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Optimization on smooth manifolds
min
𝑥𝑥
𝑓𝑓 𝑥𝑥 subject to 𝑥𝑥 ∈ ℳ

Linear spaces
Unconstrained; linear equality constraints
Low rank (matrices, tensors)
Recommender systems, large-scale Lyapunov equations, …
Orthonormality (Grassmann, Stiefel, rotations)
Dictionary learning, SfM, SLAM, PCA, ICA, SBM, Electr. Struct. Comp.…
Positivity (positive definiteness, positive orthant)
Metric learning, Gaussian mixtures, diffusion tensor imaging, …
Symmetry (quotient manifolds)
Invariance under group actions
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A Riemannian structure gives us 
gradients and Hessians

The essential tools of smooth optimization are 
defined generally on Riemannian manifolds.

Unified theory, broadly applicable algorithms.

First ideas from the ‘70s.
First practical in the ‘90s.
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What is a smooth manifold?
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This overview: restricted to embedded submanifolds of linear spaces.



𝑥𝑥

𝑣𝑣

ℳ ⊆ ℰ is an embedded submanifold of codimension 𝑘𝑘 if:
There exists a smooth function ℎ:ℰ → 𝐑𝐑𝑘𝑘 such that:

ℳ ≡ ℎ 𝑥𝑥 = 0 and Dℎ 𝑥𝑥 :ℰ → 𝐑𝐑𝑘𝑘 has rank 𝑘𝑘 ∀𝑥𝑥 ∈ ℳ

E.g., sphere: ℎ 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑥𝑥 − 1 and Dℎ 𝑥𝑥 𝑣𝑣 = 2𝑥𝑥𝑇𝑇𝑣𝑣

These properties allow us to linearize the set:
ℎ 𝑥𝑥 + 𝑡𝑡𝑡𝑡 = ℎ 𝑥𝑥 + 𝑡𝑡Dℎ 𝑥𝑥 𝑣𝑣 + 𝑂𝑂 𝑡𝑡2

This is 𝑂𝑂 𝑡𝑡2 iff 𝑣𝑣 ∈ ker Dℎ 𝑥𝑥 .
→Tangent spaces: T𝑥𝑥ℳ = ker Dℎ 𝑥𝑥 ,

(subspace of ℰ)

What is a smooth manifold? (2)
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ℳ ⊆ ℰ is an embedded submanifold of 
codimension 𝑘𝑘 if:

For each 𝑥𝑥 ∈ ℳ there is a neighborhood 𝑈𝑈 of 𝑥𝑥 in ℰ
and a smooth function ℎ:𝑈𝑈 → 𝐑𝐑𝑘𝑘 such that:

a) Dℎ 𝑥𝑥 :ℰ → 𝐑𝐑𝑘𝑘 has rank 𝑘𝑘, and

b) ℳ∩𝑈𝑈 = ℎ−1 0 = 𝑦𝑦 ∈ 𝑈𝑈:ℎ 𝑦𝑦 = 0

(Necessary for fixed-rank matrices.)

What is a smooth manifold? (3)
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Bootstrapping our set of tools

1. Smooth maps
2. Differentials of smooth maps
3. Vector fields and tangent bundles
4. Retractions
5. Riemannian metrics
6. Riemannian gradients
7. Riemannian connections
8. Riemannian Hessians
9. Riemannian covariant derivatives along curves

16



Smooth maps between manifolds

With ℳ,ℳ′ embedded in ℰ,ℰ′,

Define: a map 𝐹𝐹:ℳ →ℳ′ is smooth if:

There exists a neighborhood 𝑈𝑈 of ℳ in ℰ and a 
smooth map �𝐹𝐹:𝑈𝑈 → ℰ′ such that 𝐹𝐹 = �𝐹𝐹|ℳ .

We call �𝐹𝐹 a smooth extension of 𝐹𝐹.
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Differential of a smooth map
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For �𝐹𝐹:ℰ → ℰ′, we have D �𝐹𝐹 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

�𝐹𝐹 𝑥𝑥+𝑡𝑡𝑡𝑡 − �𝐹𝐹 𝑥𝑥
𝑡𝑡

.

For 𝐹𝐹:ℳ →ℳ′ smooth, 𝐹𝐹 𝑥𝑥 + 𝑡𝑡𝑡𝑡 may not be defined.
But picking a smooth extension �𝐹𝐹, for 𝑣𝑣 ∈ T𝑥𝑥ℳ we say:

Define: D𝐹𝐹 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

�𝐹𝐹 𝑥𝑥+𝑡𝑡𝑡𝑡 − �𝐹𝐹 𝑥𝑥
𝑡𝑡

= D �𝐹𝐹 𝑥𝑥 𝑣𝑣 .

