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Abstract

We study Cramér-Rao bounds (CRB’s) for estimation problems on Riemannian manifolds. In (S.T.

Smith, Covariance, subspace, and intrinsic Cramér-Rao bounds, IEEE TSP, 53(5):1610–1630, 2005),

the author gives intrinsic CRB’s in the form of matrix inequalities relating the covariance of estimators

and the Fisher information of estimation problems. We focus on estimation problems whose parameter

space P̄ is a Riemannian submanifold or a Riemannian quotient manifold of a parent space P , that

is, estimation problems on manifolds with either deterministic constraints or ambiguities. The CRB’s

in the aforementioned reference would be expressed w.r.t. bases of the tangent spaces to P̄ . In some

cases though, it is more convenient to express covariance and Fisher information w.r.t. bases of the

tangent spaces to P . We give CRB’s w.r.t. such bases expressed in terms of the geodesic distances

on the parameter space. The bounds are valid even for singular Fisher information matrices. In two

examples, we show how the CRB’s for synchronization problems (including a type of sensor network

localization problem) differ in the presence or absence of anchors, leading to bounds for estimation on

either submanifolds or quotient manifolds with very different interpretations.
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EDICS: SSP-PERF (Performance analysis and bounds)

I. INTRODUCTION

We study Cramér-Rao bounds (CRB’s) for estimation problems on Riemannian manifolds (loosely,

nonlinear spaces with a smooth structure such as the sphere for example). In such problems, one would

like to estimate a deterministic but unknown parameter θ belonging to a manifold P , given a measurement

y belonging to a probability spaceM. The measurement y is a random variable whose probability density

function is shaped by θ. It is because y is distributed differently for different θ’s that sampling (observing)

y reveals information about θ. We assume some familiarity of the reader with differential geometry. The

appendix briefly reviews the tools needed in this paper, fixes notation and provides references to classical

introductory textbooks.

Estimation problems on manifolds arise naturally in camera networks pose estimation [1], angular

synchronization [2], covariance matrix estimation and subspace estimation [3] and many other applica-

tions, see references therein. Cramér-Rao bounds relate the covariance matrix of estimators to the Fisher

information matrix (FIM) of an estimation problem through matrix inequalities. The classical results deal

with estimation on Euclidean spaces [4]. More recently, a number of authors have established similar

bounds in the manifold setting, see [3], [5] and the many references therein. We focus on bounds for

unbiased estimators.

More formally, let P be a Riemannian manifold andM be a probability space, i.e., a measurable space

with nonnegative measure µ such that µ(M) = 1. We consider an estimation problem on the parameter

space P based on measurements in M, such that the probability density function of the measurement

given a parameter θ ∈ P is f(·; θ) : M→ R. Let L : P → R be the associated log-likelihood function

L(θ) = log f(y; θ). (1)

The related Fisher information form at θ, F : TθP ×TθP → R, is defined as (all expectations are taken

w.r.t. y):

F[u, v] , E {DL(θ)[u] ·DL(θ)[v]} , (2)

where TθP is the tangent space to P at θ and DL(θ)[u] denotes the directional derivative of L at θ along

the tangent vector u (see the appendix). The bilinear form F is symmetric, positive semidefinite. If it is

positive definite—that is, F[u, u] > 0 whenever u 6= 0—the Cramér-Rao bounds in [3], which make use

of the inverse of the matrix representing F, apply.
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In this paper, we consider estimation problems such that F is not necessarily positive definite. Sin-

gularity of F typically arises when the measurements are not sufficient to determine the parameter, i.e.,

ambiguities remain. For example, locating a point p = (x, y, z) in space based solely on information

about the bearing p/‖p‖ is impossible, since nothing is known about the distance between p and the

origin. The Fisher information matrix of such a problem would only be positive semidefinite.

To resolve these ambiguities, one can proceed in at least two ways. Firstly, one can add constraints

on θ, based on additional knowledge about the parameter. By restricting the parameter space to P̄ ⊂ P ,

a submanifold of P , one may hope that the resulting estimation problem is well-posed. For example, if

one knows the distance between p and the origin is 1, one should perform the estimation on the sphere

P̄ = S2 = {(x, y, z) : x2 + y2 + z2 = 1} rather than on P = R3. Alternatively, one can recognize

that the parameter space is made of equivalence classes, that is, sets of parameters that are equally valid

estimators for they give rise to the same measurement distribution. In this scenario, one ends up with an

estimation problem on a quotient manifold P̄ = P/∼, where ∼ is an equivalence relation on P stating

that θ, θ′ ∈ P are equivalent if they give rise to the same distribution of the measurements. Continuing

with our example, all points p with the same bearing p/‖p‖ would give rise to the same measurement

distribution, hence are indistinguishable and should be grouped into an equivalence class.

The treatment of submanifolds hereafter may also be useful when the FIM is invertible. In that scenario,

one is interested in studying the Cramér-Rao bounds of the original problem, and the effect on those

bounds caused by incorporating additional knowledge about θ.

The direct way to address these issues would be to work on the smaller space P̄ directly, writing down

Fisher information and covariance with respect to bases of the tangent spaces to P̄ , leading to Cramér-Rao

bounds according to [3]. However, we argue that the tangent spaces of P sometimes make more sense

to the user: that is why the problem was defined on P rather than P̄ to begin with. Furthermore, when

P̄ is a quotient manifold, its tangent spaces are rather abstract objects to work with. It is hence desirable

to have equivalent Cramér-Rao bounds expressed as matrix inequalities w.r.t. bases of tangent spaces of

P instead. This is what the theorems in this communication achieve. The present work is based on [3]

and derives its consequences for unbiased estimators in the presence of indeterminacies (ambiguities) or

under additional constraints.

The case of constrained Cramér-Rao bounds, that is, estimation on Riemannian submanifolds of Rd,

has been studied extensively [6], [7], [8]. Notably, in [8], the authors describe P̄ through a set of equality

constraints and they express the covariance in terms of distances in the embedding Euclidean space Rd.

In this paper, we more generally consider Riemannian submanifolds of any Riemannian manifold P .
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Furthermore, for the simple versions of the CRB’s, only an orthogonal projector from the tangent spaces

of P to those of P̄ are required. More importantly, the covariance matrix in the proposed bounds is

expressed in terms of the Riemannian, or geodesic, distance on P̄ , which may be more natural for a

number of applications.

The case of CRB’s for estimation problems with singular FIM has also been investigated extensively

[7], [9], [10]. The classical remedy is to use the Moore-Penrose pseudoinverse, hereafter referred to as

the pseudoinverse, of the FIM instead of the inverse in the CRB (in what follows, we use the notation

A† to denote the pseudoinverse of a matrix A ∈ Rn×m, that is, the unique matrix in Rm×n such that

AA†A = A, A†AA† = A† and the matrices AA† and A†A are symmetric). When the singularity is

due to indeterminacies (a notion we make precise in Section III), Xavier and Barroso [10] showed a

nice interpretation of the role of the pseudoinverse by recasting the estimation problem on a Riemannian

quotient manifold P̄ . In the latter reference, the authors give a geometric interpretation for the kernel of

the FIM and propose a CRB-type bound they name IVLB [5] for the variance of unbiased estimators

for such problems. In their bound, the possible curvature of P̄ is captured through a single number: an

upperbound on the sectional curvatures of P̄ . In comparison, since the present results are based on [3], the

proposed bounds concern the whole covariance matrix (the trace of which coincides with the variance).

The pseudoinverse of the FIM appears naturally through the same manipulations as in [10]. The additional

curvature terms in the CRB (Section IV) take the whole Riemannian curvature tensor into account. This

is especially useful when P̄ is flat or almost flat in most directions but has significant curvature in a few

directions, which happens naturally for product spaces. In such scenarios, the IVLB tends to be overly

optimistic, i.e., less restrictive—hence less informative—because it has to assume maximum curvature in

all directions. In comparison, the bounds derived here based on [3] are able to capture complex curvature

structures if need be.

A lot of work has been accomplished to gain other types of geometric insight into the Cramér-Rao

bounds. Scharf and McWhorter [11] study the CRB for multi-parameter estimation problems where the

parameters are partitioned into two groups. Their study shows how the angles between the subspaces

spanned by the sensitivity vectors of the two groups are related to the CRB. Another trend of geometric

interpretation comes from the field of information geometry, where one endows the parameter space

with Fisher information as a metric, turning the parameter space (typically, Rn) into a Riemannian

manifold [12]. The metric “bends” space, so that the larger the Riemannian distance between two

parameters, the easier it is for an estimator to distinguish them.

