nonconvex just means not convex

Journée SIGMA-MODE, January 30, 2024

Nicolas Boumal - chair of continuous optimization Institute of Mathematics, EPFL

$$
\ldots
$$

$\min _{x} f(x)$
 $\min _{x} f(x)$
)

$2-4=2+8=$

$-\frac{85}{2 \pi}=$

$$
2
$$

\square \therefore 3
convex

nonconvex

nonconvex just means not convex.
nonconvex just means not convex.
"Using a term like nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals."
-Stanisław Ulam

Pockets of benign non-convexity: Ju Sun’s list

sunju.org/research/nonconvex, ~ 900 papers in March 2021; categories:

Matrix Completion/Sensing

Tensor Recovery/Decomposition \& Hidden Variable Models

Phase Retrieval
Dictionary Learning
Deep Learning
Sparse Vectors in Linear Subspaces
Nonnegative/Sparse
Principal Component Analysis
Mixed Linear Regression
Blind Deconvolution/Calibration
Super Resolution

Synchronization Problems
Community Detection
Joint Alignment
Numerical Linear Algebra
Bayesian Inference
Empirical Risk Minimization \& Shallow Networks
System Identification
Burer-Monteiro Style Decomposition Algorithms
Generic Structured Problems
Nonconvex Feasibility Problems
Separable Nonnegative Factorization (NMF)

Good things happen but it's hard to tell

In an intro course to optimization, we learn how to spot convexity.
In contrast, for nonconvex problems, analyses are case-by-case.
E.g., some landscapes have strict saddles:

$$
\operatorname{grad} f(x)=0, \operatorname{Hess} f(x) \succcurlyeq 0 \Rightarrow x \text { optimal }
$$

Proofs are often a whole paper...
It would be nice to have more tools to make proofs easier to build.

Tools to study nonconvex landscapes?

Example 1: Shallow linear networks

$$
\min _{W_{1}, W_{2}}\left\|W_{2} W_{1} A-B\right\|_{\mathrm{F}}^{2}
$$

Example 2: Rayleigh quotient

$$
\min _{y} y^{\top} A y \quad \text { subject to } \quad\|y\|=1
$$

These problems are known to be benign (strict saddles).
Could we rediscover that by combining reusable facts?

Joint work with
Eitan Levin (Caltech) + Joe Kileel (UT Austin)

Example 1: Shallow linear networks

$$
\min _{W_{1}, W_{2}}\left\|W_{2} W_{1} A-B\right\|_{\mathrm{F}}^{2} \longleftarrow g
$$

Nonconvex due to product $W_{2} W_{1}$.

Factor g through $\varphi\left(W_{1}, W_{2}\right)=W_{2} W_{1}$:

$$
\min _{X}\|X A-B\|_{\mathrm{F}}^{2}
$$

Key facts:

f is convex, so: critical \Rightarrow optimal φ maps $2^{\text {nd }}$ order critical points to critical points

Example 2: Rayleigh quotient

$$
\min _{y \in \mathbf{R}^{n}} y^{\top} A y \text { s.t. }\|y\|^{2}=1
$$

We only know D, V exist!
We know $A=V D V^{\top}$ with
$D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and V orthogonal. So:

$$
g(y)=y^{\top} A y=\left(V^{\top} y\right)^{\top} D\left(V^{\top} y\right)=\sum_{i} \lambda_{i}\left(V^{\top} y\right)_{i}^{2}
$$

Thus, $g(y)=f(\varphi(y))$ where

$$
f(x)=\sum_{i} \lambda_{i} x_{i} \text { and } \varphi(y)=\left(V^{\top} y\right)^{\odot 2}
$$

Notice: $\varphi=($ entrywise squaring $) \circ($ rotation $)$

$$
y_{1}^{2}+\cdots+y_{n}^{2}=1
$$

Key facts:

f and simplex are convex, so critical \Rightarrow optimal φ maps $2^{\text {nd }}$ order critical points to critical points

General view: problems paired via a $\operatorname{lift} \varphi$

$$
\min _{y \in \mathcal{M}} g(y) \quad \min _{x \in \mathcal{X}} f(x)
$$

How do their landscapes compare?
E.g., if y is a local minimum for $\left.g\right|_{\mathcal{M}}$, is $\varphi(y)$ a local minimum for $\left.f\right|_{x}$?

Answer: yes for all f if and only if φ is open at y.
Example: $Y \mapsto Y Y^{\top}$ is open everywhere, but $(L, R) \mapsto L R^{\top}$ is not.

General view: problems paired via a $\operatorname{lift} \varphi$

$$
\min _{y \in \mathcal{M}} g(y) \quad \min _{x \in \mathcal{X}} f(x)
$$

How do their landscapes compare?
E.g., if y is first-order critical for $\left.g\right|_{\mathcal{M}}$, is $\varphi(y)$ first-order critical for $\left.f\right|_{x}$?

Answer: yes for all f iff image $(\mathrm{D} \varphi(y))=$ tangent cone $\mathrm{T}_{\varphi(y)} \mathcal{X}$.
Rarely true! In particular, requires tangent cones to be linear.

General view: problems paired via a $\operatorname{lift} \varphi$

$$
\min _{y \in \mathcal{M}} g(y) \quad \min _{x \in \mathcal{X}} f(x)
$$

How do their landscapes compare?
E.g., if y is second-order critical for $\left.g\right|_{\mathcal{M}}$, is $\varphi(y)$ first-order critical for $\left.f\right|_{X}$?