Claim: this does not depend on choice of �𝐹𝐹.
Claim: we retain linearity, product rule & chain rule.



Differential of a smooth map (2)
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We defined D𝐹𝐹 𝑥𝑥 = D �𝐹𝐹 𝑥𝑥 |T𝑥𝑥ℳ . Equivalently:

Claim: for each 𝑣𝑣 ∈ T𝑥𝑥ℳ, there exists a smooth 
curve 𝑐𝑐:𝐑𝐑 → ℳ such that 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣.



Differential of a smooth map (2)

20

We defined D𝐹𝐹 𝑥𝑥 = D �𝐹𝐹 𝑥𝑥 |T𝑥𝑥ℳ . Equivalently:

Claim: for each 𝑣𝑣 ∈ T𝑥𝑥ℳ, there exists a smooth 
curve 𝑐𝑐:𝐑𝐑 → ℳ such that 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣.

Define: D𝐹𝐹 𝑥𝑥 𝑣𝑣 = lim
𝑡𝑡→0

𝐹𝐹 𝑐𝑐(𝑡𝑡) −𝐹𝐹 𝑥𝑥
𝑡𝑡

= 𝐹𝐹 ∘ 𝑐𝑐 ′ 0 .



Vector fields and the tangent bundle
A vector field 𝑉𝑉 ties to each 𝑥𝑥 a vector 𝑉𝑉 𝑥𝑥 ∈ T𝑥𝑥ℳ.

What does it mean for 𝑉𝑉 to be smooth?

Define: the tangent bundle of ℳ is the disjoint union 
of all tangent spaces:

Tℳ = 𝑥𝑥, 𝑣𝑣 : 𝑥𝑥 ∈ ℳ and 𝑣𝑣 ∈ T𝑥𝑥ℳ

Claim: Tℳ is a manifold (embedded in ℰ × ℰ).

𝑉𝑉 is smooth if it is smooth as a map from ℳ to Tℳ.
23



Aside: new manifolds from old ones

Given a manifold ℳ, we can create a new manifold 
by considering its tangent bundle.

Here are other ways to recycle:

• Products of manifolds: ℳ × ℳ′, ℳ𝑛𝑛

• Open subsets of manifolds*
• (Quotienting some equivalence relations.)

*For embedded submanifolds: subset topology.
24



Retractions: moving around

Given 𝑥𝑥, 𝑣𝑣 ∈ Tℳ, we can move away from 𝑥𝑥 along 
𝑣𝑣 using any 𝑐𝑐:𝐑𝐑 →ℳ with 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣.

Retractions are a smooth choice of curves over Tℳ.

Define: A retraction is a smooth map 𝑅𝑅: Tℳ →ℳ
such that if 𝑐𝑐 𝑡𝑡 = 𝑅𝑅 𝑥𝑥, 𝑡𝑡𝑡𝑡 = 𝑅𝑅𝑥𝑥(𝑡𝑡𝑡𝑡)
then 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣.
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Retractions: moving around (2)

Define: a retraction is a smooth map 𝑅𝑅: Tℳ →ℳ
such that if 𝑐𝑐 𝑡𝑡 = 𝑅𝑅 𝑥𝑥, 𝑡𝑡𝑡𝑡 = 𝑅𝑅𝑥𝑥(𝑡𝑡𝑡𝑡),
then 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣.

Equivalently: 𝑅𝑅𝑥𝑥 0 = 𝑥𝑥 and D𝑅𝑅𝑥𝑥 0 = Id.

Typical choice: 𝑅𝑅𝑥𝑥 𝑣𝑣 = projection of 𝑥𝑥 + 𝑣𝑣 to ℳ:
•ℳ = 𝐑𝐑𝑛𝑛, 𝑅𝑅𝑥𝑥 𝑣𝑣 = 𝑥𝑥 + 𝑣𝑣
•ℳ = S𝑛𝑛−1, 𝑅𝑅𝑥𝑥 𝑣𝑣 = 𝑥𝑥+𝑣𝑣

𝑥𝑥+𝑣𝑣
•ℳ = 𝐑𝐑𝑟𝑟𝑚𝑚×𝑛𝑛, 𝑅𝑅𝑋𝑋 𝑉𝑉 = SVD𝑟𝑟 𝑋𝑋 + 𝑉𝑉
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Towards gradients: reminders from 𝐑𝐑𝑛𝑛

The gradient of a smooth ̅𝑓𝑓:𝐑𝐑𝑛𝑛 → 𝐑𝐑 at 𝑥𝑥 is defined by:

D ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = grad ̅𝑓𝑓 𝑥𝑥 , 𝑣𝑣 for all 𝑣𝑣 ∈ 𝐑𝐑𝑛𝑛.

