f(c(t)) < (1− t)f(x) + tf(y) = f⋆,

which contradicts global optimality of x and y.

The sublevel sets of geodesically convex functions are geodesically convex.3

Moreover, the intersection of such sublevel sets is also geodesically convex. How-

ever, the intersection of arbitrary geodesically convex sets is not necessarily

geodesically convex: see Section 11.3.

Proposition 11.8. Let i ∈ I index an arbitrary collection of geodesically convex

functions fi : S → R and scalars αi ∈ R. Define the sublevel sets

Si = {x ∈ S : fi(x) ≤ αi}.

3 The converse does not hold: a function on a geodesically convex set is called geodesically

quasiconvex if all of its sublevel sets are geodesically convex [Rap97, Lem. 13.1.1].
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Their intersection S′ = ∩i∈ISi is geodesically convex. In particular, the sublevel

sets of one geodesically convex function f are geodesically convex sets, and the

set of global minimizers of f is geodesically convex.

Proof. The claim is clear if S′ is empty. Assume it is not. Pick an arbitrary pair

of points x, y ∈ S′, and an arbitrary geodesic c : [0, 1]→M connecting x to y in

S: there exists at least one because x, y are in S and S is geodesically convex.

For every i ∈ I and for all t ∈ [0, 1], it holds that

fi(c(t)) ≤ (1− t)fi(x) + tfi(y) ≤ (1− t)αi + tαi = αi,

where we used the fact that x and y belong to Si. We conclude that c(t) belongs

to each Si for all t ∈ [0, 1], so that c is in fact a geodesic connecting x and y in

S′. Thus, S′ is geodesically convex.

Here is a take-away from Proposition 11.8. Let S be a geodesically convex

set on M. If f, f1, . . . , fm are geodesically convex functions on S and g1, . . . , gp
are geodesically linear functions on S (Definition 11.4), then for arbitrary reals

α1, . . . , αm and β1, . . . , βp we call

min
x∈S

f(x) subject to fi(x) ≤ αi for i = 1, . . . ,m,

gj(x) = βj for j = 1, . . . , p (11.5)

a geodesically convex program. Since the constraint gj(x) = βj is equivalent to

the two constraints gj(x) ≤ βj and −gj(x) ≤ −βj , and since both gj and −gj
are geodesically convex, it follows that the set S′ of points which satisfy all

constraints in (11.5) is geodesically convex. Therefore, any local minimizer of

f |S′ is a global minimizer of f |S′ .

A connected, complete Riemannian manifold is a geodesically convex set. Its

interior4 is the whole manifold itself. Consider that observation with the follow-

ing fact [Rap97, Thm. 6.1.8], [Udr94, Thm. 3.6].

Proposition 11.9. If f : S → R is geodesically convex, then f is continuous on

the interior of S.

Compact manifolds are complete, and continuous functions on compact sets

attain their maximum. Consider geodesics through the maximizer to conclude:

Corollary 11.10. If M is a connected, compact Riemannian manifold and

f : M→ R is geodesically convex, then f is constant.

The take-away is that on compact manifolds geodesic convexity is only inter-

esting on subsets of a connected component. We proceed with a generalization.

When a geodesically convex function admits a maximizer (it may admit none,

one or many), this maximizer typically occurs on the boundary of the geodesi-

cally convex domain. Indeed, a maximizer occurs ‘inside’ the domain only in

4 The interior of a subset S of a manifold M is the union of all subsets of S open in M.
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uninteresting situations. We formalize this below, with a definition and a propo-

sition. The definition is an extension from the classical case [Roc70, Thm. 6.4].

It is helpful to picture a two-dimensional triangle or disk in R3.

Definition 11.11. Let S be a geodesically convex set on a Riemannian manifold

M. The relative interior of S, denoted by relintS, is the set of points x ∈ S with

the following property: for all y ∈ S, all geodesics c : [0, 1] → M connecting

x = c(0) to y = c(1) in S can be extended to the domain [−ε, 1] for some ε > 0,

and still be geodesics of M with image in S.

Proposition 11.12. Let f : S → R be geodesically convex. If f attains its max-

imum at a point x in the relative interior of S, then f is constant on S.

Proof. Pick an arbitrary point y ∈ S. Our goal is to show f(y) = f(x). Consider

any geodesic c : [0, 1]→M connecting x = c(0) to y = c(1) in S. Since x is in the

relative interior of S, we can extend the domain of c to [−ε, 1] for some ε > 0,

and it is still a geodesic in S. Let z = c(−ε). Since f is geodesically convex on

S, f ◦ c is convex and we deduce:

f(x) ≤ 1

1 + ε
f(z) +

ε

1 + ε
f(y).

Multiply by 1 + ε; since x is a maximizer, f(z) ≤ f(x) and we find:

εf(x) ≤ εf(y).

Since ε is positive, we deduce that f(x) ≤ f(y). But x is a maximizer and hence

f(x) ≥ f(y). It follows that f(x) = f(y), as announced.

Exercise 11.13. Assume f and g are geodesically convex on the set S. Show

that x 7→ max(f(x), g(x)) is geodesically convex on S. Further show that x 7→
αf(x) + βg(x) is geodesically convex on S for all α, β ≥ 0.

Exercise 11.14. Let f : S → R be geodesically convex. Show that if h : R → R
is nondecreasing and convex, then h ◦ f is geodesically convex on S.

Exercise 11.15. Let S1 be a geodesically convex set on a Riemannian manifold

M1, and similarly for S2 on M2. Verify that S1 × S2 is geodesically convex on

the Riemannian product manifold M1 ×M2.

11.3 Alternative definitions of geodesically convex sets*

Definition 11.2 for a geodesically convex set S is the one preferred by Rapcsák,

well suited for optimization purposes [Rap91, Def. 6.1.1]. It is rather permissive:

it merely requires that every pair of points x, y ∈ S be connected by some

geodesic segment in the set. It does not require all geodesic segments connecting

x and y to stay in S, nor does it require uniqueness of such a segment, nor that

there exist a minimizing geodesic segment connecting x and y and that this one

stay in S—all properties we have in Euclidean spaces.
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This permissive definition still allows us to establish most optimization re-

sults we may desire, but it does have some undesirable effects. For example, the

intersection of two geodesically convex sets may fail to be geodesically convex

(notwithstanding Proposition 11.8). Indeed, let M = {x ∈ R2 : x21 + x22 = 1} be

the unit circle as a Riemannian submanifold of R2, and consider S1 = {x ∈M :

x1 ≥ 0} and S2 = {x ∈M : x1 ≤ 0}. Clearly, S1 and S2 are geodesically convex

but their intersection S1 ∩ S2 = {(0, 1), (0,−1)} is not.

A common way to restrict Definition 11.2 is to require all geodesic segments

connecting points in S to stay in S. Udrişte [Udr94, Def. 1.3] and Sakai [Sak96,

Def. IV.5.1] call this total convexity, up to the following minor points: Udrişte

tacitly requiresM to be complete (instead, we here require existence of at least

one geodesic segment connecting each pair of points in S), and Sakai requires S

to be non-empty (we do not).

Definition 11.16. A subset S of a Riemannian manifold M is geodesically

totally convex if, for every x, y ∈ S, there is at least one geodesic segment

c : [0, 1] → M such that c(0) = x and c(1) = y, and, for all such segments,

c(t) is in S for all t ∈ [0, 1].