The CRB’s presented in this communication hold at large SNR. The origin of this provision is double.
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Firstly, the definition of covariance on a manifold uses the logarithmic map on that manifold, which is only

locally well-defined. It is thus necessary to require the noise level to be low enough so that the estimator

θ̂ of a parameter θ will, with high probability, belong to a neighborhood of θ where the logarithm is

well-defined. This can be relevant even on flat manifolds such as the circle SO(2) for example, which is

compact. Secondly, on curved manifolds, the proof of the main theorem in [3] relies on truncated Taylor

expansions. Those are legitimate only at large enough SNR so that typical errors are small compared to

the scale at which curvature becomes a dominant feature.

Let e = {e1, . . . , ed} be an orthonormal basis of TθP w.r.t. the Riemannian metric 〈·, ·〉θ. The Fisher

information matrix of the estimation problem on P w.r.t. the basis e is a d× d symmetric matrix defined

by:

(Fe)ij = F[ei, ej ] = E {DL(θ)[ei] ·DL(θ)[ej ]} , (3)

where L is the log-likelihood function (1). The covariance matrix Ce w.r.t. the basis e will be defined

separately for the submanifold (Section II) and the quotient manifold (Section III) cases, then Fe and

Ce will be linked through matrix inequalities. At first, we will neglect curvature terms that may appear

due to the possible curvature of P̄ . This will result in simple statements (Theorems 2 and 3). These

are practically useful because the curvature terms are often negligible at large SNR [3]. Then, we will

establish the CRB’s including curvature terms (Section IV). Finally, we will illustrate the usage of these

theorems through two examples (Section V).

II. RIEMANNIAN SUBMANIFOLDS

Let us consider the constrained estimation problem on the space P̄ ⊂ P , a Riemannian submanifold of

P , such that θ ∈ P̄ and for which the log-likelihood function L̄ = L|P̄ is the restriction of L to P̄ . This

situation arises when one adds supplementary constraints on the parameter θ. For example, some of the

target parameters are known or deterministically related. The Fisher information is simply the restriction

F̄ = F|TθP̄×TθP̄ . We assume F̄ is invertible, i.e., the added constraints fix possible ambiguities in the

estimation problem. Figure 1 depicts the situation.

Let θ̂ be any unbiased estimator for the estimation problem, that is, θ̂ : M→ P̄ maps every possible

realization of the measurement y to a parameter θ̂(y) and has zero bias:

∀θ ∈ P, b(θ) = E
{

Logθ(θ̂(y))
}

= 0, (4)

where Logθ : P̄ → TθP̄ is the logarithmic map at θ on P̄ (see the appendix). For example, on a Euclidean

space, Logθ(θ̂(y)) = θ̂(y) − θ. For conciseness, we often write θ̂ to mean θ̂(y). The covariance matrix
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Fig. 1. P̄ is a Riemannian submanifold of P . We consider estimation problems for which the parameter to estimate is θ, a point

of P̄ . In this drawing, for simplicity, we chose P = R2. The vectors e = (e1, e2) form an orthonormal basis of TθP ≡ R2,

while ē = (ē1) is an orthonormal basis of the tangent space TθP̄ . The operator Pθ projects vectors of TθP orthogonally onto

TθP̄ . We express the Cramér-Rao bounds for such problems in terms of the basis e, which at times may be more convenient

than defining a basis ē for each point θ.

of θ̂ w.r.t. the basis e is defined as:

(Ce)ij = E
{〈

Logθ(θ̂), ei

〉
θ
·
〈

Logθ(θ̂), ej

〉
θ

}
, (5)

where, as always in this paper, the expectation is taken w.r.t. the measurements y ∼ f(y; θ). The goal is

to link Ce and Fe through a matrix inequality.

Let ē = {ē1, . . . , ēd̄} be an orthonormal basis of TθP̄ ⊂ TθP w.r.t. the Riemannian metric 〈·, ·〉θ.

Let E be the d̄ × d matrix such that Eij = 〈ēi, ej〉θ. E is orthonormal: EE> = Id̄, but in general,

Pe , E>E 6= Id. Furthermore, let Pθ : TθP → TθP̄ be the orthogonal projector onto TθP̄ . Clearly, Pe

is the matrix representation of Pθ w.r.t. the basis e, that is: 〈Pθei, ej〉 = (Pe)ij .

A direct application of the CRB’s in [3] to the estimation problem on P̄ would link the covariance

matrix Cē of θ̂ and the inverse Fisher information matrix F̄−1
ē w.r.t. the basis ē. More precisely,

(Cē)ij = E
{〈

Logθ(θ̂), ēi

〉
θ
·
〈

Logθ(θ̂), ēj

〉
θ

}
,

(F̄ē)ij = E
{

DL̄(θ)[ēi] ·DL̄(θ)[ēj ]
}
,

Cē � F̄−1
ē + curvature terms. (6)

We argue that it is sometimes convenient to work with Ce and Fe directly, to avoid the necessity to

define and work with the basis ē. This is what the next theorem achieves, right after we establish a

technical lemma.
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Lemma 1. Let E ∈ Rd̄×d, A ∈ Rd×d, B ∈ Rd̄×d̄, with d̄ ≤ d, A = A>, B = B> and EE>= Id̄, i.e., E

is orthonormal. Further assume that kerE ⊂ kerA. Then,

EAE>� B ⇒ A � E>BE. (7)

Proof: Since Rd = imE>⊕ kerE, for all x ∈ Rd, there exist unique vectors y ∈ Rd̄ and z ∈ Rd

such that x = E>y + z and Ez = 0. It follows that:

x>Ax = y>EAE>y + z>Az + 2y>EAz

(since Ez = 0⇒ Az = 0) = y>EAE>y

(since EAE>� B) ≥ y>By

(since Ex = EE>y + Ez = y) = x>E>BEx.

This holds for all x, hence A � E>BE.

Theorem 2 (CRB on submanifolds). Given any unbiased estimator θ̂ for the estimation problem on

the Riemannian submanifold P̄ with log-likelihood L̄ = L|P̄ (1), at large SNR, the d × d covariance

matrix Ce (5) and the d × d Fisher information matrix Fe (3) obey the matrix inequality (assuming

rank(PeFePe) = d̄):

Ce � (PeFePe)
† + curvature terms, (8)

where the d× d matrix Pe = E>E is the orthogonal projector from TθP to TθP̄ w.r.t. the basis e and

† denotes Moore-Penrose pseudoinversion. Furthermore, the spectrum of (PeFePe)
† is the spectrum of

F̄−1
ē with d− d̄ additional zeroes. In particular, neglecting curvature terms:

trace(Ce) = trace(Cē) ≥ trace(F̄−1
ē ) = trace((PeFePe)

†).

Proof: Since θ̂ ∈ P̄ , Logθ(θ̂) ∈ TθP̄ . Consequently, for all u ∈ TθP ,
〈

Logθ(θ̂), u
〉
θ

=
〈

Logθ(θ̂), Pθu
〉
θ
,

where Pθu is the orthogonal projection of u on TθP̄ . The orthogonal projection of the basis vec-

tor ei on TθP̄ expands in the basis ē as Pθei =
∑

j 〈ēj , ei〉θ ēj =
∑

j Ejiēj . Then, by bilinearity,

(Ce)ij =
∑

k,`EkiE`j (Cē)k`. In matrix form,

Ce = E>CēE. (9)

Since EE> = Id̄, it also holds that Cē = ECeE
>. The vectors of ē expand in the basis e as ēi =∑

j 〈ēi, ej〉θ ej =
∑

j Eijej . By bilinearity again, (F̄ē)ij =
∑

k,`EikEj` (Fe)k`. In matrix form,

F̄ē = EFeE
>. (10)
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Notice that the assumption rank(PeFePe) = d̄ is equivalent to the assumption that F̄ē is invertible. Then,

substituting in (6), we find ECeE
> � (EFeE

>)−1. Since kerCe = ker(E>CēE) ⊃ kerE, Lemma 1

applies and it follows that (neglecting curvature terms):

Ce � E>(EFeE>)−1E. (11)

Finally, from the definition of pseudoinverse, it is easily checked that

E>(EFeE
>)−1E = (E>EFeE

>E)†. (12)

Since Pe = E>E, this concludes the proof of the main part.

