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Optimization on smooth manifolds

mm f(x) subjecttox € M /((

Linear spaces —— |

Low rank (matrices, tensors)
Orthonormality (Grassmann, Stiefel, rotations)
Positivity (positive definiteness, positive orthant)

Symmetry (quotient manifolds)



A Riemannian structure gives us
oradients and Hessians

The essential tools of smooth optimization are
defined generally on Riemannian manifolds.

Unified theory, broadly applicable algorithms.

First ideas from the ‘70s.
First practical in the ‘90s.
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What is a smooth manifold?

This overview: restricted to embedded submanifolds of linear spaces.
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What is a smooth manifold? (2)

M C Eisan of codimension k if:
There exists a smooth function h: € » R¥ such that:

M =h(x) =0 and Dh(x):E - R¥hasrankk Vx € M

E.g., sphere: h(x) = x'x — 1 and Dh(x)[v] = 2xTv

These properties allow us to the set:
h(x + tv) = h(x) + tDh(x)[v] + O(tz) /v :_

This is 0(t?) iff v € ker Dh(x). . —=

- T, M = ker Dh(x), |

(subspace of &)



What is a smooth manifold? (3)

M € £isan of
codimension k if:

For each x € M thereis a Uofxiné&
and a smooth function h: U = R¥ such that:

a) Dh(x):E - R* hasrankk, and
b) M nU=h"1(0) ={y € U:h(y) = 0}

(Necessary for fixed-rank matrices.)



Bootstrapping our set of tools

Smooth maps

Differentials of smooth maps
Vector fields and tangent bundles
Retractions

Riemannian metrics

Riemannian gradients

SR



Smooth maps between manifolds
With M, M’ embedded in &, &,
Define: F-M - M’ if:

There exists a neighborhood U of M in € and a
smooth map F:U — £ such that F = F|,,.

Wecall F a of F.



of a smooth map

For F: € - £, we have DF (x)[v] = }rirrg alt t)_F(x).

For smooth, F(x + tv) may not be defined.
But picking a smooth extension F, we say:

Define: = lim

F( )—F (x)
t—0 t

= DF (x)[v].

Claim: this does not depend on choice of F.
Claim: we retain linearity, product rule & chain rule.



of a smooth map (2)

We defined DF (x) = DF (x) |1, 2 Equivalently:

Claim: for each v € T, M, there exists a smooth
curve c: R - M such that ¢(0) = x and ¢’ (0) = v.




of a smooth map (2)

We defined DF (x) = DF (x) |1, 2 Equivalently:

Claim: for each v € T, M, there exists a smooth
curve c: R - M such that ¢(0) = x and ¢’ (0) = v.

F(

Define: DF (x)[v] = lim

—F ,
i PO (p ey )

Mf




Vector fields and the tangent bundle

A V ties to each x a vector V(x) € T, M.
What does it mean for V to be smooth?

Define: the of M is the disjoint union
of all tangent spaces:

TM ={(x,v):x € M and v € T, M’}
Claim: TM is a manifold (embedded in € X &).

if it is smooth as a map from M to TM..



Aside: new manifolds from old ones

Given a manifold M, we can create a new manifold
by considering its tangent bundle.

Here are other ways to recycle:

. of manifolds: M x M', M™
. of manifolds™
o( some equivalence relations.)

*For embedded submanifolds: subset topology.



Retractions: moving around

Given (x,v) € TM, we can move away from x along
v using any c: R - M with ¢(0) = x and ¢'(0) = v.

Retractions are a smooth choice of curves over TM.

Define: A isasmoothmap R: TM - M
such thatif c(t) = R(x,tv) = R, (tv) _
then c(0) = x and ¢'(0) = v.




Retractions: moving around (2)
Define: a isasmoothmap R: TM -» M
such thatif c(t) = R(x, tv) = R, (tv),

then c(0) = x and ¢'(0) = v.

Equivalently: R,,(0) = x and DR,.(0) = Id.

: R,.(v) = projection of x + v to M':

']V[=Rn,Rx(U)=x+v o) R()
. _ on—1 _ xtv x\U
M — S J R_X,'(v) - ||x+17|| %
e M = R™" R, (V) = SVD,.(X + V) /
M




Towards gradients: reminders from R"

The of a smooth f: R"™ — R at x is defined by:

Df(x)[v] = (gradf(x),v) for all v € R™.

In particular, with the (u,v) =u'v,

gradf (x); = (gradf(x), ei) =Df (x)[e;] =

of

Note: gradf is a smooth vector field on R™.



Riemannian metrics

T,, M is a linear space (subspace of &).

Pick an (+,7), for each T, M.

Define: (,-), defines a on M if
for any two smooth vector fields V, W the function
x — (V(x), W(x)), is smooth.

A is a manifold with a
Riemannian metric.



Riemannian manifolds

Let (:,-) be the on €.