Another way to restrict Definition 11.2 is to require each pair of points in

S to be connected by a unique minimizing geodesic segment, and for that seg-

ment to stay in S. (Recall Theorem 10.4 for minimizing geodesics.) Lee calls

such sets geodesically convex [Lee18, p166], whereas Sakai calls them strongly

convex [Sak96, Def. IV.5.1]. We use the latter name.

Definition 11.17. A subset S of a Riemannian manifold M is geodesically

strongly convex if, for every x, y ∈ S, there exists a unique minimizing geodesic

segment c : [0, 1] →M such that c(0) = x and c(1) = y; and c(t) is in S for all

t ∈ [0, 1].

More verbosely, Definition 11.17 requires the following: given x, y ∈ S ar-

bitrary, consider all geodesic segments c : [0, 1] → M connecting c(0) = x to

c(1) = y in M; we must have that exactly one of those segments is minimizing,

and moreover that this minimizing geodesic segment lies entirely in S.

If a set S is geodesically totally convex or geodesically strongly convex, then

it is also geodesically convex. It is an exercise to show that (a) neither converse

is true, and (b) total convexity does not imply strong convexity, nor the other

way around.

Notwithstanding, for special manifolds all three notions of convexity are equiv-

alent. The following result applies to Cartan–Hadamard manifolds.

Theorem 11.18. Assume M is a complete Riemannian manifold such that

each pair of points x, y ∈ M is connected by a unique geodesic segment. Then,

the notions of geodesic convexity, geodesic total convexity and geodesic strong

convexity are equivalent and can be stated as: S ⊆ M is geodesically convex if

for all x, y in S the geodesic segment connecting them stays in S.
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316 Geodesic convexity

Proof. By assumption, M is connected and complete. Theorem 10.9 provides

that each pair of points x, y is connected by a minimizing geodesic segment. Still

by assumption, no other geodesic segment connects x and y. Thus, the geodesic

segment is minimizing.

For each point x on a Riemannian manifold, there exists a positive r0 > 0 such

that every geodesic ball of radius r ≤ r0 centered at x is geodesically strongly

convex [Lee18, Thm. 6.17].

The notion of geodesically convex function f : S → R as in Definition 11.3

extends verbatim with S a geodesically totally or strongly convex set, and we

still call these functions geodesically convex.

Exercise 11.19. LetM be the unit sphere as a Riemannian submanifold of Rn.

Show that if S ⊆M is geodesically totally convex, then either S = ∅ or S =M.

Further argue that the spherical cap Sα = {x ∈M : x1 ≥ α} is

1. geodesically convex for all α ∈ R,

2. geodesically totally convex if and only if α /∈ (−1, 1], and

3. geodesically strongly convex if and only if α > 0.

Deduce that, while geodesic total convexity and geodesic strong convexity both

imply geodesic convexity, no other implications hold among these three notions

in general.

Exercise 11.20. Show that (unlike geodesic convexity) the properties of geodesic

total convexity and geodesic strong convexity are closed under intersection.

11.4 Differentiable geodesically convex functions

For functions which have a gradient or Hessian, geodesic convexity can be char-

acterized in practical ways through inequalities involving derivatives at a base

point. (Recall Remark 8.6 defining maps which are k times differentiable, as

opposed to smooth.)

We start with a statement using gradients. On a technical note, recall from

Section 10.2 that a geodesic segment c : [0, 1] → M admits a unique extension

to a maximally large open interval containing [0, 1]: this is how we make sense

of c′(0) and c′(1).

Theorem 11.21. Let S be a geodesically convex set on a Riemannian manifold

M and let f : M→ R be differentiable in a neighborhood of S. Then, f |S : S → R
is geodesically convex if and only if for all geodesic segments c : [0, 1] → M
contained in S we have (letting x = c(0)):

∀t ∈ [0, 1], f(c(t)) ≥ f(x) + t ⟨gradf(x), c′(0)⟩x . (11.6)
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Moreover, f |S is geodesically µ-strongly convex for some µ > 0 if and only if

∀t ∈ [0, 1], f(c(t)) ≥ f(x) + t ⟨gradf(x), c′(0)⟩x + t2
µ

2
L(c)2. (11.7)

Finally, f |S is geodesically strictly convex if and only if, whenever c′(0) ̸= 0,

∀t ∈ (0, 1], f(c(t)) > f(x) + t ⟨gradf(x), c′(0)⟩x . (11.8)

Proof. By definition, f |S is geodesically (strictly) convex if and only if, for all

x, y ∈ S and all geodesics c connecting x to y in S, the composition f ◦ c is

(strictly) convex from [0, 1] to R. By extending the domain of c somewhat, we

see that f ◦c is differentiable on an open interval which contains [0, 1]: this allows

us to call upon Lemma 11.1.

First, f ◦ c is convex if and only if for all s, t ∈ [0, 1]:

f(c(t)) ≥ f(c(s)) + (t− s)(f ◦ c)′(s).

Since f is differentiable in a neighborhood of S, we have

(f ◦ c)′(s) = Df(c(s))[c′(s)] = ⟨gradf(c(s)), c′(s)⟩c(s) .

Combine and set s = 0 to conclude that if f |S is geodesically convex then the

inequalities (11.6) hold. The other way around, if the inequalities (11.6) hold,

then (by reparameterization of c) we conclude that f ◦ c is convex for all c as

prescribed, hence f |S is geodesically convex. The proof for strong convexity is

similar.

Second, assuming c′(0) ̸= 0, we have that f ◦ c is strictly convex if and only if

for all s, t distinct in [0, 1]:

f(c(t)) > f(c(s)) + (t− s)(f ◦ c)′(s).

Again, using differentiability of f and setting s = 0, it follows that f ◦ c is

strictly convex if and only if inequality (11.8) holds. Conclude similarly to the

first part.

In Section 11.5, we use the inequalities provided by geodesic strong convexity

together with inequalities that hold if the gradient of f is Lipschitz continuous

to analyze Riemannian gradient descent.

The following corollary is of particular importance to optimization. Note that

we need the geodesically convex domain to be open. Indeed, it is possible for a

global minimizer to have nonzero gradient if it lies on the boundary of S. (See

also Exercise 11.26.)

Corollary 11.22. If f is differentiable and geodesically convex on an open geo-

desically convex set, then x is a global minimizer of f if and only if gradf(x) = 0.

Proof. If gradf(x) = 0, then Theorem 11.21 shows f(x) ≤ f(y) for all y in

the domain of f (this does not require the domain to be open). The other way

around, since the domain of f is open, it is in particular an open submanifold of

M and we can apply Proposition 4.5 to conclude that if x is a global minimizer,

then gradf(x) = 0.
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318 Geodesic convexity

The next theorem provides a characterization of convexity based on second-

order derivatives, also with the requirement that the domain be open.

Theorem 11.23. Let f : S → R be twice differentiable on an open geodesically

convex set S. The function f is

1. Geodesically convex if and only if Hessf(x) ⪰ 0;

2. Geodesically µ-strongly convex if and only if Hessf(x) ⪰ µ Id;

3. Geodesically strictly convex if (but not only if) Hessf(x) ≻ 0,

all understood to hold for all x ∈ S.

Proof. Similarly to the proof of Theorem 11.21, we start with the fact that f

is geodesically convex if and only if f ◦ c : [0, 1] → R is convex for all geodesic

segments c : [0, 1] → M whose image lies in S. Calling upon Lemma 11.1, we

find that this is the case if and only if, for all such geodesics, it holds that

∀t ∈ (0, 1), (f ◦ c)′′(t) ≥ 0.