In particular, with the inner product 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢⊤𝑣𝑣,

grad ̅𝑓𝑓 𝑥𝑥 𝑖𝑖 = grad ̅𝑓𝑓 𝑥𝑥 , 𝑒𝑒𝑖𝑖 = D ̅𝑓𝑓 𝑥𝑥 [𝑒𝑒𝑖𝑖] =
𝜕𝜕 ̅𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖

𝑥𝑥 .

Note: grad ̅𝑓𝑓 is a smooth vector field on 𝐑𝐑𝑛𝑛.
27



Riemannian metrics

T𝑥𝑥ℳ is a linear space (subspace of ℰ).

Pick an inner product ⋅,⋅ 𝑥𝑥 for each T𝑥𝑥ℳ.

Define: ⋅,⋅ 𝑥𝑥 defines a Riemannian metric on ℳ if 
for any two smooth vector fields 𝑉𝑉,𝑊𝑊 the function 
𝑥𝑥 ↦ 𝑉𝑉(𝑥𝑥),𝑊𝑊(𝑥𝑥) 𝑥𝑥 is smooth.

A Riemannian manifold is a manifold with a 
Riemannian metric.

28



Riemannian submanifolds

Let ⋅,⋅ be the inner product on ℰ.

Since T𝑥𝑥ℳ is a linear subspace of ℰ, one choice is:

𝑢𝑢, 𝑣𝑣 𝑥𝑥 = 𝑢𝑢, 𝑣𝑣

Claim: this defines a Riemannian metric on ℳ.

With this metric, ℳ is a Riemannian submanifold of ℰ.

29



Riemannian gradient

Let 𝑓𝑓:ℳ → 𝐑𝐑 be smooth on a Riemannian manifold.

Define: the Riemannian gradient of 𝑓𝑓 at 𝑥𝑥 is the 
unique tangent vector at 𝑥𝑥 such that:

D𝑓𝑓 𝑥𝑥 𝑣𝑣 = grad𝑓𝑓 𝑥𝑥 , 𝑣𝑣 𝑥𝑥 for all 𝑣𝑣 ∈ T𝑥𝑥ℳ

Claim: grad𝑓𝑓 is a smooth vector field.
Claim: if 𝑥𝑥 is a local optimum of 𝑓𝑓, grad𝑓𝑓 𝑥𝑥 = 0.

30



Gradients on Riemannian submanifolds
Let ̅𝑓𝑓 be a smooth extension of 𝑓𝑓. For all 𝑣𝑣 ∈ T𝑥𝑥ℳ:

grad𝑓𝑓 𝑥𝑥 ,𝑣𝑣 𝑥𝑥 = D𝑓𝑓 𝑥𝑥 𝑣𝑣
= D ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = grad ̅𝑓𝑓 𝑥𝑥 ,𝑣𝑣

Assume ℳ is a Riemannian submanifold of ℰ.
Since ⋅,⋅ = ⋅,⋅ 𝑥𝑥, by uniqueness we conclude:

grad𝑓𝑓 𝑥𝑥 = Proj𝑥𝑥 grad ̅𝑓𝑓 𝑥𝑥

Proj𝑥𝑥 is the orthogonal projector from ℰ to T𝑥𝑥ℳ.
31



A first algorithm: gradient descent

For ̅𝑓𝑓:𝐑𝐑𝑛𝑛 → 𝐑𝐑,      𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝛼𝛼𝑘𝑘grad ̅𝑓𝑓 𝑥𝑥𝑘𝑘

For 𝑓𝑓:ℳ → 𝐑𝐑,      𝑥𝑥𝑘𝑘+1 = 𝑅𝑅𝑥𝑥𝑘𝑘 −𝛼𝛼𝑘𝑘grad𝑓𝑓 𝑥𝑥𝑘𝑘

For the analysis, need to understand 𝑓𝑓 𝑥𝑥𝑘𝑘+1 :

The composition 𝑓𝑓 ∘ 𝑅𝑅𝑥𝑥: T𝑥𝑥ℳ → 𝐑𝐑 is on a linear 
space, hence we may Taylor expand it.
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A first algorithm: gradient descent
𝑥𝑥𝑘𝑘+1 = 𝑅𝑅𝑥𝑥𝑘𝑘 −𝛼𝛼𝑘𝑘grad𝑓𝑓 𝑥𝑥𝑘𝑘

The composition 𝑓𝑓 ∘ 𝑅𝑅𝑥𝑥: T𝑥𝑥ℳ → 𝐑𝐑 is on a linear space, 
hence we may Taylor expand it:

𝑓𝑓 𝑅𝑅𝑥𝑥 𝑣𝑣 = 𝑓𝑓 𝑅𝑅𝑥𝑥 0 + grad 𝑓𝑓 ∘ 𝑅𝑅𝑥𝑥 0 , 𝑣𝑣 𝑥𝑥 + 𝑂𝑂 𝑣𝑣 𝑥𝑥
2

= 𝑓𝑓 𝑥𝑥 + grad𝑓𝑓 𝑥𝑥 , 𝑣𝑣 𝑥𝑥 + 𝑂𝑂 𝑣𝑣 𝑥𝑥
2

Indeed: D 𝑓𝑓 ∘ 𝑅𝑅𝑥𝑥 0 𝑣𝑣 = D𝑓𝑓 𝑅𝑅𝑥𝑥 0 D𝑅𝑅𝑥𝑥 0 𝑣𝑣 = D𝑓𝑓 𝑥𝑥 𝑣𝑣 .
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Gradient descent on ℳ
A1 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓low for all 𝑥𝑥 ∈ ℳ
A2 𝑓𝑓 𝑅𝑅𝑥𝑥 𝑣𝑣 ≤ 𝑓𝑓 𝑥𝑥 + 𝑣𝑣, grad𝑓𝑓 𝑥𝑥 + 𝐿𝐿

2
𝑣𝑣 2

Algorithm: 𝑥𝑥𝑘𝑘+1 = 𝑅𝑅𝑥𝑥𝑘𝑘 − 1
𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘)

Complexity: grad𝑓𝑓(𝑥𝑥𝑘𝑘) ≤ 𝜀𝜀 with some 𝑘𝑘 ≤ 2𝐿𝐿 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low
1
𝜀𝜀2

A2 ⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≤ 𝑓𝑓 𝑥𝑥𝑘𝑘 −
1
𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 2 +
1
2𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘) 2

⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≥
1
2𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 2

𝐀𝐀𝐀𝐀 ⇒ 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low ≥ ∑𝑘𝑘=0𝐾𝐾−1 𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 > 𝜀𝜀2

2𝐿𝐿
𝐾𝐾

34
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𝑅𝑅𝑥𝑥 𝑣𝑣
𝑣𝑣

(for contradiction)



Tips and tricks to get the gradient

Use definition as starting point: D𝑓𝑓 𝑥𝑥 𝑣𝑣 = ⋯

Cheap gradient principle

Numerical check of gradient: Taylor 𝑡𝑡 ↦ 𝑓𝑓 𝑅𝑅𝑥𝑥 𝑡𝑡𝑡𝑡
Manopt: checkgradient(problem)

Automatic differentiation: Python, Julia
Not Matlab :/—this being said, for theory, often need to 
manipulate gradient “on paper” anyway.
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On to second-order methods

Consider ̅𝑓𝑓:𝐑𝐑𝑛𝑛 → 𝐑𝐑 smooth. Taylor says:

̅𝑓𝑓 𝑥𝑥 + 𝑣𝑣 ≈ ̅𝑓𝑓 𝑥𝑥 + grad ̅𝑓𝑓 𝑥𝑥 ,𝑣𝑣 +
1
2
𝑣𝑣, Hess ̅𝑓𝑓 𝑥𝑥 𝑣𝑣

If Hess ̅𝑓𝑓 𝑥𝑥 ≻ 0, quadratic model minimized for 𝑣𝑣 s.t.:

Hess ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = −grad ̅𝑓𝑓 𝑥𝑥

From there, we can construct Newton’s method etc.
36



Towards Hessians: reminders from 𝐑𝐑𝑛𝑛

Consider ̅𝑓𝑓:𝐑𝐑𝑛𝑛 → 𝐑𝐑 smooth.

The Hessian of ̅𝑓𝑓 at 𝑥𝑥 is a linear operator which 
tells us how the gradient vector field of ̅𝑓𝑓 varies:

Hess ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 = Dgrad ̅𝑓𝑓 𝑥𝑥 𝑣𝑣

With 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢⊤𝑣𝑣, yields: Hess ̅𝑓𝑓 𝑥𝑥 𝑖𝑖𝑖𝑖 = 𝜕𝜕2 ̅𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

(𝑥𝑥).

Notice that Hess ̅𝑓𝑓 𝑥𝑥 𝑣𝑣 is a vector in 𝐑𝐑𝑛𝑛.
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A difficulty on manifolds

A smooth vector field 𝑉𝑉 on ℳ is a smooth map:
we already have a notion of how to differentiate it.