Since T, M is a linear subspace of €, one choice is:
(u, v}y = (u, v)
Claim: this defines a Riemannian metric on M.

With this metric, M is a of E.



Riemannian gradient
Let f: M — R be smooth on a Riemannian manifold.

Define: the of f at x is the
unique tangent vector at x such that:

Df(x)|v] = (gradf (x),v), forallveT,M

Claim: gradf is a smooth vector field.
Claim: if x is a local optimum of f, gradf (x) = 0.



Gradients on Riemannian submanifolds
Let f be a smooth extension of f. For all v € T, M:

(gradf (x), v), = Df (X)[v] ]
= Df (x)[v] = (gradf (x), v)

Assume M is a Riemannian submanifold of €.
Since (-,) = (:,"),, by uniqueness we conclude:

gradf (x) = Proj, (grad f (x))

Proj, is the from £ to T, M.



A first algorithm:

For f:R®" > R, x,.; = xx — aggradf (x;)
For f: M - R, Xpiq1 = ka(—akgradf(xk))
For the analysis, need to understand f (xj.,1):

The composition : T, M — Risonalinear
space, hence we may expand it.



A first algorithm:
Xg+1 = Ry, (—argradf (x;))

The composition : T, M — Rison alinear space,
hence we may expand it:

f(Rx(¥)) = f(R(0)) +¢ ) + O(IlvIIZ)
= f(x0) +¢ ,v)x + O(IIvIIZ)

Indeed: D(f © R,) (0)[v] = Df(Ry(0))[DR,(0)[v]] = DF (x)[v].



Gradient descent on M
Al f(x) = fiow forallx e M .

A2 f(R.(v)) < f(x) + (v, gradf (x)) + % V]2 / )

Algorithm: =R, (— % gradf(xk))

Complexity: [|gradf (x;)|| < & with some k < 2L(f (o) — fiow) =5

1 1
A2 = f( ) < fx,) — 7 llgradf () |1* + oL llgradf (x;)|I

/— (for contradiction)

A1 f(xo) = fiow 2 BK2 f(0) = f(rin) > S K

1
= ) — f( ) = 57 llgradf (x;)1%



Tips and tricks to get the gradient
Use Df(x)[v] — ...
principle

of gradient: Taylor t — f(R,(tv))
Manopt: checkgradient(problem)

: Python, Julia

Not Matlab :/—this being said, for theory, often need to
manipulate gradient “on paper” anyway.



On to second-order methods

Consider f: R" — R smooth. says:

_ _ _ 1 _
flx+v) = f(x) + (gradf (x), v) + §< ,Hessf (x)[v])

If Hessf (x) > 0, quadratic model minimized for v s.t.:
Hessf (x)[v] = —gradf (x)

From there, we can construct etc.



Towards Hessians: reminders from R"

Consider f:R™ = R smooth.

The of f at x is a linear operator which
tells us how the gradient vector field of f varies:

Hessf (x)[v] = Dgradf (x)[v]

9%f
axiaxj

(x).

With (u, v) = uv, yields: Hessf (x);; =

Notice that Hessf (x)[v] is a vector in R™.



A difficulty on manifolds

A smooth vector field V on M is a smooth map:
we already have a notion of how to differentiate it.

Example: with f(x) = %xTAx on the sphere,

V(x) = gradf(x) = Proj,(4Ax) = Ax — (xTAx)x
DV (x)[u] = +-- = Proj,,(Au) — (x "Ax)u —

Issue: DV (x)|u] at x!



Connections:
A tool to differentiate vector fields

Let X (M) be the set of smooth vector fields on M.
Given U € X (M) and smooth f, (Uf)(x) = Df (x)[U(x)].

AmapV: X(M) X X(M) » X(M)isa if:

L Vigrgw (V) = fVyV + glyV
2. VU(aV + bW) — aVUV + bVUW
3. W(fV)=WAHAV+fryV

Example: for M = &, (V,;V)(x) = DV(x)|U(x)]
Example: for M € &, (V,V)(x) = Proj,(DV(x)|U(x)])



Riemannian connections:
A unique and favorable choice

Let M be a Riemannian manifold.
Claim: there a connection V on M s.t.:

4. (WyV =10 f =UlVf) —V(Uf)
5. UV, W) =(VyV,W)+(V,V,W)

It is called the (Levi-Civita).

Claim: if M is a Riemannian submanifold of €, then
(VyV)(x) = Proj, (DV(x)[U(x)])

is the Riemannian connection on M.



Riemannian Hessians

Claim: (V;V)(x) depends on U only through U (x).
This justifies the notation I/,V; eg.: 7,V = Proj, (Dv(x)[u])

Define: the of f: M - Ratx
is a linear operator from T,, M to T, M defined by:

Hessf (x)|u] = V, gradf

where V is the Riemannian connection.

Claim: Hessf (x) is self-adjoint.
Claim: if x is a local minimum, then Hessf (x) > O.