Since f is twice differentiable everywhere in S, we get that

(f ◦ c)′′(t) =
d

dt
⟨gradf(c(t)), c′(t)⟩c(t) = ⟨Hessf(c(t))[c′(t)], c′(t)⟩c(t) ,

where we also used that c′′(t) = 0 since c is a geodesic.

If Hessf(x) is positive semidefinite for all x in S, then (f ◦ c)′′(t) ≥ 0 for all

c as prescribed and t ∈ (0, 1), so that f is geodesically convex. The other way

around, if f is geodesically convex, it follows that

⟨Hessf(c(0))[c′(0)], c′(0)⟩c(0) ≥ 0

for all admissible c (where we particularized to t = 0). For all x ∈ S and suffi-

ciently small v ∈ TxM, the geodesic c with c(0) = x and c′(0) = v remains in

S for t ∈ [0, 1] since S is open in M. Thus, for all such x and v, we deduce that

⟨Hessf(x)[v], v⟩x ≥ 0, which confirms Hessf(x) is positive semidefinite, and this

holds at all points x ∈ S.

The same proof applies for strong convexity, either using or showing that

(f ◦ c)′′(t) ≥ µL(c)2 for all admissible c and t ∈ [0, 1], and recalling that L(c) =

∥c′(t)∥c(t) since c is a geodesic defined over [0, 1].

If Hessf(x) is positive definite at all x ∈ S, then (f ◦ c)′′(t) > 0 whenever

c′(0) ̸= 0, which confirms f is geodesically strictly convex. The converse is not

true because it also does not hold in the Euclidean case: consider f(x) = x4 on

S = (−1, 1) ⊂ R.

Example 11.24. Let M be a compact Riemannian manifold. If f : M→ R has

positive semidefinite Hessian at all points, then f is geodesically convex on each

connected component of M by Theorem 11.23. Since M is compact, it follows

from Corollary 11.10 that f is constant on each connected component. Therefore,

the Hessian of f is in fact zero everywhere.
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Example 11.25. Given a differentiable function f : M→ R on a manifold M,

it is natural to wonder whether there exists a Riemannian metric for M such

that f is geodesically convex. If such a metric exists, then (a) the domain of f

is geodesically convex with that metric, and (b) the critical points of f are its

global minimizers (by Corollary 11.22 since M is open regardless of the metric).

Since the notions of criticality (Definition 4.4) and global optimality are inde-

pendent of the Riemannian metric, it follows that no Riemannian metric makes

f geodesically convex if f has a suboptimal critical point. A similar reasoning

holds if f (not necessarily differentiable) has a suboptimal local minimizer (by

Theorem 11.6) [Vis18]. Of course, it may still be possible to choose a metric such

that f is geodesically convex on a submanifold of M.

Exercise 11.26. Let S be a geodesically convex set in M, not necessarily open.

Define the cone of feasible directions Kx of S at x to be the set of vectors c′(0)

for all possible geodesic segments c in S satisfying c(0) = x. Let f : M→ R be

differentiable in a neighborhood of S and geodesically convex on S. Show that

x⋆ ∈ S is a global minimizer of f |S if and only if

⟨gradf(x⋆), v⟩x⋆
≥ 0

for all v in Kx⋆ . (The closure of Kx is called the tangent cone to S at x.)

11.5 Geodesic strong convexity and Lipschitz continuous gradients

Recall Definition 10.16 for the exponential map Exp: TM→M. If S is geodesi-

cally convex and x, y are two points in S, then there exists a geodesic segment

in S connecting x to y. In terms of Exp, this can be stated as: there exists a

tangent vector v ∈ TxM such that the curve c(t) = Expx(tv) stays in S for all

t ∈ [0, 1] with c(0) = x and c(1) = y. Notice that the length of that geodesic

segment satisfies dist(x, y) ≤ L(c) = ∥v∥x (Section 10.1).

Thus, Theorem 11.21 provides that, if f : M→ R is differentiable in a neigh-

borhood of S and if f |S is geodesically convex, then given x ∈ S and v ∈ TxM
such that c(t) = Expx(tv) is in S for all t ∈ [0, 1], we have

∀t ∈ [0, 1], f(Expx(tv)) ≥ f(x) + t ⟨gradf(x), v⟩x , (11.9)

and the inequality is strict for t ∈ (0, 1] if f |S is geodesically strictly convex.

Furthermore, if f |S is geodesically µ-strongly convex, then

∀t ∈ [0, 1], f(Expx(tv)) ≥ f(x) + t ⟨gradf(x), v⟩x + t2
µ

2
∥v∥2x. (11.10)

These convenient inequalities should be compared with the corresponding one

we have if the gradient of f is L-Lipschitz continuous (Proposition 10.53):

∀t ∈ [0, 1], f(Expx(tv)) ≤ f(x) + t ⟨gradf(x), v⟩x + t2
L

2
∥v∥2x. (11.11)

When both of the latter inequalities hold, we can obtain strong guarantees for
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optimization algorithms. To illustrate this, we first work through a couple of

facts about geodesically strongly convex functions. For starters, strong convexity

ensures existence and uniqueness of a minimizer. (Recall Theorem 10.8 regarding

complete manifolds.)

Lemma 11.27. Let S be a non-empty, closed and geodesically convex set in a

complete manifold M. Assume f : M→ R is differentiable in a neighborhood of

S. If f |S is geodesically µ-strongly convex with µ > 0, then the sublevel sets of

f |S are compact and f |S has exactly one global minimizer.

Proof. Let x0 ∈ S be arbitrary. We first argue that the sublevel set S0 = {x ∈
S : f(x) ≤ f(x0)} is compact. Since f is continuous around S and S is closed,

S0 is closed. Since M is complete, it remains to show that S0 is bounded in M.

For contradiction, assume that this is not the case. Then, there exists a sequence

x1, x2, x3, . . . in S0 such that limk→∞ dist(x0, xk) =∞. Each xk is in S and S is

geodesically convex hence there exists vk ∈ Tx0
M such that c(t) = Expx0

(tvk)

remains in S for t ∈ [0, 1] and c(1) = xk. Then, we have by (11.10) that

f(xk) ≥ f(x0) + ⟨gradf(x0), vk⟩x0
+
µ

2
∥vk∥2x0

.

Since dist(x0, xk) goes to infinity and dist(x0, xk) ≤ L(c) = ∥vk∥x0 , we have that

∥vk∥x0
goes to infinity. Moreover, for all k,

f(xk) ≥ f(x0)− ∥gradf(x0)∥x0
∥vk∥x0

+
µ

2
∥vk∥2x0

.

The right-hand side goes to infinity with k → ∞, hence so does f(xk). This is

incompatible with f(xk) ≤ f(x0) for all k, hence S0 is compact.

Since f |S0
is continuous, it attains its minimum at some point x⋆ in S0. Thus,

for all x ∈ S, we either have x /∈ S0 in which case f(x) > f(x0) ≥ f(x⋆), or we

have x ∈ S0 in which case f(x) ≥ f(x⋆). Therefore, x⋆ is also a minimizer for

f |S .

Since geodesic strong convexity implies geodesic strict convexity, it follows

from Theorem 11.7 that x⋆ is the only minimizer of f |S .

In the same setting as the previous lemma, we find that the norm of the

gradient of a geodesically strongly convex function at some point x provides

crisp information about the optimality gap at x.

