The problem:

with f nonconvex.

Optimization on manifolds:

M is a d-dimensional smooth manifold with Riemannian metric
Riemannian metric induces gradient grad f(x), Hessian Hess f(x)

Problem:
min f(x) subjecttox € M

Global minimum is hard to find. Instead seek:
e-FOCP: |[grad f(x)|| < €

e-SOCP: ||grad f (x)|| < €, Amin(Hess f(x)) = —/p€

Objective: Find SOCP without Hessian queries. /=

Applications:

numerical linear algebra - spectral decompositions,
low-rank Lyapunov equations

signal and image processing - shape analysis,
diffusion tensor imaging, community detection on
graphs, rotational video stabilization

statistics and machine learning - matrix/tensor completion, metric learning,
Gaussian mixtures, activity recognition, independent component analysis

robotics and computer vision - simultaneous localization and mapping,
structure from motion, pose estimation

To move on the manifold, use retractions:

y = Retr,(s), s€T,M
Tangent space T, M gives possible directions
E.qg., follow geodesics, or use metric projection

Riemannian gradient descent (RGD): x,,; = Retr,,(—n grad f (x,))
RGD visits an e-FOCP in 0(e~%) iterations.
Pullback £, : T,M = R: f,(s) = f(Retr,(s))
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Escaping Saddle Points on Manifolds

Chris Criscitiello and Nicolas Boumal (Princeton University)

Euclidean case (Jin, Netrapalli, Ge, Kakade, Jordan 2019):

= Jin et al.’s setting:
min f(x) subjectto x € R?

= Perturbed Gradient Descent:
= f|[VF(x)|l = €, perform a GD step x4 = x¢ —nVf(x,).
= f |VF(x)|l < €, perturb then perform T GD steps.

= Visits an e-SOCP in 0(e~“log*(d)) iterations with high probability.
= Intuition: Saddle points are unstable.
= Proof relies heavily on vector spaces. How to overcome this?

Our extension to smooth manifolds:

= Make batches of steps in a single tangent space.

= Perturbed Riemannian Gradient Descent (PRGD):
= (a) If [lgrad £ (x,)Il = €, perform an RGD step x.41 = Retry, (—n grad f(x,)).

= (b) If [lgrad f (x)|| < €, enter tangent space T, M, then perturb and perform T
GD steps on the pullback fxt in that tangent space. Retract back to manifold.

™M ™
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(a) (b)
= Visits an e-SOCP in 0(e~%log*(d)) iterations with high probability.
= Extends Jin et al.’s analysis (almost) seamlessly.

e,

Competing Extension (Sun, Flammarion, Fazel 2019):

= Sun et al. perform all steps on the manifold and analyze them in a
common tangent space.

= More natural but also more technical.

=  Similar but different regularity assumptions on f.

= Retr = Exp: move along geodesics.

= |teration complexity: same dependence in € and d; also curvature?

Detalls:

Assumptions:
(A1) f is lower-bounded.
(A2) Gradient of the pullback is “Lipschitz” in a ball:

HVf;C(S) — Vf, (O)H < L||s|| Vs € T,,M with ||s|| < b.

(A3) Hessian of the pullback is “Lipschitz” in a ball:
HVfo(s) — V2f, (O)H < plls|| Vs € T, M with ||s|| < b.

(A4) Second-order retraction.
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Issue: What if tangent space iterates escape the ball of radius b?
Handle with Jin et al.’s improve-or-localize lemma.
Require € < b?p.

So, more precisely, PRGD visits an e-SOCP in
0 (max{e~4, b*}log*(d)) iterations with high probability.

PCA: max%xTAx subjecttox € S¢71,L = ; IA]l, p = 9||A|l, b = oo.

Future Directions:

Role of curvature of M?
Adaptive scheme that doesn't need to know smoothness parameters?

Perturbed Stochastic Gradient Descent (PSGD, Jin et al. 2019)?

Running many steps in a single tangent space before retracting
means more classical methods can be adapted. In particular, it may
be easier to generalize:

Parallelized schemes
Coordinate descent algorithms
Accelerated schemes

See also trivializations paper by M. Lezcano Casado.



