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nonconvex just means not convex.




nonconvex just means not convex.




“Using a term like nonlinear science is like referring to the
bulk of zoology as the study of non-elephant animals.”

—Stanistaw Ulam



Pockets of

: Ju Sun’s list

sunju.org/research /nonconvex, ~900 papers in March 2021; categories:

Matrix Completion/Sensing

Tensor Recovery/Decomposition &
Hidden Variable Models

Phase Retrieval

Dictionary Learning

Deep Learning

Sparse Vectors in Linear Subspaces

Nonnegative /Sparse
Principal Component Analysis

Mixed Linear Regression
Blind Deconvolution/Calibration
Super Resolution

Synchronization Problems
Community Detection

Joint Alignment
Numerical Linear Algebra
Bayesian Inference

Empirical Risk Minimization &
Shallow Networks

System Identification

Burer-Monteiro Style Decomposition Algorithms
Generic Structured Problems

Nonconvex Feasibility Problems

Separable Nonnegative Factorization (NMF)


https://sunju.org/research/nonconvex

Good things happen it's hard to tell

In an intro course to optimization, we learn how to spot convexity.

In contrast, for nonconvex problems, analyses are

E.g., some have
gradf (x) = 0,Hessf(x) > 0 = x optimal

Proofs are often a whole paper...

[t would be nice to have more to make proofs easier to build.



Tools to study nonconvex landscapes?

Example 1: Shallow linear networks

min ||W,W,A — B||3

W1,W>
Example 2: Rayleigh quotient
(>
miny'Ay subject to =1 =
liny " Ay j 1571 N
These problems are known to be benign ( ).
Could we rediscover that by combining 1 B V\(’ict:ltech) .

(UT Austin)



Example 1: Shallow linear networks

g
min ” A — 3”12? {(Wl; Wz)}
W1,W>
g=rfeo
Nonconvex due to product W, ;. @

Factor g through (W, W;) = W,W;: {)"( }
f

min|| A — B”lz;- Key facts:
X f is convex, so: critical = optimal
f @ maps 2" order critical points to critical points

Baldi & Hornik 1989, Neural Networks and Principal Component Analysis: Learning from Examples Without Local Minima
Lu and Kawaguchi 2017, Depth Creates No Bad Local Minima 14
Ha, Liu & Barber 2020, An Equivalence between Critical Points for Rank Constraints Versus Low-Rank Factorizations



Example 2: Rayleigh quotient =
g Y24k y2 =1 \<((ﬁ

min y'Ay s.t. |yl =1 Sphere
yeRM
We only know D, V' exist!
We A = VDVT with 0 g=feco

D = diag(44, ..., 4,) and V orthogonal. So:

9 =yTAy=(VTy) D(VTy) = L a(VTy);

A\ 4

Thus, g(y) = f(¢(y)) where Slmplex f *R
X1+ +x, =1
QZ X 2 0) '")x 2 O
f(x) =Y 4x and o(y) = (VTy) 1 n
Key facts:
Notice: ¢ = (entrywise squaring) o (rotation) f and simplex are convex, so critical = optimal

@ maps 2" order critical points to critical points

Leake & Vishnoi 2021, Optimization and Sampling Under Continuous Symmetry: Examples and Lie Theory
Li, McKenzie & Yin 2021, From the simplex to the sphere: Faster constrained optimization using the Hadamard parametrization



General view: problems paired via a lift ¢

. . v
min 9g(y) min f (x)
How do their landscapes compare? 0 g=Jeo
E.g,ifyisa for glur,
isp(y) a for fx? Y
f
Answer: yes if and only if ¢ is at y.

Example: Y » YYT is open everywhere, but (L,R) » LR is not.



General view: problems paired via a lift ¢

. . Y
min 9g(y) min f (x)
How do their landscapes compare? o g=reg
E.g. if yis for glar,
is p(y) for flx? 4
f
Answer: yes iff image(Dcp(y)) = tangent cone T, X.

Rarely true! In particular, requires tangent cones to be linear.



