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ABSTRACT

We consider the problem of fitting a discrete curve to time-labeled
data points on the set Pn of all n-by-n symmetric positive-definite
matrices. The quality of a curve is measured by a weighted sum
of a term that penalizes its lack of fit to the data and a regulariza-
tion term that penalizes speed and acceleration. The corresponding
objective function depends on the choice of a Riemannian metric
on Pn. We consider the Euclidean metric, the Log-Euclidean met-
ric and the affine-invariant metric. For each, we derive a numerical
algorithm to minimize the objective function. We compare these
in terms of reliability and speed, and we assess the visual appear-
ance of the solutions on examples for n = 2. Notably, we find
that the Log-Euclidean and the affine-invariant metrics tend to yield
similar—and sometimes identical—results, while the former allows
for much faster and more reliable algorithms than the latter.

Index Terms— Positive-definite matrices, non-parametric re-
gression, Riemannian metrics, finite differences.

1. INTRODUCTION

We address the problem of fitting curves to data on the set Pn of
n-by-n symmetric positive-definite (s.p.d.) matrices. Specifically,
the data of our problem consists in N matrices pi ∈ Pn with time
labels ti such that t1 ≤ · · · ≤ tN . The goal is to find a curve on Pn

that simultaneously (i) fits the data and (ii) is sufficiently “smooth”.
The measures of fitting and smoothness are conveniently defined in
terms of a Riemannian metric on the set Pn. We are thus faced with
a curve fitting problem on a Riemannian manifold.

There is a general interest in numerical algorithms capable of fit-
ting “smooth” curves to time-labeled data points. While the problem
is well described for data belonging to a Euclidean space, the case
where the data belongs to a manifold usually proves more challeng-
ing. General frameworks and algorithms for regression on Rieman-
nian manifolds have recently been proposed [1, 2, 3]. The case of Pn

is of particular interest as it appears in several applications, notably
in Diffusion Tensor Imaging [4].

In this work, we consider discrete curves γ = (γ1, . . . , γNd) in
the curve space Γ = Pn × · · · × Pn, i.e., sequences of Nd s.p.d.
matrices. Each matrix γi corresponds to a fixed time τi such that
t1 = τ1 < · · · < τNd = tN . For ease of notation, we will only
consider evenly spaced discretization times τi with spacing Δτ . No
significant difficulty arises with unevenly spaced τi’s.
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Endowed with a Riemannian metric—whose choice will be dis-
cussed below—Pn becomes a Riemannian manifold. Building upon
prior work [1], we define the optimal regression curve across data on
a Riemannian manifoldM as the minimizer of an objective function
E overMNd , where E is defined as:
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In this formula, Log is the logarithmic map onM, i.e., Logx is the
reciprocal of the Riemannian exponential Expx [5]. The indices si,
i = 1, . . . , N , are chosen such that τsi is closest (ideally equal) to
ti. ‖ · ‖x is the norm induced by the Riemannian metric at x ∈ M.
The first term penalizes misfit between γ and the data points pi. The
second term, weighted by λ ≥ 0, penalizes speed along the curve.
The third term, weighted by μ ≥ 0, penalizes acceleration along γ.

Given a set of data points, one can choose to favor interpolation
over smoothness (or the other way around) by tuning the parameters
λ and μ appearing in the objective functionE. The influence of these
parameters is best described in terms of their role in the continuous
regression problem from which E originates [1, §1]. In particular,
(i) for λ = 0, μ > 0, the solutions are approximating cubic splines,
and (ii) for λ > 0, μ = 0, the solutions are piecewise geodesic, with
breaking points at the data time labels [3]. In the former case, as μ
goes to infinity, the solution goes to a regression geodesic. In the lat-
ter case, as λ goes to infinity, the solution goes to a single point: the
Riemannian mean [6] of the data points. In both cases, as the non-
negative parameter goes to zero, the solution nears an interpolatory
curve. As we will see in the results section, our discrete formulation
exhibits similar behavior.

Note that when Loga (b) = b − a, which is the case for Eu-
clidean spaces, E simplifies to:
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In this formula, one can recognize the usual first order finite differ-
ences for velocity and acceleration.