Example: with 𝑓𝑓 𝑥𝑥 = 1
2
𝑥𝑥⊤𝐴𝐴𝐴𝐴 on the sphere,

𝑉𝑉 𝑥𝑥 = grad𝑓𝑓 𝑥𝑥 = Proj𝑥𝑥 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 − 𝑥𝑥⊤𝐴𝐴𝐴𝐴 𝑥𝑥

D𝑉𝑉 𝑥𝑥 𝑢𝑢 = ⋯ = Proj𝑥𝑥 𝐴𝐴𝐴𝐴 − 𝑥𝑥⊤𝐴𝐴𝐴𝐴 𝑢𝑢 − 𝑥𝑥⊤𝐴𝐴𝐴𝐴 𝑥𝑥

Issue: D𝑉𝑉 𝑥𝑥 𝑢𝑢 may not be a tangent vector at 𝑥𝑥!
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Connections:
A tool to differentiate vector fields
Let 𝒳𝒳 ℳ be the set of smooth vector fields on ℳ.
Given 𝑈𝑈 ∈ 𝒳𝒳 ℳ and smooth 𝑓𝑓, 𝑈𝑈𝑈𝑈 𝑥𝑥 = D𝑓𝑓 𝑥𝑥 [𝑈𝑈(𝑥𝑥)].

A map 𝛻𝛻:𝒳𝒳 ℳ × 𝒳𝒳 ℳ → 𝒳𝒳 ℳ is a connection if:
1. 𝛻𝛻𝑓𝑓𝑓𝑓+𝑔𝑔𝑔𝑔 𝑉𝑉 = 𝑓𝑓𝛻𝛻𝑈𝑈𝑉𝑉 + 𝑔𝑔𝛻𝛻𝑊𝑊𝑉𝑉
2. 𝛻𝛻𝑈𝑈 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑎𝑎𝛻𝛻𝑈𝑈𝑉𝑉 + 𝑏𝑏𝛻𝛻𝑈𝑈𝑊𝑊
3. 𝛻𝛻𝑈𝑈 𝑓𝑓𝑓𝑓 = 𝑈𝑈𝑈𝑈 𝑉𝑉 + 𝑓𝑓𝛻𝛻𝑈𝑈𝑉𝑉

Example: for ℳ = ℰ,  𝛻𝛻𝑈𝑈𝑉𝑉 𝑥𝑥 = D𝑉𝑉 𝑥𝑥 𝑈𝑈 𝑥𝑥
Example: for ℳ ⊆ ℰ,  𝛻𝛻𝑈𝑈𝑉𝑉 𝑥𝑥 = Proj𝑥𝑥 D𝑉𝑉 𝑥𝑥 𝑈𝑈 𝑥𝑥
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Riemannian connections:
A unique and favorable choice
Let ℳ be a Riemannian manifold.
Claim: there exists a unique connection 𝛻𝛻 on ℳ s.t.:

4. 𝛻𝛻𝑈𝑈𝑉𝑉 − 𝛻𝛻𝑉𝑉𝑈𝑈 𝑓𝑓 = 𝑈𝑈 𝑉𝑉𝑉𝑉 − 𝑉𝑉 𝑈𝑈𝑈𝑈
5. 𝑈𝑈 𝑉𝑉,𝑊𝑊 = 𝛻𝛻𝑈𝑈𝑉𝑉,𝑊𝑊 + 𝑉𝑉,𝛻𝛻𝑈𝑈𝑊𝑊

It is called the Riemannian connection (Levi-Civita).

Claim: if ℳ is a Riemannian submanifold of ℰ, then

𝛻𝛻𝑈𝑈𝑉𝑉 𝑥𝑥 = Proj𝑥𝑥 D𝑉𝑉 𝑥𝑥 𝑈𝑈 𝑥𝑥

is the Riemannian connection on ℳ.
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Riemannian Hessians
Claim: 𝛻𝛻𝑈𝑈𝑉𝑉 𝑥𝑥 depends on 𝑈𝑈 only through 𝑈𝑈(𝑥𝑥).
This justifies the notation 𝛻𝛻𝑢𝑢𝑉𝑉; e.g.: 𝛻𝛻𝑢𝑢𝑉𝑉 = Proj𝑥𝑥 D𝑉𝑉 𝑥𝑥 𝑢𝑢

Define: the Riemannian Hessian of 𝑓𝑓:ℳ → 𝐑𝐑 at 𝑥𝑥
is a linear operator from T𝑥𝑥ℳ to T𝑥𝑥ℳ defined by:

Hess𝑓𝑓 𝑥𝑥 𝑢𝑢 = 𝛻𝛻𝑢𝑢grad𝑓𝑓

where 𝛻𝛻 is the Riemannian connection.

Claim: Hess𝑓𝑓 𝑥𝑥 is self-adjoint.
Claim: if 𝑥𝑥 is a local minimum, then Hess𝑓𝑓 𝑥𝑥 ≽ 0.