General view: problems paired via a lift ¢

. . Y
min 9g(y) min f (x)
How do their landscapes compare? o g=reg
E.g. if yis for gl
is () for flx?
f
Answer: yes iff [see paper for characterization].

Frequent: Y = YYT, (L,R) » LR, other low-rank lifts, y = y©?, ...



General view: problems paired via a lift ¢

min 9(y) min f (x) M
How do their landscapes compare? 0
E.g., if y is for glur,

is p(y) a forfla?  x
Key insight:

The relations are largely dictated by ¢,
independently of cost functions.
Thus,

feo




X =900 local=local -

Manifold Submanifold Submersion

Sphere Simplex x - x92 (Hadamard) v (p‘l(interior) v
(Sphere in R™)™ Stochastic matrices Hadamard on each col or row v ¢ ~1(interior) v
Sphere in R**1 Ball in R" Coordinate projection v @~ I(interior) V
Torus in R**1 Annulus in R See paper v @~ I(interior) V
dq(YYT) = b, smooth X>0,AX)=b Y o YYT (Burer-Monteiro) v Y full rank v
(L,R) in R™" x R™"  rank(X) <r (L,R) » LRT balanced* L,Rfullrank v

mXxn
fi(iri§= nff ker X, rank(X) <r (X,8) » X (desingularization) rank(X) =r rank(X)=r v
Linear space of factors CP, TT, Tucker, ...
M
g=feoo
P
* \ 4
balanced means x "R

© LIFTS EVERYWHERE! rank(L) = rank(R) = rank(LR") oo




More in our paper

The effect of smooth parametrizations
on nonconvex optimization landscapes

with and
arxiv.org/abs/2207.03512

Blog: racetothebottom.xyz

Some future directions:

- Explore new lifts

- Study compositionality

- Apply to new landscapes

- Explore other properties
E.g,local > 1

- Prove no good lift exists for X’


https://arxiv.org/abs/2207.03512
https://www.racetothebottom.xyz/

Details in December 2023
blog posts: racetothebottom.xyz

Example 1°: linear networks

g
R Xn X RmX
min [ A — Bl
Wi R X W, eRMX
0 g=feo
Nonconvex due to product W, ;.
Factor g through (W, Wy) = WoWs:  (X: rank(X) < 1} R

7

Key facts (see blog; A full row rank):

XeRmmrlnln |XA—B ”121‘ rank(X) < r and 1-critical = optimal
’ rank(X) = r and 2-critical = optimal
f @ maps 2-critical points to 1-critical points
Baldi & Hornik 1989, Neural Networks and Principal Component Analysis @ maps 2-critical points of rank r to 2-critical points

Lu and Kawaguchi 2017, Depth Creates No Bad Local Minima
Ha, Liu & Barber 2020, An Equivalence between Critical Points for Rank Constraints Versus Low-Rank Factorizations


https://www.racetothebottom.xyz/

Lift properties are fairly independent

b4

=

1=1 X
Xﬂ( s

local = local

Remark 2.13 (Relations between lift properties). Aside from Proposition 2.12, the only relation
between the three properties in Definition 2.2 is that “1 = 17 at y implies “2 = 17 at y (since
2-critical points are 1-critical). None of the other possible implications hold in general: The desin-
gularization lift (Desing) shows that “2 = 1" at y implies neither “I = 1”7 nor “local = local” at y
in general. The example ¢(x) = z° viewed as a lift from M =R to X = R satisfies “local = local”
at the origin but neither “2 = 17 nor “1 = 17, hence “local = local” does not imply the other two
properties. Finally, the standard parametrization of the cochleoid curve [59] satisfies “1 = 17 but
not “local = local” at all preimages of the origin, hence “1 = 17 does not imply “local = local”.
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Upstairs—e.g., Mr/rll%lz gWy, Wy) = f(W,W;)

global min = 2-critical 1-critical

M If x is a [see rows], theny € ¢ ~1(x) is a [see cols].
& Ify € M is a [see cols], then x = @(y) is a [see rows].
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