Lemma 11.28. Let S be a non-empty, closed and geodesically convex set in a

complete manifold M. Assume f : M→ R is differentiable in a neighborhood of

S. If f |S is geodesically µ-strongly convex with µ > 0, then it satisfies a Polyak–

 Lojasiewicz inequality:

∀x ∈ S, f(x)− f(x⋆) ≤ 1

2µ
∥gradf(x)∥2x, (11.12)

where x⋆ is the minimizer of f |S.
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Proof. The minimizer x⋆ of f |S exists and is unique by Lemma 11.27. Fix x ∈ S
arbitrary. Both x and x⋆ are in S which is geodesically convex, hence there exists

vx ∈ TxM such that x⋆ = Expx(vx) and t 7→ Expx(tvx) remains in S for all

t ∈ [0, 1]. Therefore, geodesic µ-strong convexity (11.10) provides:

f(x⋆) = f(Expx(vx)) ≥ f(x) + ⟨gradf(x), vx⟩x +
µ

2
∥vx∥2x

≥ inf
v∈TxM

f(x) + ⟨gradf(x), v⟩x +
µ

2
∥v∥2x

= f(x)− 1

2µ
∥gradf(x)∥2x,

where the infimum is attained by v = − 1
µgradf(x) (the critical point of the

quadratic in v). Rearrange to conclude.

The two last results provide sufficient context to study a simple version of

Riemannian gradient descent applied to a function which is geodesically strongly

convex and has a Lipschitz continuous gradient. See Section 11.8 for further

references.

Theorem 11.29. Let f : M→ R be differentiable and geodesically convex on a

complete manifold M. Given x0 ∈ M, consider the sublevel set S0 = {x ∈ M :

f(x) ≤ f(x0)}. Assume f has L-Lipschitz continuous gradient on a neighborhood

of S0 and f |S0 is geodesically µ-strongly convex with µ > 0. Consider gradient

descent with exponential retraction and constant step-size 1/L initialized at x0,

namely,

xk+1 = Expxk

(
− 1

L
gradf(xk)

)
, k = 0, 1, 2, . . .

The function f has a unique minimizer x⋆ and the iterates converge to it at least

linearly. More precisely, with κ = L/µ ≥ 1 (the condition number of f |S0
), the

whole sequence stays in S0 and we have

f(xk)− f(x⋆) ≤
(

1− 1

κ

)k

(f(x0)− f(x⋆)) and (11.13)

dist(xk, x⋆) ≤
√

1− 1

κ

k√
κdist(x0, x⋆) (11.14)

for all k ≥ 0. (Note that
√

1− 1
κ ≤ 1− 1

2κ .)

Proof. By construction, S0 is non-empty. It is also closed since f is continuous,

and geodesically convex since f is geodesically convex. Thus, Lemma 11.27 pro-

vides that f |S0
has a unique minimizer x⋆ ∈ S0, and it is clear that x⋆ is also

the unique minimizer of f on M since x /∈ S0 =⇒ f(x) > f(x0) ≥ f(x⋆).

Next, we argue by induction that all xk are in S0. Of course, x0 is in S0. Assume

xk is in S0. We know gradf is L-Lipschitz continuous on a neighborhood U of

S0. Consider the curve c(t) = Expxk
(−tgradf(xk)). Notice that c(0) is in U . Let

I denote the largest interval around t = 0 such that c(t) is in U for all t ∈ I.
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This interval is open since c−1(U) is open. Then, L-Lipschitz continuity of the

gradient provides:

∀t ∈ I, f(c(t)) ≤ f(xk)− t
(

1− tL
2

)
∥gradf(xk)∥2xk

.

We want to show that I contains [0, 2/L). To this end, let t̄ = sup I be the

first (positive) time such that c(t̄) leaves U . If t̄ is infinite, we have nothing

to do. Assume t̄ is finite. The above inequality holds for all 0 ≤ t < t̄. By

continuity, it must also hold for t = t̄. For contradiction, assume t̄ < 2/L. Then,

f(c(t̄)) ≤ f(xk) ≤ f(x0) because t̄
(
1− t̄L2

)
> 0 and xk ∈ S0. This implies that

c(t̄) is in S0, a contradiction. Hence, I contains the interval [0, 2/L). In particular,

it contains 1/L. Since xk+1 = c(1/L), we deduce that

f(xk+1) ≤ f(xk)− 1

2L
∥gradf(xk)∥2xk

, (11.15)

confirming that the whole sequence remains in S0.

Subtract f(x⋆) on both sides of (11.15) to find

f(xk+1)− f(x⋆) ≤ f(xk)− f(x⋆)− 1

2L
∥gradf(xk)∥2xk

(11.16)

for all k. Lemma 11.28 bounds the gradient norm at xk ∈ S0 as:

∥gradf(xk)∥2xk
≥ 2µ(f(xk)− f(x⋆)). (11.17)

Combining the latter two inequalities, it follows that

f(xk+1)− f(x⋆) ≤
(

1− µ

L

)
(f(xk)− f(x⋆)) (11.18)

for all k. It is clear when comparing (11.10) and (11.11) that L ≥ µ, hence

κ = L
µ ≥ 1 and we can conclude for the sequence (f(xk))k=0,1,2....

Since x⋆ and each xk are in S0 which is geodesically convex, there exists vk ∈
Tx⋆M such that the curve c(t) = Expx⋆

(tvk) connects c(0) = x⋆ to c(1) = xk
while remaining in S0 for all t ∈ [0, 1]. Then, geodesic strong convexity (11.10)

provides

f(xk) ≥ f(x⋆) + ⟨gradf(x⋆), vk⟩x⋆
+
µ

2
∥vk∥2x⋆

.

Since x⋆ is the minimizer of f on M, we know that gradf(x⋆) = 0. Moreover,

dist(xk, x⋆) ≤ L(c) = ∥vk∥x⋆
. Thus,

dist(xk, x⋆)2 ≤ 2

µ
(f(xk)− f(x⋆)) (11.19)

for all k. Combine with the bound on f(xk)− f(x⋆) to deduce:

dist(xk, x⋆) ≤

√
2(f(x0)− f(x⋆))

µ

√
1− 1

κ

k

. (11.20)

Now consider x0 and x⋆. They are in the same connected component ofM since

all iterates xk are in the same connected component (any two consecutive iterates
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are connected by a geodesic segment) and the sequence converges to x⋆. Hence,

x0 and x⋆ are connected by a minimizing geodesic γ of M such that γ(0) = x⋆,

γ(1) = x0 and L(γ) = dist(x0, x⋆) since M is complete (Theorem 10.9). It is

easy to see that γ(t) is in S0 for all t ∈ [0, 1] because f is geodesically convex on

all of M hence

∀t ∈ [0, 1], f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1))

= f(x0)− (1− t)(f(x0)− f(x⋆)) ≤ f(x0).

Therefore, Lipschitz continuity of the gradient (11.11) provides:

f(x0) ≤ f(x⋆) +
L

2
dist(x0, x⋆)2, (11.21)

where we used gradf(x⋆) = 0. Plug this into (11.20) to conclude.

11.6 Example: positive reals and geometric programming

As usual, let Rn denote the Euclidean space with metric ⟨u, v⟩ = u⊤v. The

positive orthant

Rn
+ = {x ∈ Rn : x1, . . . , xn > 0} (11.22)

is a convex subset of Rn, in the usual sense. Being an open set, it is also an open

submanifold of Rn. Its tangent spaces are all identified with Rn.