We now establish the spectrum property. Since F̄−1
ē is symmetric positive definite, there exist a diagonal

matrix D and an orthogonal matrix U of size d̄× d̄ such that F̄−1
ē = UDU>. Hence,

(PeFePe)
† = E>UDU>E = V

D
0

V >, (13)

with V =
(
E>U (E>U)⊥

)
a d × d orthogonal matrix. The trace property follows easily (neglecting

curvature terms):

trace(Ce) = trace(E>CēE) = trace(Cē) ≥ trace(F̄−1
ē ) = trace((PeFePe)

†). (14)

The trace property is especially interesting, as it bounds the variance of the estimator θ̂, expressed

w.r.t. the Riemannian distance dist on P̄:

trace(Ce) = trace(Cē) = E
{
‖Logθ(θ̂)‖2

}
= E

{
dist2(θ, θ̂)

}
, varθ̂(θ).

Here is one way of interpreting the bound (8). Expand the random error vector Logθ(θ̂) =
∑

i xiei

with random coefficients xi. From the definition, (Ce)ii = E
{
x2
i

}
. Then, equation (8) implies E

{
x2
i

}
≥

(PeFePe)
†
ii, which limits how well the ith coordinate can be estimated. For example, when P̄ is Euclidean,

Logθ(θ̂) = θ̂ − θ and E
{
x2
i

}
= E

{
(θ̂i − θi)2

}
.

Notice that it is not necessary to explicitly construct a basis ē in order to use Theorem 2. Indeed, the

orthogonal projector Pe is often easy to compute without requiring an explicit factorization as E>E. For

example, the orthogonal projector from R3 onto the tangent space to the sphere S2 at θ, denoted TθS2,

w.r.t. the canonical basis of R3 is simply Pe = I3 − θθ>, where I3 is the 3 × 3 identity matrix. This is

fortunate since, because of the hairy ball theorem, it is impossible to define bases ē of TθS2 for all θ in

a smooth way, making it rather inconvenient to work with such bases.
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III. RIEMANNIAN QUOTIENT MANIFOLDS

Whenever two parameters θ, θ′ ∈ P give rise to the same measurement distribution, they are indis-

tinguishable, in the sense that no argument based on the observed measurement can be used to favor

one parameter over the other as estimator. This observation motivates the definition of the following

equivalence relation (remember the definitions of f and L (1)):

θ ∼ θ′ ⇔ f(·, θ) ≡ f(·, θ′) a.e. on M. (15)

The quotient space P̄ = P/∼—that is, the set of equivalence classes—then becomes the natural parameter

space on which the estimation should be performed. Figures 2 and 3, courtesy of the authors of [10],

depict the concept of quotient manifold and of the related basic objects we introduce hereafter, namely

submersions and horizontal/vertical spaces. See also the appendix.

Fig. 2. The parameter space P is partitioned into equivalence classes, called fibers. The Riemannian submersion π maps each

θ ∈ P to its corresponding equivalence class [θ] ∈ P̄ . The space of equivalence classes is the quotient space P̄ = P/∼, also a

Riemannian manifold. Figure courtesy of [10].

We now consider the mapping π from P to P̄ , which maps each parameter θ to its equivalence class

[θ],

π : P → P̄ : θ 7→ π(θ) = [θ] , {θ′ ∈ P : θ′ ∼ θ}, (16)
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Fig. 3. Each fiber π(θ) = [θ] is a Riemannian submanifold of P . The tangent space to a fiber at θ is the vertical space Vθ . The

orthogonal complement of Vθ in TθP is the horizontal space Hθ . The differential of π, noted Dπ(θ), is an isometry between

Hθ and the abstract tangent space T[θ]P̄ . This makes it convenient to represent abstract tangent vectors to P̄ as horizontal

vectors. Figure courtesy of [10].

and concentrate on the case where π is a Riemannian submersion [13][14]. That is, P̄ is a Riemannian

quotient manifold of P . In particular, [θ] is a Riemannian submanifold of P (a fiber). The log-likelihood

function L̄ : P̄ → R is well-defined by L̄([θ]) , L(θ).

The tangent space to [θ] at θ, named the vertical space Vθ, is a subspace of the tangent space TθP . The

orthogonal complement of the vertical space, named the horizontal space Hθ, is such that TθP = Hθ⊕Vθ.

The pushforward Dπ(θ) : TθP → T[θ]P̄ of a Riemannian submersion induces a metric on the abstract

tangent space T[θ]P̄:

∀u, v ∈ Hθ, 〈Dπ(θ)[u],Dπ(θ)[v]〉[θ] , 〈u, v〉θ . (17)

The definition of Riemannian submersion ensures that this is well-defined [14]. We mention two useful

properties:

ker Dπ(θ) = Vθ, and (18)

Dπ(θ)|Hθ : Hθ → T[θ]P̄ is an isometry. (19)

Let [θ̂] : M→ P̄ be any unbiased estimator for the present problem. Define the covariance matrix of
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[θ̂] w.r.t. the basis e as:

(Ce)ij = E
{
〈ξ, ei〉θ · 〈ξ, ej〉θ

}
, with

ξ = (Dπ(θ)|Hθ)−1[Log[θ]([θ̂])]. (20)

The error vector ξ is the shortest horizontal vector at θ such that Expθ(ξ) ∈ [θ̂]. The exponential map is

the inverse of the logarithmic map, see the appendix. On a Euclidean space, Expθ(ξ) = θ + ξ.

Let ē = (ē1, . . . , ēd̄) be an orthonormal basis of T[θ]P̄ . A direct application of the CRB’s in [3] to the

estimation problem on P̄ would link the covariance matrix Cē of [θ̂] and the inverse Fisher information

matrix F̄−1
ē w.r.t. the basis ē. More precisely,

(Cē)ij = E
{〈

Log[θ]([θ̂]), ēi

〉
[θ]
·
〈

Log[θ]([θ̂]), ēj

〉
[θ]

}
,

(F̄ē)ij = E
{

DL̄([θ])[ēi] ·DL̄([θ])[ēj ]
}
,

Cē � F̄−1
ē + curvature terms. (21)

Since T[θ]P̄ is an abstract space, we argue that it is often convenient to work with the more concrete

objects Ce and Fe instead.

Theorem 3 (CRB on quotient manifolds). Given any unbiased estimator [θ̂] for the estimation problem

on the Riemannian quotient manifold P̄ = P/∼ (15) with log-likelihood L (1), at large SNR, the d× d

covariance matrix Ce (20) and the d × d Fisher information matrix Fe (3) obey the matrix inequality

(assuming rank(Fe) = d̄):

Ce � F †e + curvature terms, (22)

where † denotes Moore-Penrose pseudoinversion. Furthermore, the spectrum of F †e is the spectrum of

F̄−1
ē with d− d̄ additional zeroes. In particular, neglecting curvature terms:

trace(Ce) = trace(Cē) ≥ trace(F̄−1
ē ) = trace(F †e ). (23)

Proof: It is convenient to introduce the orthonormal basis of Hθ related to ē as ẽ = (ẽ1, . . . , ẽd̄),

with ēi = Dπ(θ)[ẽi]. The d̄× d matrix E such that Eij = 〈ẽi, ej〉θ will prove useful. E is orthonormal:

EE>= Id̄, but in general, E>E 6= Id.

Let us denote the orthogonal projection of u ∈ TθP onto the horizontal space Hθ as PHθu. Since

ξ = (Dπ(θ)|Hθ)−1[Log[θ]([θ̂])] is a horizontal vector, 〈ξ, u〉θ = 〈ξ, PHθu〉. Furthermore, Dπ(θ)[PHθu] =
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Dπ(θ)[u]. Then, using the fact that Dπ(θ)|Hθ is an isometry, it follows that

(Ce)ij = E
{
〈ξ, ei〉θ · 〈ξ, ej〉θ

}
(24)

= E
{
〈ξ, PHθei〉θ · 〈ξ, PHθej〉θ

}
(25)

= E
{〈

Log[θ]([θ̂]),Dπ(θ)[ei]
〉

[θ]
·
〈

Log[θ]([θ̂]),Dπ(θ)[ej ]
〉

[θ]

}
. (26)

The vector Dπ(θ)[ei] ∈ T[θ]P̄ expands in the basis ē as Dπ(θ)[ei] =
∑

j Ejiēj . Indeed,

〈Dπ(θ)[ei], ēj〉[θ] = 〈Dπ(θ)[ei],Dπ(θ)[ẽj ]〉[θ] = 〈ei, ẽj〉θ .

It follows that (Ce)ij =
∑

k,`EkiE`j (Cē)k`. In matrix form:

Ce = E>CēE. (27)

Since EE>= Id̄, it also holds that Cē = ECeE
>.

We now similarly link Fe and F̄ē. In doing so, we exploit the fact that the gradient gradL(θ) is

a horizontal vector. This stems from the fact that the log-likelihood function L is constant over fibers

(equivalence classes).