41



Hessians on Riemannian submanifolds

Hess𝑓𝑓 𝑥𝑥 𝑢𝑢 = 𝛻𝛻𝑢𝑢grad𝑓𝑓(𝑥𝑥)

On a Riemannian submanifold of a linear space,

𝛻𝛻𝑢𝑢𝑉𝑉 = Proj𝑥𝑥 D𝑉𝑉 𝑥𝑥 𝑢𝑢

Combining:

Hess𝑓𝑓 𝑥𝑥 𝑢𝑢 = Proj𝑥𝑥 Dgrad𝑓𝑓 𝑥𝑥 𝑢𝑢
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Hessians on Riemannian submanifolds (2)

Hess𝑓𝑓 𝑥𝑥 𝑢𝑢 = Proj𝑥𝑥 Dgrad𝑓𝑓 𝑥𝑥 𝑢𝑢

Example: 𝑓𝑓 𝑥𝑥 = 1
2
𝑥𝑥⊤𝐴𝐴𝐴𝐴 on the sphere in 𝐑𝐑𝑛𝑛.

𝑉𝑉 𝑥𝑥 = grad𝑓𝑓 𝑥𝑥 = Proj𝑥𝑥 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴 − 𝑥𝑥⊤𝐴𝐴𝐴𝐴 𝑥𝑥

D𝑉𝑉 𝑥𝑥 𝑢𝑢 = Proj𝑥𝑥 𝐴𝐴𝐴𝐴 − 𝑥𝑥⊤𝐴𝐴𝐴𝐴 𝑢𝑢 − 𝑥𝑥⊤𝐴𝐴𝐴𝐴 𝑥𝑥

Hess𝑓𝑓 𝑥𝑥 𝑢𝑢 = Proj𝑥𝑥 𝐴𝐴𝐴𝐴 − 𝑥𝑥⊤𝐴𝐴𝐴𝐴 𝑢𝑢

Remarkably, grad𝑓𝑓 𝑥𝑥 = 0 and Hess𝑓𝑓 𝑥𝑥 ≽ 0 iff 𝑥𝑥 optimal.

43



Newton, Taylor and Riemann
Now that we have a Hessian, we might guess:

𝑓𝑓 𝑅𝑅𝑥𝑥 𝑣𝑣 ≈ 𝑚𝑚𝑥𝑥 𝑣𝑣 = 𝑓𝑓 𝑥𝑥 + grad𝑓𝑓 𝑥𝑥 , 𝑣𝑣 𝑥𝑥 +
1
2
𝑣𝑣, Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 𝑥𝑥

If Hess𝑓𝑓 𝑥𝑥 is invertible, 𝑚𝑚𝑥𝑥: T𝑥𝑥ℳ → 𝐑𝐑 has one 
critical point, solution of this linear system:

Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 = −grad𝑓𝑓 𝑥𝑥 for 𝑣𝑣 ∈ T𝑥𝑥ℳ

Newton’s method on ℳ: 𝑥𝑥next = 𝑅𝑅𝑥𝑥 𝑣𝑣 .

Claim: if Hess𝑓𝑓 𝑥𝑥∗ ≻ 0, quadratic local convergence.
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We need one more tool…

The truncated expansion

𝑓𝑓 𝑅𝑅𝑥𝑥 𝑣𝑣 ≈ 𝑓𝑓 𝑥𝑥 + grad𝑓𝑓 𝑥𝑥 ,𝑣𝑣 𝑥𝑥 +
1
2
𝑣𝑣, Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 𝑥𝑥

is not quite correct (well, not always…)

To see why, let’s expand 𝑓𝑓 along some smooth curve.
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We need one more tool… (2)
Let’s expand 𝑓𝑓 along some smooth curve.

With 𝑐𝑐:𝐑𝐑 →ℳ s.t. 𝑐𝑐 0 = 𝑥𝑥 and 𝑐𝑐′ 0 = 𝑣𝑣, the 
composition 𝑔𝑔 = 𝑓𝑓 ∘ 𝑐𝑐 maps 𝐑𝐑 → 𝐑𝐑, so Taylor holds:

𝑔𝑔 𝑡𝑡 ≈ 𝑔𝑔 0 + 𝑡𝑡𝑔𝑔′ 0 +
𝑡𝑡2

2
𝑔𝑔′′ 0

𝑔𝑔 0 = 𝑓𝑓 𝑥𝑥

𝑔𝑔′ 𝑡𝑡 = D𝑓𝑓 𝑐𝑐 𝑡𝑡 𝑐𝑐′ 𝑡𝑡 = grad𝑓𝑓 𝑐𝑐 𝑡𝑡 , 𝑐𝑐′ 𝑡𝑡 𝑐𝑐(𝑡𝑡)

𝑔𝑔′ 0 = grad𝑓𝑓 𝑥𝑥 , 𝑣𝑣 𝑥𝑥

𝑔𝑔′′ 0 = ? ? ?
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Differentiating vector fields along curves

A map 𝑍𝑍:𝐑𝐑 → Tℳ is a vector field along 𝑐𝑐:𝐑𝐑 →ℳ if 𝑍𝑍(𝑡𝑡)
is a tangent vector at 𝑐𝑐(𝑡𝑡).
Let 𝒳𝒳 𝑐𝑐 denote the set of smooth such fields.