We can make Rn
+ into a Riemannian submanifold of Rn using the Euclidean

metric. Geodesic convexity on that manifold is equivalent to convexity in the

usual sense: this is not particularly interesting. Furthermore, this manifold is

not complete—its geodesics are the straight lines of Rn: they cease to exist when

they leave Rn
+.

We can endow Rn
+ with a different Riemannian metric so as to make it com-

plete. This leads to a different notion of geodesic convexity on Rn
+. The key is to

establish a diffeomorphism between Rn and Rn
+, and to pullback the Riemannian

geometry of Rn to Rn
+ through that diffeomorphism.

To this end, consider the map φ : Rn
+ → Rn:

φ(x) = log(x) = (log(x1), . . . , log(xn))⊤. (11.23)

This is a diffeomorphism between the manifolds Rn
+ and Rn because it is smooth

and its inverse φ−1 : Rn → Rn
+ is smooth too:

φ−1(y) = exp(y) = (ey1 , . . . , eyn)
⊤
. (11.24)

Note also the following expressions for the differential of φ at x ∈ Rn
+ and its

inverse (both are maps from Rn to Rn):

Dφ(x)[u] =

(
u1
x1
, . . . ,

un
xn

)⊤
, (Dφ(x))

−1
[z] = (x1z1, . . . , xnzn)

⊤
.
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They will come in handy.

Equipped with this diffeomorphism, we can define a Riemannian metric ⟨·, ·⟩+

on Rn
+ as follows: Dφ(x) is an invertible linear map from TxRn

+ to Tφ(x)Rn, and

we define the inner product on TxRn
+ so as to make this map an isometry, that

is,5

⟨u, v⟩+x ≜ ⟨Dφ(x)[u],Dφ(x)[v]⟩ =

n∑
i=1

uivi
x2i

. (11.25)

(Notice how the metric at x is given by the Euclidean Hessian of the log-barrier

function x 7→ −
∑n

i=1 log(xi).)

Since Rn
+ now has two distinct Riemannian geometries, we let

M = (Rn
+, ⟨·, ·⟩

+
) (11.26)

denote the Riemannian manifold obtained with the pullback metric, to avoid

ambiguity. This is implemented in Manopt as positivefactory.

It is an exercise to show that the geodesics of M are exactly the images of

geodesics of Rn through φ−1, that is, all geodesics of M are of the form

c(t) = φ−1(y + tz) = exp(y + tz) =
(
ey1+tz1 , . . . , eyn+tzn

)
, (11.27)

for some y, z ∈ Rn. These are defined for all t, henceM is complete. (Intuitively,

as we near the missing boundary of Rn
+, that is, as some xi nears zero, the

metric’s 1/x2i scaling distorts lengths, making the boundary seem infinitely far

away.) Moreover, for any two points x, x′ ∈ M, there exists a unique geodesic

c : [0, 1]→M (necessarily minimizing) connecting them:

c(t) = exp(log(x) + t(log(x′)− log(x))). (11.28)

We are now in a good position to study geodesic convexity on M.

Proposition 11.30. A set S ⊆ Rn
+ is geodesically convex on M if and only if

C = log(S) is convex in Rn.

Proof. Assume S is geodesically convex. For any two points y, y′ ∈ C, let x =

φ−1(y) and x′ = φ−1(y′) be the corresponding points in S. Since S is geodesically

convex, the geodesic (11.28) is included in S for t ∈ [0, 1]. Hence, C contains

φ(c(t)) = log(x) + t(log(x′)− log(x)) = y+ t(y′ − y) for t ∈ [0, 1]: this is the line

segment connecting y to y′, hence C is convex. The proof is similar in the other

direction.

Proposition 11.31. Let S be geodesically convex on M. Then, f : S → R is

geodesically (strictly) convex on M if and only if the function

g : log(S)→ R : y 7→ g(y) = f(exp(y))

is (strictly) convex in Rn.
5 Compare this with the metric we imposed on the relative interior of the simplex in Exer-

cise 3.65, namely, ⟨u, v⟩x =
∑n

i=1
uivi
xi

. That one is a pullback from the usual metric on the

positive orthant of the unit sphere (up to scaling); it is not complete.
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Proof. By definition, f is geodesically convex if and only if for all x, x′ ∈ S and

t ∈ [0, 1] it holds that

f(c(t)) ≤ (1− t)f(x) + tf(x′) = (1− t)g(y) + tg(y′),

where x = exp(y), x′ = exp(y′), and c(t) is the geodesic uniquely specified

by (11.28). Conclude with the observation that

f(c(t)) = f(exp(log(x) + t(log(x′)− log(x)))) = g((1− t)y + ty′).

(The argument is the same for geodesic strict convexity.)

Let us consider an example. The function f : Rn
+ → R defined by

f(x) = xa1
1 · · ·xan

n (11.29)

with some a ∈ Rn is (usually) not convex on Rn
+, but it is geodesically convex on

M. Indeed, S = Rn
+ is geodesically convex (sinceM is connected and complete),

and

g(y) = f(exp(y)) = (ey1)
a1 · · · (eyn)

an = ea
⊤y

is convex on all of Rn because it is the composition of a linear (hence convex)

function of y with a convex, nondecreasing function (see also Exercise 11.14).

With this example, we can identify a whole class of geodesically convex func-

tions on M, based on the observation that nonnegative linear combinations of

geodesically convex functions are geodesically convex (see Exercise 11.13).

Definition 11.32. A posynomial is a function f : Rn
+ → R of the form

f(x) =

K∑
k=1

ckx
a1k
1 · · ·xank

n ,

where c1, . . . , cK are nonnegative and the exponents aik are arbitrary. All posyn-

omials are geodesically convex on M. If K = 1, f is called a monomial.

By Proposition 11.8, this implies that sets of the form

{x ∈ Rn
+ : f(x) ≤ α}

are geodesically convex in M for any posynomial f and α ∈ R.

We can say even more about monomials. Given f(x) = cxa1
1 · · ·xan

n with c > 0,

the function log f is well defined on Rn
+. Moreover, log f is geodesically linear on

M (Definition 11.4). Indeed,

log(f(exp(y))) = log(c) + a⊤y

is affine. By Proposition 11.31, this implies both log f and− log f are geodesically

convex, as announced. Consequently, sets of the form

{x ∈ Rn
+ : log f(x) = log β} = {x ∈ Rn

+ : f(x) = β}

are geodesically convex in M for any monomial f and β > 0.
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Overall, we reach the conclusion that problems of the form

min
x∈Rn

+

f(x) subject to fi(x) ≤ 1, i = 1, . . . ,m,

gj(x) = 1, j = 1, . . . , p, (11.30)

are geodesically convex whenever f, f1, . . . , fm are posynomials and g1, . . . , gp
are monomials. These optimization problems are known as geometric programs:

see the tutorials by Peterson [Pet76] and by Boyd, Kim, Vandenberghe and Has-

sibi [BKVH07] for the more standard construction of this class of problems and

a list of applications. This is also discussed under the lens of geodesic convexity

in [Rap97, Ch. 10].

By construction, M and Rn are not only diffeomorphic but also isometric:

essentially, they are the same Riemannian manifold. Thus, the notion of geodesic

convexity onM is not meaningfully different from classical Euclidean convexity

in Rn (though it is different from classical convexity in Rn
+). The next section

presents a more interesting example.