Hessians on Riemannian submanifolds

Hessf (x)[u] = W, gradf (x)
On a Riemannian manifold of a linear space,
V.V = Proj, (DV (x)[u])

Combining:

Hessf (x)[u] = Proj,(Dgradf (x)[u])



Hessians on Riemannian submanifolds (2)

Hessf (x)[u] = Proj,(Dgradf (x)[u])

Example: f (x) = -xTAx on the sphere in R™.
V(x) = gradf (x) = Proj,(Ax) = Ax — (xTAx)x
DV (x)[u] = Proj, (Au) — (xTAx)u —

Hessf (x)[u] = Proj, (Au) — (xTAx)u

Remarkably, gradf (x) = 0 and Hessf (x) > 0 iff x optimal.



Newton, Taylor and Riemann

Now that we have a Hessian, we might
1
f(Ry(v)) = my(v) = f(x) + (gradf (x), v), + - (v, Hessf (x)[v]),

If Hessf (x) is invertible, m,.: T, M — R has one
critical point, solution of this linear system:

Hessf(x)|v] = —gradf(x) for v € T,M
on M: Xpext = R, (V).

Claim: if Hessf (x*) > 0, quadratic local convergence.



We need one more tool...

The truncated expansion
1
f(Rx()) = f(x) + (gradf (x), v}, + §<v’ Hessf (x)[v])x

is (well, not always...)

To see why, let’s expand f along some smooth curve.



We need one more tool... (2)

Let’s expand f along some smooth curve.

Withc:R » M s.t.c(0) = x and ¢'(0) = v, the

composition g = f o ¢ maps R — R, so Taylor holds:
2

9(0) = g(0) +tg'(0) + = g"(0)

g(0) = f(x)
g'(® = Df(c(®)c'®)] = (gradf (c(®), ¢'(®))
g'(0) = (gradf (x), v),

c(t)



Differentiating vector fields along curves

AmapZ:R->TM isa if Z(t)
is a tangent vector at c(t).

Let X (c¢) denote the set of smooth such fields.

Claim: there a operator % : X (c) = X(c) s.t.
D ) D
1. g(aY +bZ) = adtDY +b—=Z
2 g(gZ) =g Z+gaZ
3. dc (U(C(t))) — cr(t)U
d D D
LG O20k0 = (FY0.2) +(r©O.520)

where V is the Riemannian connection.

c(t)



Differentiating fields along curves (2)

Claim: there exists a unique operator % : X (c) = X(c) s.t.
D D D
1. g(aY‘FbZ):CLEDY‘FbEZ
2 —(gZ) =9'Z+9-Z
3. — (U(c(t))) = VU
b S0, 70 = (FY©.2) +(v(®.520)
c(t)

where V is the Riemannian connection.

c(t)

Claim: if M is a Riemannian submanifold of &,

D _ d
EZ(t) = Proj. EZ(t)



%(aY + bZ? = a%DY + b%Z
g(gZ) =9'Z+gZ
— (Uc@®)) = VU
SV, ZD)er = (R YD), 2)

I

4 <Y(t),%Z(t)>

c(t) c(t)

With g(¢) = f(c(t)) and g'(t) = (gradf(c(t)),c’(t))c(t):

D D
g''(t) = < gradf(c(t)) C (t)> + <gradf(c(t)),ac’(t)>

c(t) c(t)
(\7 '(p8radf, c (t)> (gradf(C(t)), >c(t)

g"(0) = (Hessf(x)[v], v), + (gl‘adf (x), )x



With g(t) = f(c(t)) and g’ (t) = (gradf(c(t)),c’(t))c(t):

g'() = %gradf(c(t)), c’(t)> + <gradf(c(t)), % c’(t)>
c(t) c(t)

= (V.1 (pgradf, c’(t))c(t) + (gradf (c(t)), )C(t)
g"(0) = (Hessf (x)[v], v), + (gradf (x), )x

2
F(e() = F0O) + t - {gradf (1), v), + 5+ (Hessf () [v],v),
2
+%~ (gradf (x), ) +0(t3)

vanishes at critical points and for special
curves (special retractions). for optimization.



Trust-region method:
Newton’s with a safeguard

With the same tools, we can design a Riemannian
trust-region method: (Absil, Baker & Gallivan '07).

Approximately of f o Ry,
in Ty, M, with dynamic radius.

Complexity known. Excellent performance, also with
approximate Hessian (e.g., finite differences of gradf).

In Manopt, call trustregions(problem).
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In the lecture notes: AN INTRODUCTION TC
. for all claims in these slides ‘
. to the (growing) literature

e Short descriptions of

e Fully worked out
E.g.: Stiefel, fixed-rank matrices, general {x € £: h(x) = 0}

e Details about , pitfalls and tricks
E.g.: how to compute gradients, checkgradient, checkhessian

e Theory for
* Theory for

e Discussion of more
E.g.: distance, exp, log, transports, Lipschitz, finite differences

e Basics of
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