Claim: there exists a unique operator D
d𝑡𝑡

:𝒳𝒳 𝑐𝑐 → 𝒳𝒳 𝑐𝑐 s.t.
1. D

d𝑡𝑡
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑎𝑎 D

d𝑡𝑡
𝑌𝑌 + 𝑏𝑏 D

d𝑡𝑡
𝑍𝑍

2. D
d𝑡𝑡

𝑔𝑔𝑔𝑔 = 𝑔𝑔′𝑍𝑍 + 𝑔𝑔 D
d𝑡𝑡
𝑍𝑍

3. D
d𝑡𝑡

𝑈𝑈 𝑐𝑐(𝑡𝑡) = 𝛻𝛻𝑐𝑐𝑐(𝑡𝑡)𝑈𝑈

4. d
d𝑡𝑡

𝑌𝑌 𝑡𝑡 ,𝑍𝑍 𝑡𝑡 𝑐𝑐(𝑡𝑡) = D
d𝑡𝑡
𝑌𝑌 𝑡𝑡 ,𝑍𝑍

𝑐𝑐(𝑡𝑡)
+ 𝑌𝑌 𝑡𝑡 , D

d𝑡𝑡
𝑍𝑍 𝑡𝑡

𝑐𝑐(𝑡𝑡)

where 𝛻𝛻 is the Riemannian connection.
47



Differentiating fields along curves (2)

Claim: there exists a unique operator D
d𝑡𝑡

:𝒳𝒳 𝑐𝑐 → 𝒳𝒳 𝑐𝑐 s.t.
1. D

d𝑡𝑡
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑎𝑎 D

d𝑡𝑡
𝑌𝑌 + 𝑏𝑏 D

d𝑡𝑡
𝑍𝑍

2. D
d𝑡𝑡

𝑔𝑔𝑔𝑔 = 𝑔𝑔′𝑍𝑍 + 𝑔𝑔 D
d𝑡𝑡
𝑍𝑍

3. D
d𝑡𝑡

𝑈𝑈 𝑐𝑐(𝑡𝑡) = 𝛻𝛻𝑐𝑐′(𝑡𝑡)𝑈𝑈

4. d
d𝑡𝑡

𝑌𝑌 𝑡𝑡 ,𝑍𝑍 𝑡𝑡 𝑐𝑐(𝑡𝑡) = D
d𝑡𝑡
𝑌𝑌 𝑡𝑡 ,𝑍𝑍

𝑐𝑐(𝑡𝑡)
+ 𝑌𝑌 𝑡𝑡 , D

d𝑡𝑡
𝑍𝑍 𝑡𝑡

𝑐𝑐(𝑡𝑡)

where 𝛻𝛻 is the Riemannian connection.

Claim: if ℳ is a Riemannian submanifold of ℰ,
D
d𝑡𝑡
𝑍𝑍 𝑡𝑡 = Proj𝑐𝑐 𝑡𝑡

d
d𝑡𝑡
𝑍𝑍 𝑡𝑡
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With 𝑔𝑔 𝑡𝑡 = 𝑓𝑓 𝑐𝑐 𝑡𝑡 and 𝑔𝑔′ 𝑡𝑡 = grad𝑓𝑓 𝑐𝑐 𝑡𝑡 , 𝑐𝑐′ 𝑡𝑡 𝑐𝑐(𝑡𝑡):

𝑔𝑔′′ 𝑡𝑡 =
D
d𝑡𝑡

grad𝑓𝑓 𝑐𝑐 𝑡𝑡 , 𝑐𝑐′ 𝑡𝑡
𝑐𝑐(𝑡𝑡)

+ grad𝑓𝑓 𝑐𝑐 𝑡𝑡 ,
D
d𝑡𝑡
𝑐𝑐𝑐 𝑡𝑡

𝑐𝑐(𝑡𝑡)

= 𝛻𝛻𝑐𝑐′ 𝑡𝑡 grad𝑓𝑓, 𝑐𝑐′ 𝑡𝑡
𝑐𝑐(𝑡𝑡)

+ grad𝑓𝑓 𝑐𝑐 𝑡𝑡 , 𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑐𝑐(𝑡𝑡)