Exercise 11.33. LetM and M̃ be two Riemannian manifolds with φ : M→ M̃
a diffeomorphism such that Dφ(x) is an isometry for all x ∈ M: ⟨u, v⟩x =

⟨Dφ(x)[u],Dφ(x)[v]⟩φ(x) (that is, φ is a Riemannian isometry). In the context

of this section, M̃ is the Euclidean space Rn, M is Rn
+ with the metric (11.25)

and φ is given by (11.23).

Let ∇ and ∇̃ denote the Riemannian connections on M and M̃, respectively.

Show that they are related by

∇uV = Dφ(x)−1
[
∇̃Dφ(x)[u]Ṽ

]
for all u ∈ TxM and V ∈ X(M) with Ṽ ◦ φ = Dφ ◦ V . From there, deduce

an expression for D
dt on M in terms of the covariant derivative D̃

dt on M̃, and

conclude that c is a geodesic on M if and only if φ ◦ c is a geodesic on M̃.

Explicitly, with Exp and ˜Exp the exponential maps on M and M̃, respectively,

establish the formula

Expx(u) = φ−1
(

˜Expφ(x)(Dφ(x)[u])
)

for all (x, u) ∈ TM. Use this to verify (11.28) as well as the fact that S ⊆M is

geodesically convex if and only if φ(S) ⊆ M̃ is geodesically convex, and likewise

for geodesic convexity of f : S → R and f ◦ φ−1 : φ(S)→ R.

11.7 Example: positive definite matrices

Consider the set of symmetric, positive definite matrices of size n:

Sym(n)+ = {X ∈ Sym(n) : X ≻ 0}. (11.31)
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This is a convex set in the Euclidean space Sym(n) of symmetric matrices of

size n, with the inner product ⟨U, V ⟩ = Tr(U⊤V ) = Tr(UV ). It is an open

submanifold; its tangent spaces are identified with Sym(n).

In analogy with Rn
+, we aim to endow Sym(n)+ with a Riemannian struc-

ture, ideally one that makes it complete. There are at least two ways of doing

this. In both cases, for n = 1 we recover the same Riemannian geometry as we

constructed for R1
+ in the previous section.

One way is to construct a diffeomorphism between Sym(n)+ and a complete

manifold, just like log provided a diffeomorphism from Rn
+ to Rn. Here, we can

define φ : Sym(n)+ → Sym(n) to be the principal matrix logarithm,6

φ(X) = log(X). (11.32)

Its inverse is the matrix exponential φ−1(Y ) = exp(Y ). Both are smooth on the

specified domains, hence φ is indeed a diffeomorphism. Based on this observation,

we can pullback the Euclidean metric from Sym(n) to Sym(n)+ in order to define

the following inner product on TXSym(n)+ = Sym(n):

⟨U, V ⟩logX ≜ ⟨Dlog(X)[U ],Dlog(X)[V ]⟩ . (11.33)

This is the Log-Euclidean metric studied in detail by Arsigny et al. [AFPA07]. For

the same reasons as in the previous section, we can easily describe its geodesics

and geodesic convexity (Exercise 11.33):

• The unique (and minimizing) geodesic connecting X,X ′ ∈ Sym(n)+ with

respect to the Log-Euclidean metric is

c(t) = exp(log(X) + t(log(X ′)− log(X))). (11.34)

• A set S ⊆ Sym(n)+ is geodesically convex in that metric if and only if log(S)

is convex in Sym(n).

• Given such a geodesically convex set S, a function f : S → R is geodesically

(strictly) convex if and only if f ◦ exp is (strictly) convex on Sym(n).

Another—and by some measures, more common—metric on Sym(n)+ is the

so-called affine invariant metric. On the tangent space TXSym(n)+, it is defined

as follows:

⟨U, V ⟩affX =
〈
X−1/2UX−1/2, X−1/2V X−1/2

〉
= Tr(X−1UX−1V ). (11.35)

The central expression ensures that the inputs to ⟨·, ·⟩ are symmetric matrices.

The metric at X matches the Hessian of the log-barrier X 7→ − log(det(X)).

This is implemented in Manopt as sympositivedefinitefactory.

This metric is named after the following property: for all M ∈ Rn×n invertible,

it holds that MXM⊤ is positive definite, and:〈
MUM⊤,MVM⊤

〉aff
MXM⊤ = ⟨U, V ⟩affX . (11.36)

6 See Section 4.7 for questions related to the computation of matrix functions and their

differentials.
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One concrete consequence is that if c : [0, 1]→ Sym(n)+ is a smooth curve, then

the length of c is equal to the length of the other curve t 7→ Mc(t)M⊤ because

their speeds are equal for all t. Likewise, the length of the curve t 7→ c(t)−1

is equal to that of c. One can show that the geodesic such that c(0) = X and

c′(0) = V is given by [Bha07, Thm. 6.1.6], [Vis18, Ex. 4.9]:

ExpX(tV ) = c(t) = X1/2 exp
(
tX−1/2V X−1/2

)
X1/2. (11.37)

This is defined for all t, thus the manifold is complete. Moreover, the manifold

is Cartan–Hadamard which makes it well suited for applications of geodesically

convex optimization. In order to ensure c(1) = X ′ (another positive definite

matrix), set V to be

LogX(X ′) = X1/2 log(X−1/2X ′X−1/2)X1/2. (11.38)

This provides the initial velocity at X of the unique geodesic segment connecting

X and X ′. It follows that

dist(X,X ′)2 = ⟨LogX(X ′),LogX(X ′)⟩affX = ∥log(X−1/2X ′X−1/2)∥2F, (11.39)

where ∥·∥F denotes the Frobenius norm. With some care, it is possible to ex-

press Exp, Log and dist without any matrix square roots, but matrix inverses,

exponentials and logarithms are still necessary.

To solve optimization problems over Sym(n)+ it is helpful to compute gra-

dients and Hessians. Let f̄ : Sym(n) → R be a function over the space of sym-

metric matrices with the usual metric from Rn×n. Assume f is smooth on the

open set Sym(n)+. Further let f = f̄ |Sym(n)+ formally denote the restriction of

f̄ to the manifold of positive definite matrices equipped with the affine invari-

ant metric. The gradients and Hessians of f and f̄ are related as follows for all

(X,V ) ∈ TSym(n)+:

gradf(X) = Xgradf̄(X)X, (11.40)

Hessf(X)[V ] = XHessf̄(X)[V ]X +
V gradf̄(X)X +Xgradf̄(X)V

2
.

If f̄ is defined over all of Rn×n, then it is necessary to replace gradf̄(X) and

Hessf̄(X)[V ] by their symmetric parts. These formulas are derived from [SH15,

§3] where expressions also appear for the Riemannian connection and parallel

transport on Sym(n)+.

Example 11.34. Let f̄ : Sym(n) → R be defined by f̄(X) = log(det(X)), and

let f = f̄ |Sym(n)+ be its restriction to positive definite matrices with the affine

invariant metric. From Example 4.28 we know that gradf̄(X) = X−1 and hence

also that Hessf̄(X)[V ] = −X−1V X−1. It thus follows from (11.40) that

gradf(X) = X and Hessf(X)[V ] = 0

for all (X,V ) ∈ TSym(n)+. In particular, Hessf(X) is both positive and negative
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semidefinite for all X. It follows from Theorem 11.23 and Definition 11.4 that

f is geodesically linear on Sym(n)+.