We let Sn denote the set of real, symmetric matrices of size n
and Pn = {A ∈ Sn : x�Ax > 0 ∀x ∈ R

n, x �= 0} the set of s.p.d.
matrices of size n. The embedding space Sn is endowed with the
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usual Euclidean metric

〈H1,H2〉 = trace
(
H�

2H1

)
. (3)

The associated norm is the Frobenius norm, ‖H‖ =
√

〈H,H〉.
The set of s.p.d. matrices is an open convex subset of Sn [7],

hence giving Pn a Riemannian manifold structure by restricting the
above metric to Pn would yield a non-complete manifold. The set
Pn may be endowed with a different Riemannian metric in order to
make it complete. Arsigny et al. study two such metrics, namely the
affine-invariant metric and the Log-Euclidean metric [8]. Intuitively,
they both stretch the limits of Pn to infinity. Since these metrics are
not the restriction of the metric on Sn to Pn, endowed with either of
these metrics, Pn is not a Riemannian submanifold of Sn. Regard-
less of the metric though, Pn being an open subset of Sn, the tangent
space to Pn at any matrix in Pn can be identified with the set Sn.

For each of the aforementioned three metrics, we provide an
algorithm to solve the associated regression problem. As we will see,
the choice of a metric has a strong impact on the objective function,
and hence also on the optimal regression curve.

2. THE EUCLIDEANMETRIC

We first consider the case where Pn is a Riemannian submanifold of
Sn, i.e., it is endowed with the metric (3) of Sn. Since the Frobe-
nius norm is convex, the problem of minimizing E (2) under the
constraints γi ∈ Pn is convex. But the admissible set Γ—i.e., the
curve space—is not complete. Some problems may thus not have a
solution. A pragmatic approach consists in minimizing E under the
softened constraint that the γi’s are semipositive definite. This way,
the admissible set is complete and the whole problem can be solved
easily, efficiently and reliably using solvers such as SeDuMi [9]. If
the solution to the relaxed problem belongs to Γ, we have found a
legitimate solution of our original problem. However, there is no
guarantee that will be the case.

3. THE LOG-EUCLIDEANMETRIC

Arsigny et al. [8] propose a different Riemannian metric on Pn,
based on the observation that the restricted matrix exponential

exp : Sn → Pn : H �→ exp(H) =

∞∑
k=0

Hk

k!

is a smooth diffeomorphism whose inverse mapping is the (principal)
matrix logarithm log. They introduce new summation and scaling
operators (for A,B ∈ Pn and α ∈ R):

A⊕B = exp(log(A) + log(B)),

α⊗A = exp(α log(A)) = Aα.

By construction, exp : (Sn,+, .) → (Pn,⊕,⊗) is a vector space
isomorphism. Arsigny et al. use this to endow Pn with the metric

〈H1,H2〉A = 〈Dlog (A) [H1] ,Dlog (A) [H2]〉 , (4)

termed the Log-Euclidean metric. Dlog (A) [H ] denotes the direc-
tional derivative of the matrix logarithm at A along H and the inner
product on the right hand side is the Euclidean metric on Sn. En-
dowed with (4), Pn is a complete Riemannian manifold [8, Prop.
3.4]. Although the metric (4) takes a complicated form, the actual
computations we need are made very easy thanks to the vector space

structure. It can indeed be proven that minimizing E (1) with the
Log-Euclidean metric comes down to minimizing E (2) in the log-
domain, which is the vector space Sn. More precisely, to solve the
smooth regression problem on Pn endowed with the Log-Euclidean
metric, simply:

1. Compute the new data points p̃i = log(pi) ∈ Sn for each
original data point pi ∈ Pn;

2. Compute γ̃ ∈ Sn × · · · × Sn, the solution of the regression
problem in Sn with the new data points;

3. Compute γ, the solution of the original problem, as γi =
exp(γ̃i).

Step 2 can be carried out by minimizing E (2) in the vector space
(Sn)

Nd . E is a linear least-squares objective, hence it is convex and
quadratic. The optimization problem is unconstrained. Furthermore,
a little algebra shows that E is decoupled along the dimensions of
Sn, of which there are dim Sn = n(n+ 1)/2, and that the Hessian
of the objective along each dimension is pentadiagonal and does not
depend on the data. Consequently, we need only solve a pentadiago-
nal system of sizeNd for n(n+ 1)/2 right hand sides, which is fast
and reliable. Using modern quadratic programming (QP) solvers, it
is also easy to add constraints to the original problem in the form of
linear equalities and inequalities.