(Fe)ij = E {DL(θ)[ei] ·DL(θ)[ej ]}

= E
{
〈gradL(θ), ei〉θ · 〈gradL(θ), ej〉θ

}
= E

{
〈gradL(θ), PHθei〉θ · 〈gradL(θ), PHθej〉θ

}
(expand PHθei and PHθej in the basis ẽ)

=
∑
k,`

EkiE`j E {〈gradL(θ), ẽk〉θ · 〈gradL(θ), ẽ`〉θ}

=
∑
k,`

EkiE`j E
{
〈Dπ(θ)[gradL(θ)], ēk〉[θ] · 〈Dπ(θ)[gradL(θ)], ē`〉[θ]

}
=
∑
k,`

EkiE`j E
{〈

grad L̄([θ]), ēk
〉

[θ]
·
〈
grad L̄([θ]), ē`

〉
[θ]

}
=
∑
k,`

EkiE`j E
{

DL̄([θ])[ēk] ·DL̄([θ])[ē`]
}

=
∑
k,`

EkiE`j (F̄ē)k`.

In matrix form,

Fe = E>F̄ēE. (28)
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Notice that the assumption rank(Fe) = d̄ is equivalent to the assumption that F̄ē is invertible. The latter

equation thus highlights that kerFe = kerE, which makes sense since kerE is the vertical space Vθ

(more precisely, it is the space of coordinate vectors of vertical vectors w.r.t. the basis e). Again, by

orthonormality of E, it also holds that F̄ē = EFeE
>. Combining these rules, it follows that:

Fe = E>EFeE
>E. (29)

Applying Lemma 1 to the inequality (21) and using arguments similar to the proof of Theorem 2 finally

yields:

Ce � F †e + curvature terms, (30)

since

E>(EFeE
>)−1E = (E>EFeE

>E)† = F †e . (31)

The spectrum and trace properties follow directly, see proof of Theorem 2.

Again, there is no need to construct bases ẽ or ē in order to use Theorem 3. Notice that it still holds

that trace(Ce) = trace(Cē) = E
{
‖ξ‖2θ

}
= E

{
dist2([θ], [θ̂])

}
, where dist is the Riemannian distance

on P̄ , since Dπ(θ)|Hθ is an isometry.

IV. INCLUDING CURVATURE TERMS

The intrinsic Cramér-Rao bounds developed in [3] include special terms accounting for the possible

curvature of the parameter space P̄—for intuition on flatness and curvature, see the appendix; for

references, see [13], [15]. As noted in [3, p. 1615], “the proof of the CRB in Euclidean spaces relies on the

fact that ∂/∂θ(θ̂ − θ) = −I . However, for arbitrary Riemannian manifolds, ∇Logθ(θ̂) = −I + second-

and higher-order terms involving the manifold’s sectional and Riemannian curvatures,” where ∇ denotes

the Riemannian connection on P̄ , i.e., a notion of derivatives of vector fields on Riemannian manifolds.

In a nutshell: the origin of curvature terms in intrinsic CRB’s is the non-commutativity of derivatives of

vector fields on curved spaces. As further noted [3, p. 1618], “the significance of the curvature terms is

an open question that depends on the specific application; however, as noted earlier, these terms become

negligible for small errors and biases.”

The curvature terms vanish if P̄ is flat, that is, if it is locally isometric to a Euclidean space. In

such cases, theorems 2 and 3 suffice. When P̄ is not flat, the curvature terms may nevertheless often
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be neglected for high enough signal-to-noise ratio. The argument developed in [3] to that end concludes

that neglecting the curvature terms is legitimate as soon as estimation errors obey

dist(θ, θ̂)� 1√
Kmax

, (32)

where Kmax is an upperbound on the absolute value of the sectional curvatures of P̄ at θ. Intuitively,

this is the scale at which curvature plays a minor role.

Condition (32) involves an upperbound on the sectional curvature of P̄ . As a consequence, it may be

overly restrictive for parameter spaces which have small curvature in most directions, and large curvature

in a few. An important class of such spaces consists in all product manifolds.

As an example, let us consider the problem of estimating (θ1, . . . , θN ) ∈ P̄ = S2 × · · · × S2,

the product of N spheres. P̄ has unit curvature along tangent 2-planes pertaining to a single sphere,

but zero curvature along all 2-planes spanning exactly two distinct spheres. Of course, Kmax = 1. If

estimating θi and θj , i 6= j, are two independent but identical tasks, one should expect the distribution

of dist(θi, θ̂i) to be independent of i. Consequently, dist(θ, θ̂) grows as
√
N , whereas Kmax remains

constant. Hence, condition (32) becomes increasingly restrictive with growing N . Of course, since the

N tasks are independent and can be considered separately, the negligibility of the curvature terms should

not depend on N , which brings the conclusion that simply describing the curvature of P̄ through Kmax

may not be enough.

For such parameter spaces, it is necessary to explicitly compute the curvature terms in the intrinsic

Cramér-Rao bounds, if only to show that they are indeed negligible at reasonable SNR. We now set out

to give versions of theorems 2 and 3 including curvature terms, computable without constructing other

bases than e, the basis of TθP . This will require the Riemannian curvature tensor of P̄ . Useful references

to look up/compute this tensor are [13, Lemma 3.39, Cor. 3.58, Thm 7.47, Cor. 11.10][15][16].

A. Curvature terms for submanifolds

The random error vector X , Logθ(θ̂) expands in the basis ē as X =
∑

i x̄iēi, with x̄1, . . . , x̄d̄ random

variables. Notice that (Cē)ij = E
{
〈X, ēi〉θ 〈X, ēj〉θ

}
= E {x̄ix̄j}. Let R̄ be the Riemannian curvature

tensor of P̄ . The mapping (u, v, w, z) ∈ (TθP̄)4 7→ 〈R̄(u, v)w, z〉θ is linear in its four arguments [15].
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Smith introduces the symmetric 2-form R̄m : TθP̄ × TθP̄ → R defined by [3, eq. (34)]:

R̄m[ēi, ēj ] = E
{〈
R̄(X, ēi)ēj , X

〉
θ

}
(33)

= E

∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
θ
x̄kx̄`

 (34)

=
∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
θ

(Cē)k`. (35)

From the latter expression, it is apparent that the entries of the matrix associated to R̄m are linear

combinations of the entries of Cē. Generalizing this to any matrix, the following linear map is defined:

R̄m : Rd̄×d̄ → Rd̄×d̄ : M 7→ R̄m(M), with

(R̄m(M))ij =
∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
θ
Mk`. (36)

At large SNR, the CRB with curvature terms in [3, Cor. 2] reads

Cē � F̄−1
ē − 1

3

(
R̄m(F̄−1

ē )F̄−1
ē + F̄−1

ē R̄m(F̄−1
ē )
)
. (37)

In order to provide an equivalent of (37) only referencing the basis e, we introduce the following

symmetric 2-form on TθP × TθP:

Rm[ei, ej ] , R̄m[Pθei, Pθej ]. (38)

Notice that, since X ∈ TθP̄ , we have X = PθX . Expanding in the basis e, X =
∑

i xiei =
∑

i xiPθei

with random variables x1, . . . , xd and (Ce)ij = E {xixj}. It follows that:

Rm[ei, ej ] = E
{〈
R̄(X,Pθei)Pθej , X

〉
θ

}
(39)

=
∑
k,`

〈
R̄(Pθek, Pθei)Pθej , Pθe`

〉
θ

(Ce)k`. (40)

From there, we introduce the following linear map:

Rm : Rd×d → Rd×d : M 7→ Rm(M), with

(Rm(M))ij =
∑
k,`

〈
R̄(Pθek, Pθei)Pθej , Pθe`

〉
θ
Mk`. (41)

Riemannian curvature is often specified by a formula for
〈
R̄(u, v)v, u

〉
. Hence the standard polarization

identity for symmetric bilinear forms may be useful to compute Rm:

4Rm[ei, ej ] = Rm[ei + ej , ei + ej ]−Rm[ei − ej , ei − ej ]. (42)

We use the linear maps Rm and R̄m in the following theorem:
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Theorem 4 (CRB on submanifolds, with curvature). (Continued from Theorem 2). Including terms due

to the possible curvature of P̄ , at large SNR, the covariance matrix Ce (5) of any unbiased estimator

θ̂ : M → P̄ and the Fisher information matrix Fe (3) w.r.t. the orthonormal basis e of TθP obey the

following matrix inequality (assuming rank(PeFePe) = d̄):

Ce � F̃ †e −
1

3

(
Rm(F̃ †e )F̃ †e + F̃ †eRm(F̃ †e )

)
, (43)

where F̃e = PeFePe and Rm : Rd×d → Rd×d is as defined by (41).