𝑔𝑔𝑔𝑔(0) = Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 , 𝑣𝑣 𝑥𝑥 + grad𝑓𝑓 𝑥𝑥 , 𝑐𝑐𝑐𝑐(0) 𝑥𝑥
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1. D
d𝑡𝑡

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = 𝑎𝑎 D
d𝑡𝑡
𝑌𝑌 + 𝑏𝑏 D

d𝑡𝑡
𝑍𝑍

2. D
d𝑡𝑡

𝑔𝑔𝑔𝑔 = 𝑔𝑔′𝑍𝑍 + 𝑔𝑔 D
d𝑡𝑡
𝑍𝑍

3. D
d𝑡𝑡

𝑈𝑈 𝑐𝑐(𝑡𝑡) = 𝛻𝛻𝑐𝑐′(𝑡𝑡)𝑈𝑈

4. d
d𝑡𝑡

𝑌𝑌 𝑡𝑡 ,𝑍𝑍 𝑡𝑡 𝑐𝑐(𝑡𝑡) = D
d𝑡𝑡
𝑌𝑌 𝑡𝑡 ,𝑍𝑍

𝑐𝑐(𝑡𝑡)
+ 𝑌𝑌 𝑡𝑡 , D

d𝑡𝑡
𝑍𝑍 𝑡𝑡

𝑐𝑐(𝑡𝑡)



With 𝑔𝑔 𝑡𝑡 = 𝑓𝑓 𝑐𝑐 𝑡𝑡 and 𝑔𝑔′ 𝑡𝑡 = grad𝑓𝑓 𝑐𝑐 𝑡𝑡 , 𝑐𝑐′ 𝑡𝑡 𝑐𝑐(𝑡𝑡):

𝑔𝑔′′ 𝑡𝑡 =
D
d𝑡𝑡

grad𝑓𝑓 𝑐𝑐 𝑡𝑡 , 𝑐𝑐′ 𝑡𝑡
𝑐𝑐(𝑡𝑡)

+ grad𝑓𝑓 𝑐𝑐 𝑡𝑡 ,
D
d𝑡𝑡
𝑐𝑐𝑐 𝑡𝑡

𝑐𝑐(𝑡𝑡)

= 𝛻𝛻𝑐𝑐′ 𝑡𝑡 grad𝑓𝑓, 𝑐𝑐′ 𝑡𝑡
𝑐𝑐(𝑡𝑡)

+ grad𝑓𝑓 𝑐𝑐 𝑡𝑡 , 𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑐𝑐(𝑡𝑡)

𝑔𝑔𝑔𝑔(0) = Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 , 𝑣𝑣 𝑥𝑥 + grad𝑓𝑓 𝑥𝑥 , 𝑐𝑐𝑐𝑐(0) 𝑥𝑥

𝑓𝑓 𝑐𝑐 𝑡𝑡 = 𝑓𝑓 𝑥𝑥 + 𝑡𝑡 ⋅ grad𝑓𝑓 𝑥𝑥 , 𝑣𝑣 𝑥𝑥 +
𝑡𝑡2

2
⋅ Hess𝑓𝑓 𝑥𝑥 𝑣𝑣 , 𝑣𝑣 𝑥𝑥

+
𝑡𝑡2

2
⋅ grad𝑓𝑓 𝑥𝑥 , 𝑐𝑐′′ 0 𝑥𝑥 + 𝑂𝑂 𝑡𝑡3

The annoying term vanishes at critical points and for special
curves (special retractions). Mostly fine for optimization.
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Trust-region method:
Newton’s with a safeguard
With the same tools, we can design a Riemannian
trust-region method: RTR (Absil, Baker & Gallivan ’07).

Approximately minimizes quadratic model of 𝑓𝑓 ∘ 𝑅𝑅𝑥𝑥𝑘𝑘
restricted to a ball in T𝑥𝑥𝑘𝑘ℳ, with dynamic radius.

Complexity known. Excellent performance, also with
approximate Hessian (e.g., finite differences of grad𝑓𝑓).

In Manopt, call trustregions(problem).
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In the lecture notes:
• Proofs for all claims in these slides
• References to the (growing) literature
• Short descriptions of applications
• Fully worked out manifolds

E.g.: Stiefel, fixed-rank matrices, general 𝑥𝑥 ∈ ℰ:ℎ 𝑥𝑥 = 0
• Details about computation, pitfalls and tricks

E.g.: how to compute gradients, checkgradient, checkhessian

• Theory for general manifolds
• Theory for quotient manifolds
• Discussion of more advanced geometric tools

E.g.: distance, exp, log, transports, Lipschitz, finite differences
• Basics of geodesic convexity
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