Bhatia [Bha07, Ch. 6] and Moakher [Moa05] (among others) provide a dis-

cussion of the affine invariant geometry of positive definite matrices. Moakher

as well as Sra and Hosseini [SH15] discuss geodesic convexity on Sym(n)+ en-

dowed with the affine invariant geometry, with applications. See [NSAY+19] for

an overview of reasons to use the affine invariant metric when positive definite

matrices represent zero-mean Gaussian distributions (in comparison with other

possible structures), and for an application of geodesic convexity to robust dis-

tribution estimation.

11.8 Notes and references

Udrişte and Rapcsák wrote a large number of papers on the subject of Rie-

mannian convexity through the late 70s, 80s and 90s: see the many references

in [Rap91, Rap97] and [Udr94]. Several of the results discussed in this chap-

ter (and more) can be found in those works. Other useful resources include

[dCNdLO98], [Moa05], [SH15], [ZS16] to name a few.

When discussing convexity of a function in Rn, one usually allows f to take

on infinite values. It is also habitual to allow f to be nondifferentiable, in which

case one resorts to subgradients instead of gradients. This can be generalized to

Riemannian manifolds; see for example [FO98, ZS16, GH16, BFM17]. Another

classical tool in the study of convex functions is the Fenchel dual: see [BHSL+21]

for a discussion of that notion on Riemannian manifolds.

Propositions 11.9 and 11.12 are akin to [Roc70, Thm. 10.1, Thm. 32.1] in

Rn. Euclidean versions of Theorems 11.21 and 11.23 are classical, see for exam-

ple [HUL01, Thm. B.4.1.1, p110, Thm. B.4.3.1, p115].

Some references for Exercise 11.33 regarding Riemannian isometries are [Lee18,

Lem. 4.37, Prop. 4.38, Prop. 5.13] and [FLP20, §4].

On a Cartan–Hadamard manifold, given any point y, the function f(x) =
1
2 dist(x, y)2 is geodesically 1-strongly convex on the whole manifold [Lee18,

Lem. 12.15]. In particular, any geodesic ball centered at y is geodesically con-

vex since it is a sublevel set of f . More detailed information about the Hessian

of the distance and the squared distance functions on complete manifolds with

bounded curvature can be found in [Sak96, pp153–154].

One could also consider a notion of retraction convexity [Hua13, Def. 4.3.1].

Given a retraction R on a manifoldM, a set S ⊆M is retraction convex if for all

x, y ∈ S there exists v ∈ TxM such that c(t) = Rx(tv) satisfies c(0) = x, c(1) = y

and c([0, 1]) ⊆ S. A function f : S → R is retraction convex if f composed with

all retraction curves in S is convex. For the exponential retraction, this reduces

to the notion of geodesic convexity defined in this chapter. Retraction convexity

is referenced notably in [TFBJ18] and [KSM18].
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330 Geodesic convexity

There is a link between geodesic convexity and barrier functions for interior

point methods. Quiroz and Oliveira [QO04] for example study Rn
+ with a general

family of diagonal Riemannian metrics, and show applications to the design and

analysis of interior point methods for linear programming.

See [Tak11, MMP18] and references therein for discussions of Riemannian ge-

ometries on Sym(n)+ related to the Wasserstein distance between probability

distributions, particularized to Gaussian distributions with positive definite co-

variance matrices.

Section 11.5 provides some simple results regarding Riemannian gradient de-

scent applied to a geodesically strongly convex function with Lipschitz contin-

uous gradient, based on discussions with Chris Criscitiello. The main claim is

Theorem 11.29. The proof relies on a Polyak– Lojasiewicz inequality built in

Lemma 11.28. This is a direct extension from the Euclidean case [Pol63, KNS16]

to the Riemannian case. Such extensions also appear in various forms and for

variations of the setting here in [ZS16], [CMRS20, Thm. 4] and [CB22b]. Instead

of assuming convexity, one can also assume the conclusions of Lemma 11.28

directly and obtain a more general result.

Perhaps the most famous algorithm for convex optimization in Rn is the ac-

celerated gradient method (also known as the fast gradient method or Nesterov’s

gradient method), for which a version of Theorem 11.29 holds in Rn with κ re-

placed by
√
κ. There is interest in determining whether that algorithm has a

sensible analog on Riemannian manifolds. Recent work on this topic includes

a discussion of the difficulties of the task [ZS18], with positive takes involv-

ing continuous-time perspectives [AOBL20a], methods based on estimate se-

quences [AS20, AOBL20b] and methods based on geodesic maps [MR20], but

also negative takes (impossibility results) in [HM21, CB22b], all applying to

subtly different settings.
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extrinsic acceleration, 105, 114
extrinsic curvature, 114

fiber, 217
field

scalar, 34

tensor, 295
tensor, on a curve, 298

vector, 38, 198

field, tensor, 295
finite differences, 104, 292

finite subcover, 191

first-order critical point, see critical point
first-order stationary point, see critical point

Fisher–Rao metric, 45
fixed point, 67

fixed-rank matrices, 165

foot, see base (of a tangent vector)
Fréchet derivative, 74

Frobenius inner product, 22

Frobenius norm, 22
function, see map

general linear group, 220
geodesically complete, 262, 263

geodesically concave function, 311

geodesically convex function, 311
strictly, 311

strongly, 312

geodesically convex program, 313
geodesically convex set, 310

strongly, 315

totally, 315
geodesically linear function, 311

geodesically quasiconvex function, 312
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geodesics, 106, 205

horizontal, 248

maximal, 264

minimizing, 262

on a sphere, 40, 106

geometric program, 326

global convergence, 64

global frame, 47

gradient

Euclidean, 24

Riemannian, 42, 201

Grassmann manifold

embedded geometry, 253

group, 219

rigid motion, 180

special Euclidean, 180

translations, 220

group action, 220

free, 221

isometric, 233

proper, 221

smooth, 220

group, Lie, 220

H-conjugate, 126

Hadamard manifold, see Cartan–Hadamard

manifold

Hadamard product, 22

hairy ball theorem, 47

Hausdorff, see topology

Heine–Borel property, 262

Hessian

Euclidean, 24

Riemannian, 95, 204

signature, 110

symmetric, see Clairaut–Schwarz theorem

homeomorphism, 189

Hopf–Rinow theorem, 263

horizontal curve, 246

horizontal distribution, 255

horizontal geodesic, 248

horizontal lift, see lift, horizontal

horizontal space, 224

horizontal vector field, 226

hyperbolic space, 174

hyperboloid model, 174

IFT, see inverse function theorem

image (of a linear map), 21

inclusion map, 206

induced covariant derivative, 101, 205, 298

induced metric, 41

injectivity radius, 265

inner product, 21

inner product (pseudo), 174

interior, relative, 314

interior, set, 313

intrinsic, 3

intrinsic acceleration, see acceleration

invariance, 213

inverse function theorem, 27

Jacobian, 124

kernel, 21

KKT conditions, 179

Koszul formula, 93

Krylov subspace, 127

Kurdyka– Lojasiewicz inequality, 82

Lagrange multipliers, 179

length, curve segment, 261

Levi-Civita, see Riemannian connection

LICQ, 179

Lie bracket, 89

Lie group, 220

lift (of a map), 223

lift, horizontal

of a vector, 225

of a vector field, 226

of a vector field on a curve, 246

limit point, 54

line search, 57, 62

linear manifold, 26

linear map, 21

linear operator, see linear map

linear space, 21

Lipschitz continuous

Euclidean gradient, 60, 81

on a metric space, 274

Riemannian gradient, 277, 281

Riemannian Hessian, 279, 283

tensor field, 299

tensor field of order 2, 279

vector field, 277

Lipschitz-type assumption, 61, 284, 301

local convergence, 65

at least linear, 65

at least quadratic, 66

R-linear, Q-linear, 65

superlinear, 65

local defining function, 26, 207

local frame, 46

orthonormal, 49

local section, 223

log-barrier function, 324

Log-Euclidean metric, 327

logarithmic map, 266, 268

manifold, 190

manifold*, 185

Manopt

checkgradient, 79–80

checkhessian, 150

dexpm, dlogm, dsqrtm, 74

egrad2rgrad, 43, 44, 158, 245

ehess2rhess, 110–112, 158, 245
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tangent2ambient, 173