Proof: We start from the CRB w.r.t. the basis ē (37):

Cē � F̄−1
ē − 1

3

(
R̄m(F̄−1

ē )F̄−1
ē + F̄−1

ē R̄m(F̄−1
ē )
)
. (44)

By expanding the projections Pθei =
∑

j 〈ēj , ei〉 ēj =
∑

j Ejiēj and exploiting the linearity of
〈
R̄(u, v)w, z

〉
θ

in its four arguments, the matrix relation below comes forth:

∀M ∈ Rd×d, Rm(M) = E>R̄m(EME>)E. (45)

From the proof of Theorem 2, recall that Cē = ECeE
> and F̄−1

ē = E(PeFePe)
†E>. The relation (45)

yields R̄m(F̄−1
ē ) = ERm((PeFePe)

†)E>. Substituting in the CRB gives:

ECeE
>� E

(
F̃ †e −

1

3

(
Rm(F̃ †e )F̃ †e + F̃ †eRm(F̃ †e )

))
E>,

where we used the fact that Rm(M)Pe = PeRm(M) = Rm(M), which is easily established from (45).

Lemma 1 applies and concludes the proof, since Pe(PeFePe)†Pe = (PeFePe)
†.

B. Curvature terms for quotient manifolds

We follow the same line of thought as for submanifolds. The random error vector X , Log[θ]([θ̂])

expands in the basis ē as X =
∑

i x̄iēi, with x̄1, . . . , x̄d̄ random variables and (Cē)ij = E {x̄ix̄j}. Let R̄

be the Riemannian curvature tensor of P̄ . We consider R̄m : T[θ]P̄ × T[θ]P̄ → R defined by:

R̄m[ēi, ēj ] = E
{〈
R̄(X, ēi)ēj , X

〉
[θ]

}
(46)

=
∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
[θ]

(Cē)k`. (47)

A linear map on d̄× d̄ matrices follows:

R̄m : Rd̄×d̄ → Rd̄×d̄ : M 7→ R̄m(M), with

(R̄m(M))ij =
∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
[θ]
Mk`. (48)
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Again, at large SNR, the CRB (37) holds. To express it only referencing the basis e, we introduce the

following symmetric 2-form:

Rm[ei, ej ] , R̄m [Dπ(θ)[ei],Dπ(θ)[ej ]] . (49)

Let ξ = (Dπ(θ)|Hθ)−1[X] be the unique horizontal vector such that Dπ(θ)[ξ] = X . Expanding ξ in the

basis e as ξ =
∑

i xiei, we find X =
∑

i xiDπ(θ)[ei] with random variables x1, . . . , xd and (Ce)ij =

E {xixj}. It follows that:

Rm[ei, ej ] =
∑
k,`

〈
R̄ (Dπ(θ)[ek],Dπ(θ)[ei]) Dπ(θ)[ej ],Dπ(θ)[e`]

〉
[θ]

(Ce)k`.

From there, we introduce the following linear map:

Rm : Rd×d → Rd×d : M 7→ Rm(M), with (50)

(Rm(M))ij =
∑
k,`

〈
R̄(Dπ(θ)[ek],Dπ(θ)[ei])Dπ(θ)[ej ],Dπ(θ)[e`]

〉
[θ]
Mk`.

Theorem 5 (CRB on quotient manifolds, with curvature). (Continued from Theorem 3). Including terms

due to the possible curvature of P̄ , at large SNR, the covariance matrix Ce (20) of any unbiased estimator

θ̂ : M → P̄ and the Fisher information matrix Fe (3) w.r.t. the orthonormal basis e of TθP obey the

following matrix inequality (assuming rank(Fe) = d̄):

Ce � F †e −
1

3

(
Rm(F †e )F †e + F †eRm(F †e )

)
, (51)

where Rm : Rd×d → Rd×d is as defined by (50).

Proof: The proof is very similar to that of Theorem 4. We start from the CRB w.r.t. the basis ē (37).

Expanding Dπ(θ)[ei] = Dπ(θ)[PHθei] =
∑

j 〈ẽj , ei〉Dπ(θ)[ẽj ] =
∑

j Ejiēj and exploiting linearity of

〈R̄(·, ·)·, ·〉[θ] in its four arguments, relation (45) is established for the operators R̄m (48) and Rm (50)

too. From the proof of Theorem 3, recall that Cē = ECeE
> and F̄−1

ē = EF †eE>. The relation (45) yields

R̄m(F̄−1
ē ) = ERm(F †e )E>. Substituting in the CRB gives:

ECeE
>� E

(
F †e −

1

3

(
Rm(F †e )F †e + F †eRm(F †e )

))
E>,

where we used the fact that Rm(M)Pe = PeRm(M) = Rm(M), which is easily established from (45).

Lemma 1 applies and concludes the proof, since PeF
†
ePe = F †e .
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V. EXAMPLES

We take a look at two examples of the family of synchronization problems [2]. In such problems, one

considers a group G and a set of N group elements g1, . . . , gN ∈ G. The gi’s are to be estimated based

on noisy measurements of group element ratios gig
−1
j . When G has a manifold structure, that is, when it

is a Lie group, synchronization falls within the spectrum of estimation on manifolds. The first example

is synchronization on the group of translations Rn, which makes for a simple geometry and helps fix

ideas. The second example is a simplified version of synchronization on SO(3), the group of rotations in

R3. A more elaborate treatment of synchronization on SO(n) is given in [17]. Synchronization problems

illustrate how both theorems for submanifolds and quotient manifolds can apply to the same setting, with

rich interpretation.

A. Synchronization of translations

Let θ = (θ1, . . . , θN ) be a vector of N unknown but deterministic points in Rn. Those can be thought

of as positions, states, opinions, etc. of N agents. Let us consider an undirected graph on N nodes

with edge set E , such that for each edge {i, j} ∈ E we have a noisy measurement of the relative state

hij = θj − θi +nij , where the nij ∼ N (0,Σ) are i.i.d. normally distributed noise vectors. By symmetry,

hij = −hji, so nij = −nji. While it is important to assume independence of noise on distinct edges to

keep the derivation simple, it is easy to relax the assumption that they have identical distributions. We

assume identical distributions to keep notations simple.

The task is to estimate the θi’s from the hij’s, thus P = (Rn)N , and we set out to derive Cramér-Rao

bounds for this problem. An alternative way of obtaining this result can be found in [18]. Decentralized

algorithms to execute this synchronization can be found there and in [19].

The log-likelihood function L : P → R reads, with θ̂ = (θ̂1, . . . , θ̂N ) and Vi = {j : {i, j} ∈ E} the set

of neighbors of node i and dropping additive constants:

L(θ̂) =
1

2

N∑
i=1

∑
j∈Vi

−1

2
(hij − θ̂j + θ̂i)

>Σ−1(hij − θ̂j + θ̂i).

In order to compute the Fisher information matrix for this problem, we need to pick an orthonormal

basis of TθP ≡ P . We choose the basis such that the first n vectors correspond to the canonical basis

for the first copy of Rn in P , the next n vectors correspond to the canonical basis for the second copy

of Rn in P , etc., totaling nN orthonormal basis vectors. The gradient of L(θ̂) w.r.t. θ̂i in this basis is
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the following vector in Rn:

gradiL(θ̂) =
∑
j∈Vi

Σ−1(hij − θ̂j + θ̂i). (52)

Hence, gradiL(θ) =
∑

j∈Vi Σ−1nij . The FIM F (3) is formed of N ×N blocks of size n× n. Due to

independence of the nij’s and nij = −nji,

E
{

(Σ−1nij)(Σ
−1nk`)

>
}

= Σ−1E
{
nijn

>
k

}̀
Σ−1 =


Σ−1 if (i, j) = (k, `),

−Σ−1 if (i, j) = (`, k),

0 otherwise.

(53)

Hence, the (i, j)th block of the FIM is given by:

Fij = E
{

gradiL(θ) · gradjL(θ)>
}

=


|Vi|Σ−1 if i = j,

−Σ−1 if {i, j} ∈ E ,

0 otherwise.

(54)

The structure of the graph Laplacian is apparent. Let D = diag(|V1|, . . . , |VN |) be the degree matrix and

let A be the adjacency matrix of the measurement graph. The Laplacian L = D −A is tied to the FIM

via:

F = L ⊗ Σ−1, (55)

where ⊗ denotes the Kronecker product.