4. THE AFFINE-INVARIANTMETRIC

Before the Log-Euclidean metric was introduced, Pennec et al. de-
scribed another Riemannian metric on Pn and named it the affine-
invariant metric [10]:

〈H1,H2〉A =
〈
A−1/2H1A

−1/2, A−1/2H2A
−1/2

〉
. (5)

Pennec et al. give the Riemannian exponential and logarithmic
maps [5] for this metric [10, §3.4]:

ExpA (H) = A1/2 exp
(
A−1/2HA−1/2

)
A1/2,

LogA (B) = A1/2 log
(
A−1/2BA−1/2

)
A1/2.

To solve the regression problem with this metric, we need to
minimize E (1) under the constraints γi ∈ Pn for i = 1, . . . , Nd.
The objective is no longer convex, hence convex programming can-
not help like it did in Section 2. Instead, we use a Riemannian con-
jugate gradient (RCG) descent method [5] outlined in Algorithm 2.
Any classic step size choosing algorithm can be used. The RCG
method executes a descent by stepping along geodesics on the man-
ifold Γ = Pn × · · ·×Pn. By definition, those geodesics never leave
Γ since it is complete when endowed with the (componentwise-
extended) affine-invariant metric. Consequently, provided the algo-
rithm converges, it will do so toward an admissible curve.

Algorithm 1 Directional derivative of log
Input: A ∈ Pn,H ∈ Sn.
Output: Dlog (A) [H ] ∈ Sn.
Diagonalize: A = UDU�,D = diag (λ1, . . . , λn), U�= U−1.
Compute H̃ = U�HU .

Compute Z̃ with Z̃ij =

{
log(λi)−log(λj)

λi−λj
if λi �= λj ,

1
λi

if λi = λj .

return U(H̃ � Z̃)U�, where � is the Hadamard product.
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Fig. 1. λ = 10−1, μ = 0. An example of piecewise geodesic regression. The first line shows the data points. The second line shows linear
interpolation between the data. The third line shows regression for the Euclidean metric and is obtained by solving a convex program. The
fourth line is the solution for the Log-Euclidean metric and is computed by solving an unconstrained quadratic program. The fifth line is the
result for the affine-invariant metric obtained by running the RCG algorithm with the Log-Euclidean solution as initial guess.

data

linear

Euclidean

Log-Euclidean

affine-invariant

Fig. 2. λ = 0, μ = 10−3. The three methods of interest (bottom lines) give sensible results resembling approximating cubic splines.

It seems sensible to feed the (easy to compute) Log-Euclidean
regression curve to the RCG algorithm as initial guess when comput-
ing the regression curve for the affine-invariant metric. Numerical
evidence suggests that, when the data points pi commute w.r.t. ma-
trix multiplication, both the Log-Euclidean and the affine-invariant
metric yield the same optimal regression curve. A partial hint to
this is that the objective functions associated to both metrics are
identically equal when restricted to the set of s.p.d. matrices which
commute with the data points. An important fact intervening in this
matter is that commuting symmetric matrices are diagonalized by a
common orthogonal matrix [7, p. 23].

The descent directions in the RCG method depend on the gradi-
ent of the objectiveE. The latter is a linear combination of functions
f and g of s.p.d. matrices evaluated at neighboring γi’s, with:

f(A,B) = ‖LogA (B) ‖2A,

g(A,B,C) = 〈LogA (B) ,LogA (C)〉A .

Hence, it is sufficient to derive formulas for the gradients of f and g
in order to compute gradE. A general result [1, §5.3] states that

grad (X �→ f(X,B)) (A) = −2LogA (B) .

Since f is symmetric in its two arguments, it remains to compute
the gradients of g in each of its variables. Since g makes use of the
matrix logarithm, we will need a means of computingDlog (A) [H ],
the derivative of log at A ∈ Pn along H ∈ Sn. We cover that in
Algorithm 1 [1]. A rather long development yields:

grad
(
X �→ g(X,B,C)

)
(A)

= A
(
Dlog (AB)

[
sym

(
log

(
C−1

B−1AB

))] )
B
A

+ A
(
Dlog (AC)

[
sym

(
log

(
A

C
B−1

C−1

))] )
C
A,

grad
(
X �→ g(A,X,C)

)
(B)

= grad
(
X �→ g(A,C,X)

)
(B)

= B
(
Dlog (BA) [log (CA)]

)
A
B.