Answer: yes for all f iff [see paper for characterization].
Frequent: $Y \mapsto Y Y^{\top},(L, R) \mapsto L R^{\top}$, other low-rank lifts, $y \mapsto y{ }^{\odot}, \ldots$

General view: problems paired via a $\operatorname{lift} \varphi$

$$
\min _{y \in \mathcal{M}} g(y) \quad \min _{x \in \mathcal{X}} f(x)
$$

How do their landscapes compare?
E.g., if y is so-and-so for $\left.g\right|_{\mathcal{M}}$, is $\varphi(y)$ a this-or-that for $\left.f\right|_{x}$?

Key insight:

The relations are largely dictated by φ, independently of cost functions. Thus, facts about lifts are reusable.

M	$\mathcal{X}=\varphi(\mathcal{M})$	φ	local \Rightarrow local	$1 \Rightarrow 1$	$2 \Rightarrow 1$
Manifold	Submanifold	Submersion	\checkmark	\checkmark	\checkmark
Sphere	Simplex	$x \mapsto x^{\odot}$ (Hadamard)	\checkmark	φ^{-1} (interior)	\checkmark
(Sphere in $\left.\mathbf{R}^{n}\right)^{n}$	Stochastic matrices	Hadamard on each col or row	\checkmark	φ^{-1} (interior)	\checkmark
Sphere in \mathbf{R}^{n+1}	Ball in \mathbf{R}^{n}	Coordinate projection	\checkmark	φ^{-1} (interior)	\checkmark
Torus in \mathbf{R}^{n+1}	Annulus in \mathbf{R}^{n}	See paper	\checkmark	φ^{-1} (interior)	\checkmark
$\mathcal{A}\left(Y Y^{\top}\right)=b$, smooth	$X \succcurlyeq 0, \mathcal{A}(X)=b$	$Y \mapsto Y Y^{\top}$ (Burer-Monteiro)	\checkmark	Y full rank	\checkmark
(L, R) in $\mathbf{R}^{m \times r} \times \mathbf{R}^{n \times r}$	$\operatorname{rank}(X) \leq r$	$(L, R) \mapsto L R^{\top}$	balanced*	L, R full rank	\checkmark
$\begin{aligned} & X \in \mathbf{R}^{m \times n}, \mathcal{S} \subseteq \operatorname{ker} X, \\ & \operatorname{dim} \mathcal{S}=n-r \end{aligned}$	$\operatorname{rank}(X) \leq r$	$(X, \mathcal{S}) \mapsto X$ (desingularization)	$\operatorname{rank}(X)=r$	$\operatorname{rank}(X)=r$	\checkmark
Linear space of factors	Low-rank tensors	CP, TT, Tucker, ...	x	X	X

More in our paper

Blog: racetothebottom.xyz

The effect of smooth parametrizations on nonconvex optimization landscapes with Eitan Levin and Joe Kileel arxiv.org/abs/2207.03512

Some future directions:

- Explore new lifts
- Study compositionality
- Apply to new landscapes
- Explore other properties
E.g., local $\Rightarrow 1$
- Prove no good lift exists for \mathcal{X}

Details in December 2023

Example 1': Narrow linear networks

$$
\min _{W_{1} \in \mathrm{R} \times \min _{2} \in \mathrm{R} \times \mathrm{R} \times r}\left\|W_{2} W_{1} A-B\right\|_{\mathrm{R}}^{2}
$$

Nonconvex due to product $W_{2} W_{1}$.

Factor g through $\varphi\left(W_{1}, W_{2}\right)=W_{2} W_{1}$:

$$
\min _{X \in \mathbf{R}^{m \times n, r a n k}(X) \leq r}\|X A-B\|_{\mathrm{F}}^{2}
$$

Key facts (see blog; \boldsymbol{A} full row rank):
$\operatorname{rank}(X)<r$ and 1-critical \Rightarrow optimal $\operatorname{rank}(X)=r$ and 2-critical \Rightarrow optimal φ maps 2-critical points to 1-critical points φ maps 2-critical points of rank r to 2-critical points

Lift properties are fairly independent

```
1 = 1
```


$$
2 \Rightarrow 1
$$

local \Rightarrow local

Remark 2.13 (Relations between lift properties). Aside from Proposition 2.12, the only relation between the three properties in Definition 2.2 is that " $1 \Rightarrow 1$ " at y implies " $2 \Rightarrow 1$ " at y (since 2-critical points are 1-critical). None of the other possible implications hold in general: The desingularization lift (Desing) shows that " $2 \Rightarrow 1$ " at y implies neither " $1 \Rightarrow 1$ " nor "local \Rightarrow local" at y in general. The example $\varphi(x)=x^{3}$ viewed as a lift from $\mathcal{M}=\mathbb{R}$ to $\mathcal{X}=\mathbb{R}$ satisfies "local \Rightarrow local" at the origin but neither " $2 \Rightarrow 1$ " nor " $1 \Rightarrow 1$ ", hence "local \Rightarrow local" does not imply the other two properties. Finally, the standard parametrization of the cochleoid curve [59] satisfies " $1 \Rightarrow 1$ " but not "local \Rightarrow local" at all preimages of the origin, hence " $1 \Rightarrow 1$ " does not imply "local \Rightarrow local".

Upstairs—e.g., $\min _{W_{1}, W_{2}} g\left(W_{1}, W_{2}\right)=f\left(W_{2} W_{1}\right)$

\Uparrow If x is a [see rows], then $y \in \varphi^{-1}(x)$ is a [see cols]. \Leftarrow If $y \in \mathcal{M}$ is a [see cols], then $x=\varphi(y)$ is a [see rows].