Of course, since we only have relative measurements, we can only hope to recover the θi’s up to a

global translation. And indeed, for every translation vector t ∈ Rn, we have L(θ̂) = L(θ̂ + t), where

θ̂ + t , (θ̂1 + t, . . . , θ̂N + t). That is, all θ̂ + t induce the same distribution of the measurements hij ,

and are thus indistinguishable. This is the root of the rank deficiency of the FIM. Surely, if the graph is

connected, the all-ones vector 1N forms a basis of kerL. Consequently, kerF consists of all vectors of

the form 1N ⊗ t, with arbitrary t ∈ Rn. Naturally, these correspond to global translations by t.

To resolve this ambiguity, we can either add constraints, most naturally in the form of anchors, or

work on the quotient space.

a) With anchors: Let us consider A ⊂ {1, . . . , N}, A 6= ∅, such that all θi with i ∈ A are known;

these are anchors. The resulting parameter space P̄ = {θ̂ ∈ P : θ̂i = θi ∀i ∈ A} is a Riemannian

submanifold of P . The orthogonal projector from TθP to TθP̄ simply sets all components of a tangent

vector corresponding to anchored nodes to zero. Formally, P = IA ⊗ In, where IA is a diagonal matrix
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of size N whose ith diagonal entry is 1 if i /∈ A and 0 otherwise. It follows that PFP = IALIA⊗Σ−1 =

LA ⊗ Σ−1, with the obvious definition for LA: the Laplacian with rows and columns corresponding to

anchored nodes forced to zero. P̄ is Euclidean, hence it is flat and its curvature tensor vanishes identically.

Theorem 2 yields the anchored CRB for the covariance matrix C of an unbiased estimator on P̄:

E
{

(θ̂ − θ)(θ̂ − θ)>
}
, C � L†A ⊗ Σ. (56)

We used the fact that Kronecker product and pseudoinversion commute [20, Fact 7.4.32]. This bound is

easily interpreted in terms of individual nodes. Indeed, by definition, inequality (56) means that for all

x ∈ RnN , x>Cx ≥ x>(L†A⊗Σ)x. In particular, setting x = ei⊗ ek with ei the ith canonical basis vector

of RN and ek the kth canonical basis vector of Rn, we have:

E
{

(θ̂i − θi)2
k

}
≥ (L†A)ii · Σkk. (57)

Summing over k = 1 . . . n, this translates into a lower bound on the variance for estimating the state of

node i:

E
{
‖θ̂i − θi‖2

}
≥ (L†A)ii · trace(Σ). (58)

This puts forward the importance of the diagonal of L†A, which captures the topology of the measurement

graph and the anchor placement. Taking traces on both sides of (56), we obtain an inequality for the

total variance:

E
{

dist2(θ̂,θ)
}

= E
{ N∑
i=1

‖θ̂i − θi‖2
}
≥ trace(L†A)trace(Σ).

Notice that it would have been simple to pick a new basis for TθP̄ , but this would have required a

renumbering of the rows and columns of the matrices appearing in the CRB. If the ambiguities are fixed

not by adding anchors but, more generally, by adding one or more (for example) linear constraints of the

form a1θ1 + · · ·+ aNθN = b, it becomes less obvious how to pick a meaningful basis for TθP̄ without

breaking symmetry. In comparison, the projection method used here will apply gracefully, preserving

symmetry and row/column ordering in the CRB matrices.

b) Without anchors: If there are no anchors, perhaps because there is no meaningful reference to

begin with, we work on the quotient space P̄ = P/∼, where θ ∼ θ′ iff there exists a translation vector

t ∈ Rn such that θ = θ′ + t. The distance between the equivalence classes [θ] and [θ′] on P̄ is the

distance between their best aligned members, that is:

dist2([θ], [θ′]) = min
t∈Rn

N∑
i=1

‖θi + t− θ′i‖2. (59)
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The optimal t is easily seen to be t = 1
N

∑N
i=1 θ

′
i − θi, which amounts to aligning the centers of mass

of θ and θ′. Consequently, if we denote by θc the centered version of θ—i.e., θ translated such that its

center of mass is at the origin—we find that:

dist2([θ], [θ′]) = dist2(θc,θ
′
c) =

N∑
i=1

‖θc,i − θ′c,i‖2. (60)

It follows that dist2([θ], [θ′]) = dist2(θc,θ
′
c), hence the mapping [θ] 7→ θc is an isometry between

P̄ and a Euclidean space. We thus conclude that P̄ is a flat manifold and that its curvature tensor

vanishes identically [15, Chap. 7]. Theorem 3 and the fact that Kronecker product and pseudoinversion

commute [20, Fact 7.4.32] then yield:

E
{

(θ̂c − θc)(θ̂c − θc)
>
}
, C � L† ⊗ Σ, and (61)

E
{ N∑
i=1

‖θ̂c,i − θc,i‖2
}
≥ trace(L†)trace(Σ). (62)

We now interpret the CRB (61). Because of the ambiguity in the anchor-free scenario, it does not

make much sense to ask what the variance for estimating a specific state is going to be. Rather, one

should establish bounds for the variance on estimating the relative state between two nodes, i and j. Let

x = (ei− ej)⊗ ek with ei, ej the ith and jth canonical basis vectors of RN and ek the kth canonical basis

vector of Rn. Notice that x is a horizontal vector (its components sum to zero). Applying x>· x on both

sides of (61) yields:

E
{(

(θ̂i − θ̂j)− (θi − θj)
)2
k

}
≥ (ei − ej)>L†(ei − ej) · Σkk.

Notice that there is no need to center θ̂ nor θ anymore, since the quantities involved are relative states.

Summing over k = 1 . . . n gives a lower-bound on the variance for estimating the relative state between

node i and node j:

E
{∥∥(θ̂i − θ̂j)− (θi − θj)

∥∥2
}
≥ (ei − ej)>L†(ei − ej) · trace(Σ). (63)

A nice interpretation is now possible. Indeed, the quantity (ei−ej)>L†(ei−ej) is well-known to correspond

to the Euclidean commute time distance (ECTD) between nodes i and j [21]. It is small if many short

paths connect the two nodes and if those paths have edges with large weights which, in our case, means

measurements of high quality. Furthermore, the authors of [21] show how one can produce an embedding

of the nodes in, say, the plane such that two nodes are close-by if the ECTD separating them is small.

This is done via a projection akin to PCA and is an interesting visualization tool as it leads to a plot of

the graph such that easily synchronizable nodes are clustered together.
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Notice that the bound without anchors has a very different interpretation than that of the bound one

would obtain by artificially fixing an arbitrary node. Notice also that, since we did not need to switch to

a different basis to obtain the bounds, regardless of which anchors we did or did not choose, it is always

the same rows and columns of the matrices in the CRB’s that refer to a specific node, which is rather

convenient.

The maximum-likelihood estimator in the absence of anchors is easily obtained as the minimum-norm

solution to the problem maxL(θ̂) (which is concave, quadratic). This estimator is centered and we

state without proof that it is efficient, i.e., its covariance is exactly L† ⊗ Σ. In the anchored case, the

maximum-likelihood estimator is conveniently obtained via quadratic programming.

For the sake of simplicity, we considered a connected graph. In general, the graph might be discon-

nected, and there would then be more ambiguity. It is obvious that, in general, there is an Rn ambiguity

for each connected component that does not include an anchor. The CRB’s presented here can easily be

derived to take care of this more general situation: one simply needs to redefine the equivalence relation

∼ accordingly. This in turn leads to a new quotient space with an appropriate notion of distance and

covariance. The theorems established in this paper apply seamlessly to this more general scenario.

B. Synchronization of rotations

We now consider a second example, closely related to the first one. Let SO(3) = {R ∈ R3×3 :

R>R = I3, det(R) = 1} denote the set of rotation matrices in R3. Let R = (R1, . . . , RN ) denote a set

of unknown but deterministic rotations: those are the parameters. The natural parameter space is thus

P = SO(3)N . Consider an undirected graph on N nodes with edge set E as in the previous example.

For each edge {i, j} ∈ E , i < j, we are given a measurement of the relative rotation between Ri and

Rj :

Hij = RiR
>
j + σNij , (64)

where σ > 0 and Nij is a 3×3 matrix whose entries are i.i.d. sampled from N (0, 1). Let us also assume

that the Nij’s are independent from each other. The proposed noise model could be disputed. Indeed,

measurements of relative rotations should be rotation matrices too. In contrast, in the proposed model,

the Hij’s are arbitrary 3 × 3 matrices. We conduct the calculations with this noise model here for it

admits a concise exposition. A more compelling model is considered in [17].