manifolds (factories), 155, 324, 327

map

continuous, see continuous map

diffeomorphic, see diffeomorphism

homeomorphic, see homeomorphism

linear, see linear map

open, see open map

proper, see proper map

quotient, see quotient map

smooth, see smooth map

matrices of fixed rank, 165

matrix function, 74

matrix-free solver, 124

maximal atlas, 184

maximal geodesic, 264

metric, 201

affine invariant, 327

Bures–Wasserstein, 249

Euclidean, see Euclidean metric

Fisher–Rao, 45

induced, see induced metric

Log-Euclidean, 327

product, see product metric

Riemannian, see Riemannian metric

Sasaki, 304

metric (on a manifold), 41

metric projection, 40, 114

metric space, 261

metric topology, 261

metrically complete, 262

minimizer

global, 53

local, 53

local, strict, 53

minimizing curve segment, 262

minimizing geodesic, 262

minimum, see minimizer

Minkowski pseudo-inner product, 174

Möbius band, 51

musical isomorphism, 46, 48

natural projection, see canonical projection

neighborhood, 21, 32

Newton equations, 122

Newton step, 122

Newton’s method, 122

norm

Euclidean, see Euclidean norm

operator, see operator norm

normal space, 111, 161

null space, see kernel

objective function, 53

oblique manifold, 8, 158

one-form, 48

open cover, 191

open map, 218

open set, see topology

open submanifold, 26, 32

operator, see linear map

operator norm, 23

optimality conditions

first-order, necessary, 55

second-order, necessary, 120

second-order, sufficient, 121

optimization algorithms, see algorithms

optimizer, see minimizer

orbit, 221

orbit space, 221

orientable manifold, 51

orthogonal group, 163, 220

orthogonal projector

to a manifold, 114

to a tangent space, 43

orthogonal vectors, 21

orthonormal basis, 22

orthonormal local frame, 49

orthonormal matrices, 159

orthonormal vectors, 22

parallel frame, 272

parallel tensor field, 297

parallel translation, see parallel transport

parallel transport, 271

parallel vector field on a curve, 271

parallelizable manifold, 47

parameterization (local), 182

partition of unity, 51, 191

PCA, see principal component analysis

phases, 158

Poincaré ball model, 174

Poincaré half-space model, 174

polar retraction, 161

Polyak– Lojasiewicz inequality, 82, 320

positive definite, 23

positive semidefinite, 23

posynomial, 325

principal component analysis, 6, 8

product connection, 88

product manifold

connection, 88

connection, Riemannian, 94

differentials, 37

distance, 263

embedded submanifolds, 32

exponential map, 270

general manifolds, 191

geodesically convex sets, 314

geodesics, 106

gradient, 46

Hessian, 96

induced covariant derivative, 105

metric, 42

parallel transport, 274
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product of spheres, see oblique manifold

retraction, 40

table, summary, 156

tangent bundle, 39

product metric, 42

projector, see orthogonal projector

proper embedding, 51, 208

proper map, 221

pullback, 55

Q-factor, 160

quotient manifold, 10, 216

quotient map, 216

quotient set, 10, 216

quotient space, 216

quotient topology, 216

range, see image (of a linear map)

Rayleigh quotient, 6, 9, 36

global minimizers, 96, 245

gradient, 44

Hessian, 96, 244

real projective space, 186

regular submanifold, see submanifold,

embedded

restriction, 24, 33

retraction, 39, 199

differential, 287, 291

inverse, 269

metric projection, 40, 115

polar factor, 161

projective, 118

Q-factor, 160

second order, 108, 115, 206

third order, 301, 302

topological, 208

truncated SVD, 168

RGD, see Riemannian Gradient Descent

Ricci identity, 302

Riemannian

connection, 89, 204

distance, 261

gradient, 42, 201

gradient descent, 57

Hessian, 95, 204

isometry, 326

manifold, 41, 201

metric, 41, 201

Newton’s method, 122

product manifold, 42

quotient manifold, 233

submanifold, 41

submersion, 233

trust region method, 131

rigid motion group, 180

root, see base (of a tangent vector)

rotation group, see special orthogonal group

RTR, see Riemannian trust regions

Sasaki metric, 304

scalar field, 34

SDP, see semidefinite program

second fundamental form, 112, 210

second-countable, see topology

second-order critical point, see critical point

second-order stationary point, see critical

point

section, local, 223

section, of a vector bundle, 286

section, zero, see zero section

sectional curvature, 174

self-adjoint linear map, 23

semidefinite program, 14

shape space, 180

simplex, 14, 32, 45

singular value, 24

smooth at a point (map), 24, 33, 185

smooth manifold, see manifold

smooth map

k-times differentiable, 185

embedded submanifold, 33

extension, 33

linear space, 24

manifold, 185

smooth structure, 185

span, 21

special Euclidean group, 180, 220

special orthogonal group, 164, 220

speed, 108, 261

sphere

product of spheres, see oblique manifold

star shaped, 116, 264

stationary point, see critical point

Stiefel manifold, 159

sublevel set, 61

submanifold

embedded in a linear space, 26

embedded in a manifold, 37, 207

immersed, 51, 207

linear, 26

open, 26, 32, 190, 207

properly embedded, 51

regular, see embedded

Riemannian, 41, 209

submersion, 218

submersion, Riemannian, 233

subsequence, 54

subspace, see linear space

subspace topology, 32

successful step, 138

sufficient decrease, 58

symmetric linear map, see self-adjoint linear
map

tangent bundle, 37, 197

tangent covector, 301

https://cambridge.org/9781009166157


Material published by Cambridge University Press, https://cambridge.org/9781009166157. This pre-publication version is free for personal use only.

Sections, theorems, equations, etc. are numbered identically to the published version. Page numbering differs.

352 Index

tangent space, 30, 194

tangent vector, 30, 194
tangent–cotangent isomorphism, see musical

isomorphism

Taylor expansion
order 1, 55

order 2, 107

order 3, 299
tCG, see truncated conjugate gradients

tensor
fixed rank, 180

tensor bundle, 296

tensor field, 295, 296
tensor field on a curve, 298

topological manifold, 210

topological space, 188
topology, 21

atlas, 189

Hausdorff, 54, 189
manifold, 188

metric, 261

quotient, 216
second countable, 190

submanifold, 32
subspace, 32, 189

total space, 216

trace (of a matrix), 22
trace inner product, see Frobenius inner

product

transport
parallel, 271

transporter, 286

vector, 290
truncated conjugate gradients, 144

trust region, 131

trust-region method, 131
trust-region subproblem, 131

tubular neighborhood, 51, 118, 208

unsuccessful step, 138

vector bundle, 286
vector field, 38, 198

horizontal, 226
vector field on a curve, 101, 205
vector space, see linear space
vector transport, 290

velocity, 105, 199
vertical space, 224

Weingarten map, 112, 210

zero section, 265
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