For brevity, we used the notation sym (X) � (X + X�)/2 (sym-
metric part ofX) andXY � Y −1/2XY −1/2. Note that ifX and Y
are s.p.d., so isXY [8, §3.1]. It is useful to notice that, for any s.p.d.
matrix X , the operator Dlog (X) [·] is self-adjoint in Sn, i.e., for
all symmetric matrices H1,H2, we have 〈Dlog (X) [H1] ,H2〉 =
〈H1,Dlog (X) [H2]〉.

The gradient formulas we gave in this section are sufficient
to compute the gradient of the objective function E (1) for the
affine-invariant metric. Together with the initial guess suggested
earlier—namely, the optimal curve for the Log-Euclidean metric—
this is enough material to run Algorithm 2 on our problem.

5. RESULTS

In Figures 1–3, a 2-by-2 s.p.d. matrix A is pictured as an ellipse
whose axes are aligned with the eigenvectors of A and whose axes
lengths are proportional to the corresponding eigenvalues. In all
three figures, the data points are the same three non-commuting
s.p.d. matrices. Each figure illustrates regression across those data
points for a different choice of parameters λ and μ and juxtaposes
the results for all three metrics we discussed. We chose n = 2 to
ease the representation, but our algorithms work for general n.

Figure 1 shows piecewise geodesic regression. Only the break-
ing points need to be computed, which is fast for all three metrics.

Figure 2 exhibits cubic-spline–like regression.
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Fig. 3. λ = 0, μ = 103. Geodesic-like regression. The Euclidean and Log-Euclidean metric solutions are accurate and quick to compute.
The affine-invariant metric solution is noticeably slower to compute and its precision depends on the stopping criterion of Algorithm 2.

Algorithm 2 Riemannian conjugate gradient method (RCG) [5]
Input: A scalar field E : Γ → R, its gradient gradE and an
initial guess γ(0) ∈ Γ, where Γ is a Riemannian manifold.
Output: A sequence γ(1), γ(2), . . . in Γ.
p0 := − gradE(γ(0))
k := 0
while gradE(γ(k)) �= 0 do

αk := choose step size (any classic line-search, e.g., [5, §4.2])
γ(k+1) := Expγ(k) (αkpk)

βk+1 := ‖ gradE(γ(k+1))‖2/‖ gradE(γ(k))‖2

pk+1 := − gradE(γ(k+1)) + βk+1pk
k := k + 1

end while

Figure 3 demonstrates almost-geodesic regression. Note that for
the Log-Euclidean and affine-invariant metrics those geodesics can
be infinitely extended on both ends without ever leaving Pn, whereas
for the Euclidean metric the extended geodesic would eventually
reach the border of the cone. The Euclidean metric also produces
a visible swelling effect, that was already observed by Arsigny et al.
for the two-point (N = 2) interpolation problem [8].

The Log-Euclidean and the affine-invariant metrics yield similar
results. Considering the simplicity inherent to working with the Log-
Euclidean metric, we would favor it over the affine-invariant metric
in applications, unless there are application-related reasons not to do
so. These could be linked to the respective properties of the two
metrics. Arsigny et al. provide a study of those properties [8].

6. CONCLUSIONS

We studied the problem of fitting discrete curves to data on the set of
symmetric positive-definite matrices Pn. Building upon prior work,
we formulated this problem as an optimization problem on mani-
folds. We gave Pn a Riemannian manifold structure using three dif-
ferent metrics. For each of these metrics, we provided a numerical
algorithm to solve the corresponding regression problem. For the
Euclidean metric, we saw that the problem does not always have a
solution in Pn. Semidefinite programming can sometimes provide
a solution, if it exists. For the Log-Euclidean metric, we took ad-
vantage of the vector space structure to reduce the problem to an
unconstrained quadratic program, leading to a simple, robust and
fast algorithm. For the affine-invariant metric, a lot of algebra for
the computation of the gradient of the objective permitted the use of
the Riemannian conjugate gradient method. The latter proved effec-

tive but can be slow, especially for high μ. Numerical experiments
show that the Log-Euclidean and the affine-invariant metrics tend to
yield similar curves. We therefore conclude that the Log-Euclidean
metric is the metric of choice for practical applications, unless said
application imposes other constraints.
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