The task is to estimate the rotations (Ri)i=1,...,N from the measurements (Hij){i<j}∈E . We expect

a singular FIM since the measurements only convey information about relative rotations, not absolute

January 8, 2013 DRAFT



23

rotations. Indeed, all sets of rotations of the form RQ , (R1Q, . . . , RNQ) for arbitrary Q ∈ SO(3) lead

to the same probability distribution function for the measurements.

We will need a few tools to work on SO(3), see [22]. The tangent space at R ∈ SO(3) is the set

TRSO(3) = {RΩ : Ω ∈ so(3)}, where so(3) = {Ω ∈ R3×3 : Ω>= −Ω} is the set of skew-symmetric

matrices. It is endowed with the usual metric 〈RΩ, RΩ′〉R = trace(Ω>Ω′), turning it into a Riemannian

submanifold of R3×3. The logarithmic map between two rotation matrices R and R′ is given by the

matrix logarithm log : SO(3) → so(3) as LogR(R′) = R log(R>R′). The Riemannian distance follows

as

dist(R,R′) =
∥∥∥log(R>R′)

∥∥∥
F

=
√

2α, (65)

where α ∈ [0, π] is the angle by which the aligning rotation R>R′ rotates and ‖·‖F denotes the Frobenius

norm: ‖A‖2F = trace(A>A). By element-wise extension, the tangent space to P at R is TRP =

{RΩ , (R1Ω1, . . . , RNΩN ) : Ω = (Ω1, . . . ,ΩN ) ∈ so(3)N}. The inner product is 〈RΩ,RΩ′〉R =∑N
i=1 trace(Ω>i Ω′i).

The probability distribution function of the random matrix σNij = Hij − RiR
>
j is proportional to

exp(−‖Nij‖2F /(2σ
2)). Hence, up to unimportant additive constants, the log-likelihood function at R̂ =

(R̂1, . . . , R̂N ) ∈ P is:

L(R̂) = − 1

2σ2

∑
{i<j}∈E

∥∥∥Hij − R̂iR̂>j
∥∥∥2

F
. (66)

It is easy to compute the directional derivative of the log-likelihood at R along the tangent vector RΩ:

DL(R)[RΩ] =
1

σ

∑
{i<j}∈E

〈
Nij , Ri(Ωi − Ωj)R

>
j

〉
F
. (67)

Hence, using independence of the entries of the Nij’s and the fact that the Nij’s have zero-mean, the

Fisher information metric at R is given by:

F(R)[RΩ,RΩ] = E
{

(DL(R)[RΩ])2
}

=
1

σ2

∑
{i<j}∈E

E
{〈

Nij , Ri(Ωi − Ωj)R
>
j

〉2

F

}

=
1

σ2

∑
{i<j}∈E

∥∥∥Ri(Ωi − Ωj)R
>
j

∥∥∥2

F

=
1

σ2

∑
{i<j}∈E

‖Ωi − Ωj‖2F . (68)
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The FIM is thus independent of the true rotations R. From now on, we will write F instead of F(R).

To represent F as a matrix, we need to pick an orthonormal basis of TRP . Let E1, E2, E3 form an

orthonormal basis of so(3). This choice leads to an orthonormal basis for the tangent space TRP:

(eik)i=1,...,N,k=1,...,3 (69)

with eik = (0, . . . , 0, RiEk, 0, . . . , 0) a zero vector except for the ith component equal to RiEk. The matrix

F which represents the quadratic form F w.r.t. this basis is a 3N × 3N symmetric matrix composed of

3× 3 blocks. Fij,k` refers to the (k, `) entry in the (i, j) block. The value of this entry,

Fij,k` = F[eik, ej`], (70)

is best obtained via the polarization identity (42) applied to equation (68). For example, let us consider

{i < j} ∈ E and k, ` ∈ {1, 2, 3}. Polarization yields:

Fij,k` =
1

4σ2

(
‖Ek − E`‖2F − ‖Ek + E`‖2F

)
. (71)

For k = `, this evaluates to −1/σ2. For k 6= `, this evaluates to zero. Hence, the (i, j) block of F is

(−1/σ2)I3 if i and j are adjacent nodes. Similar algebra establishes that if nodes i and j are not adjacent,

the corresponding block is zero. Similarly, the ith diagonal block of F has the form (|Vi|/σ2)I3, where

|Vi| is the degree of node i. We thus obtain the same Laplacian structure as in the first example:

F =
1

σ2
(L ⊗ I3). (72)

F is indeed rank-deficient. As in the previous example, for connected graphs, we have kerF = {1N ⊗ t :

t ∈ R3}. These vectors correspond to the rotation of all Ri’s in the same direction, which indeed leaves

relative rotations unaffected.

c) With anchors: Let us consider A ⊂ {1, . . . , N}, A 6= ∅, such that all Ri with i ∈ A are known;

these are anchors. The resulting parameter space P̄ = {R̂ ∈ P : R̂i = Ri ∀i ∈ A} is a Riemannian

submanifold of P .

Let R̂ be an unbiased estimator for the anchored problem. As defined by equation (5), the covariance

matrix of that estimator w.r.t. the basis of eik’s is a 3N × 3N matrix with blocks of size 3× 3. Indexing

entry (k, `) in the block (i, j) as Cij,k`, we have by definition:

Cij,k` = E
{
〈X, eik〉R 〈X, ej`〉R

}
, (73)

where X = LogR(R̂) =
(

LogR1
(R̂1), . . . ,LogRN (R̂N )

)
is the (random) error vector. In particular, the

trace of C is the expected squared norm of X , that is, the expected squared distance between the true

rotations R and the estimator R̂.

January 8, 2013 DRAFT



25

The orthogonal projector from TRP to TRP̄ sets all components of a tangent vector corresponding to

anchored nodes to zero. Hence, as in the previous example, we define LA to be the Laplacian with rows

and columns corresponding to anchored nodes forced to zero. Theorem 2 yields the anchored CRB:

C � σ2L†A ⊗ I3 + curvature terms. (74)

This bound lends itself to a similar interpretation as in the previous example.

At large SNR, we expect the curvature terms to become negligible. Unfortunately, invoking the

simple argument (32) is not sufficient. Indeed, SO(3) has constant sectional curvature of 1/8. Hence,

a (tight) upperbound on the absolute value of the sectional curvatures of P̄ is Kmax = 1/8. Requiring

dist(R, R̂) �
√

8 is too restrictive when a large number N of rotations have to be estimated. In [17],

the curvature terms for P̄ are derived and it is shown that

Rm(σ2L†A ⊗ I3) =
3σ2

4
ddiag(L†A)⊗ I3, (75)

where ddiag puts all off-diagonal entries of a matrix to zero. Hence, Theorem 4 yields the following

CRB:

C � σ2L†A ⊗ I3 +
3σ4

4

(
ddiag(L†A)L†A + L†Addiag(L†A)

)
⊗ I3. (76)

As expected, for large SNR, that is, for small σ2, the curvature terms are negligible.

Taking traces on both sides of (74), we obtain an inequality for the total variance (neglecting curvature):

E
{

dist2(R̂,R)
}

= E
{ N∑
i=1

dist2(R̂i, Ri)
}
≥ 3σ2trace(L†A).

d) Without anchors: If there are no anchors, we work on the quotient space P̄ = P/∼, where

R ∼ R′ iff there exists a rotation Q ∈ SO(3) such that R′ = RQ , (R1Q, . . . , RNQ). The distance

between the equivalence classes [R] and [R′] on P̄ is the distance between their best aligned members:

dist2([R], [R′]) = min
Q∈SO(3)

dist2(RQ,R′) = min
Q∈SO(3)

N∑
i=1

∥∥∥log(Q>R>iR
′
i)
∥∥∥2

F
. (77)

This is well defined since SO(3) is compact. Computing the optimal Q amounts to computing a Karcher

mean on SO(3), a problem for which good algorithms are available [23], [24].

A simple application of Theorem 3 then yields the following bound on the variance of an unbiased

estimator R̂ for the anchor-free synchronization problem:

E
{

dist2([R], [R̂])
}
≥ 3σ2trace(L†) + curvature terms.
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A more complete study of the anchor-free case is conducted in [17]. Among other things, it is shown

there that the curvature terms for the quotient space P̄ are on the order of O(σ4(1 + 1/N)). Hence, they

remain negligible for large SNR, as expected.

VI. CONCLUSIONS

We proposed four theorems that are meant to ease the use of the intrinsic Cramér-Rao bounds developed

in [3] when the actual parameter space is a Riemannian submanifold or a Riemannian quotient manifold

of a (usually more natural) parent space. We showed on two simple examples how these theorems

provide meaningful bounds for estimation problems with indeterminacies, whether these are dealt with

by including prior knowledge in the form of constraints or by acknowledging the quotient nature of

the parameter space. We also observed on these same examples that fixing indeterminacies by adding

constraints results in different CRB’s than if the quotient nature is acknowledged.
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APPENDIX

In this appendix, we give an informal and fast-paced review of the elementary tools of differential

geometry used in the present paper. A number of standard textbooks cover all the necessary concepts [13],

[16], [25]. The monograph [14] features an algorithmically-oriented introduction to differential geometry

and is available for free on the publisher’s website. The footnotes in [3] can also constitute a refresher.

A smooth manifold is a set P that locally “looks like” Rd, that is, P can locally be charted by a

choice of smooth coordinates (x1, . . . , xd), xi : Ω ⊂ P → R, up to some natural consistency conditions

for charts with overlapping domains. A trivial example is Rd itself. A simple example is the sphere

S2 = {θ ∈ R3 : θ>θ = 1}. Locally, S2 can be mapped to an open set of R2 in a smooth way. The

dimension of the manifold is the number of coordinates required: dimP = d. A curve on P , c : R→ P ,

is smooth if it is smooth when expressed in the charts.

There exist many different manifolds of practical interest for signal processing applications. We cite

just a few. The (compact) Stiefel manifold St(n, p) is the set of n×p orthonormal matrices [14]. Special
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cases include the sphere Sn−1 (p = 1) and the orthogonal group O(n) (p = n). The Grassmann manifold

Gr(n, p) is the set of vector subspaces of dimension p embedded in Rn [14]. The special orthogonal

group SO(n) is the set of n × n orthogonal matrices with determinant 1, which corresponds to the set

of rotations in Rn [22].

At each point θ ∈ P , a tangent space TθP is defined, which is a vector space of dimension d. For

embedded manifolds such as S2, the tangent spaces correspond to the usual concept of tangent planes to

S2 in R3: TθS2 = {u ∈ R3 : θ>u = 0}. In a more general setting, it is desirable to define TθP without

referencing an embedding space. This is done by considering smooth curves on P that pass through θ

and grouping the curves that do so with the same “velocity” (derivative as expressed in the charts) into

an equivalence class, which is then called a tangent vector.

Let L : P → R be a smooth scalar field over P . The directional derivative of L at θ along a tangent

vector u is defined by DL(θ)[u] = (L ◦ c)′(0), the derivative of L ◦ c : R→ R at t = 0, where ◦ denotes

function composition and c : R→ P is a smooth curve passing through θ at t = 0 with velocity u. For

the sphere for example, this correspondence amounts to c′(0) = u, where c is seen as a function from

R to R3. If L is smoothly defined in an open neighborhood of S2 in R3, this reduces to a classical

derivative: DL(θ)[u] = limt→0(L(θ + tu)− L(θ))/t.

Each tangent space may be endowed with a metric (an inner product) 〈·, ·〉θ : TθP × TθP → R. The

associated norm is defined by ‖u‖2θ = 〈u, u〉θ. When this metric varies continuously as a function of θ, P

is a Riemannian manifold. The gradient of a scalar field L at θ, noted gradL(θ), gives the steepest-ascent

direction of L at θ. By definition, it is the unique tangent vector that satisfies the following:

∀u ∈ TθP, 〈gradL(θ), u〉θ = DL(θ)[u]. (78)

Notice that, while the notion of directional derivative does not depend on a particular choice of metric,

the notion of gradient does.

A curve γ : I ⊂ R → P is a geodesic if it has zero acceleration. A proper definition of acceleration

along a curve requires the concept of affine connection ∇, which we omit here. For each θ ∈ P and

u ∈ TθP , there exists a unique geodesic γu such that γu(0) = θ and γ′u(0) = u. The exponential map at

θ is the mapping Expθ : TθP → P defined by Expθ(u) = γu(1). The logarithmic map is the principal

inverse of the exponential map, Logθ : P → TθP , that is, u = Logθ(θ
′) is the shortest tangent vector

such that Expθ(u) = θ′. The notions of geodesic, exponential map and logarithmic map are usually only

defined locally. For P = Rd with the usual metric 〈u, v〉θ = trace(u>v), geodesics are straight lines,

Expθ(u) = θ + u and Logθ(θ
′) = θ′ − θ. On the sphere S2, geodesics are great circles, such as the
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equator. The Riemannian distance or geodesic distance between two points θ, θ′ ∈ P , is the length of

the shortest geodesic arc connecting the two points: dist(θ, θ′) = ‖Logθ(θ
′)‖θ. On the unit sphere, the

Riemannian distance is the arc length, or angle in radians, separating two points.

A flat manifold is a manifold that is locally isometric to a Euclidean space Rd. For example, any

one-dimensional smooth manifold is flat. Think of the circle S1 = {θ ∈ R2 : θ>θ = 1} as a Riemannian

submanifold of R2 with its usual metric: it is always possible to cut out a bit of S1 and straighten it

without distorting distances. Similarly, the torus S1 × S1 is flat, being the product of two circles. This

example may contrast with our intuition if we think of the torus as an embedded manifold of R3: their

topologies are the same, but their Riemannian structures are not. On the other hand, the sphere S2 is

not flat: attempting to flatten an orange peel will necessarily result in tearing, stretching or compression.

Given two tangent vectors u, v ∈ TθP (not co-linear), the sectional curvature K(u, v) is a real number

that measures the curvature of P along the 2-dimensional subspace of TθP spanned by u and v. For

example, on S2, all sectional curvatures are equal to 1. The Riemannian curvature tensor R is another (but

equivalent) means of quantifying the “non-flatness” of a manifold. It is related to the sectional curvatures

via K(u, v) = 〈R(u, v)v, u〉θ /(‖u‖2θ‖v‖2θ − 〈u, v〉
2
θ). For flat manifolds, curvature is zero.

Let P be a Riemannian manifold and let P̄ be a submanifold of P , i.e., P̄ is embedded in P , like the

sphere is embedded in 3-space. The tangent space TθP̄ is a vector subspace of TθP . P̄ is turned into a

Riemannian submanifold of P by giving it a Riemannian metric that is the restriction of the Riemannian

metric of P . For example, the classical metric on R3 is 〈u, v〉 = u>v. By defining 〈u, v〉θ = u>v on

TθS2, we equip S2 with a Riemannian submanifold structure. The orthogonal projector from TθP to

TθP̄ is noted Pθ. For the sphere, it is given by Pθu = (I − θθ>)u.

Let P be a Riemannian manifold and let ∼ be an equivalence relation on P . Let [θ] = {θ′ ∈ P : θ′ ∼ θ}

be the equivalence class of θ and let P̄ = {[θ] : θ ∈ P} be the set of equivalence classes. Let us further

assume that P̄ is a smooth manifold, i.e., it can be smoothly charted. Then, the projection π : P → P̄

is a submersion if its differential at θ, Dπ(θ) : TθP → T[θ]P̄ , is a surjective map for all θ. In that

case, P̄ = P/∼ is a quotient manifold, because we “quotient out” the equivalence relation from P .

The equivalence classes π(θ) are termed the fibers; they are Riemannian submanifolds of P . As such,

they admit tangent spaces, called the vertical spaces: Vθ = Tθπ(θ) = ker Dπ(θ). The vertical space is

a vector subspace of TθP . The orthogonal complement to Vθ in TθP is called the horizontal space,

Hθ = {u ∈ TθP : 〈u, v〉θ = 0∀v ∈ Vθ}. If furthermore P̄ is endowed with a Riemannian metric and
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Dπ(θ) restricted to Hθ is an isometry, in the sense that

∀θ ∈ P,∀u, v ∈ Hθ, 〈Dπ(θ)[u],Dπ(θ)[v]〉[θ] = 〈u, v〉θ ,

then π is a Riemannian submersion and P̄ is a Riemannian quotient manifold of P . Being an isometry,

Dπ(θ) establishes a natural correspondence between the abstract tangent vectors in T[θ]P̄ and the often

more concrete horizontal vectors. The horizontal lift of a tangent vector X ∈ T[θ]P̄ to Hθ is the unique

horizontal vector ξ ∈ Hθ that verifies Dπ(θ)[ξ] = X . The definition of Riemannian submersion ensures

that this is well-defined. The orthogonal projector from the total tangent space TθP to Hθ is here noted

PHθ.
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