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Abstract

How to make the best decision? This general concern, pervasive in both
research and industry, is what optimization is all about. Optimization is a
field of applied mathematics concerned with making the best use—according
to some quantitative criterion called the cost function—of our degrees of
freedom called the variables, possibly under some constraints.

Optimization problems come in various forms. We consider continuous
variables with differentiable cost functions. Furthermore, and this is central
to our investigation, we assume that the variables are constrained to belong
to a Riemannian manifold, that is, to a smooth space.

Building upon prior theory, we develop Manopt, a toolbox which consid-
erably simplifies the use of Riemannian optimization. We apply this tool to
two applications. First, we study low-rank matrix completion, which appears
in recommender systems. Such systems aim at predicting which movies,
books, etc. different users might appreciate, based on partial knowledge
of their preferences. Second, we study synchronization of rotations. This
is a central player in the reconstruction of 3D computer models of phys-
ical objects based on scans of their surface. In both cases, Riemannian
optimization provides competitive, scalable and accurate algorithms.

Both applications constitute estimation problems. In estimation, one
wishes to determine the value of unknown parameters based on noisy mea-
surements. We address the following fundamental question: given a noise
level on the measurements, how accurately can one hope to estimate the pa-
rameters? This prompts us to further develop Cramér-Rao bounds when the
parameter space is a manifold. Applied to synchronization, these bounds
bring about practical implications. First, they suggest that in many non-
trivial scenarios, our estimation algorithm could be optimal. Second, they
reveal the defining features that make a synchronization task more or less
difficult, hinting at which measurements should be acquired.
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Notation

Vectors and matrices

R Set of real numbers
R+ Set of positive real numbers
Rn Set of real column vectors of size n
Rm×n Set of real matrices with m rows and n columns
Rm×n∗ Set of full-rank m× n real matrices
I, In Identity matrix of size n (or of size indicated by context)
1n,1m×n Column vector or matrix of all ones
e1, . . . , en Canonical basis vectors of Rn: the columns of In
A> Transpose of the matrix A
trace(A) Trace of the square matrix A (sum of the diagonal entries)
diag(A) Extracts the diagonal entries of A, in a column vector
col(A) Subspace spanned by the columns of A

‖A‖ , ‖A‖F Frobenius norm of the matrix A, ‖A‖F =
√

trace(A>A)
λmax(A) Largest eigenvalue of A, in magnitude
A† Moore-Penrose pseudo-inverse of the matrix A
sym(A) Symmetric part of the square matrix A: (A+A>)/2
skew(A) Skew-symmetric part of the square matrix A: (A−A>)/2
A�B Hadamard (entry-wise) product of matrices A and B
A⊗B Kronecker product of matrices A and B
[X,Y ] Lie bracket or commutator: [X,Y ] = XY − Y X
A � 0 Positive semidefinite matrix
exp(A), log(A) Matrix exponential and logarithm
X Tuple of matrices: X = (X1, . . . , XN )
XY Product of tuples, entry-wise: XY = (X1Y1, . . . , XNYN )
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Sets and manifolds

M,N ,P Smooth, finite-dimensional (usually Riemannian) manifolds
M A probability space (in the second part of this thesis)
Sn−1 The unit sphere Sn−1 = {x ∈ Rn : x>x = 1}
St(m, r) The (compact) Stiefel manifold St(m, r) = {U ∈ Rm×r : U>U = Ir}
Gr(m, r) The Grassmann manifold of linear subspaces of Rm of dimension r
O(n) The orthogonal group O(n) = {R ∈ Rn×n : R>R = In}
SO(n) The special orthogonal group SO(n) = {R ∈ O(n) : det(R) = 1}
so(n) Lie algebra of SO(n), i.e., the set of skew-symmetric matrices

Tools on manifolds

TxM Tangent space at x to the manifold M
〈u, v〉x, 〈u, v〉 Inner product between tangent vectors u, v ∈ TxM
‖u‖x , ‖u‖ Norm of the tangent vector u at x, ‖u‖x =

√
〈u, u〉x

Projx For a Riemannian submanifold, orthogonal projector
from the ambient space to the tangent space at x

Hx,Vx Horizontal and vertical spaces at x to a quotient manifold

Projh,Projv For a Riemannian quotient manifold, orthogonal projectors
from the structure space to the horizontal and vertical spaces

Rx Retraction at x, Definition 2.25
dist(x, y) Riemannian (or geodesic) distance, Definition 2.22
∇XY Affine connection on a manifold,

typically the Riemannian connection, Definition 2.16
Expx Exponential map at x, Definition 2.23
Logx Logarithmic map at x, Definition 2.26
Transpy←x Vector transport from x to y, Definition 2.27
R(U, V ) Riemannian curvature tensor, Definition 2.28

Functions

Id Identity map
f ◦ g Function composition: (f ◦ g)(x) = f(g(x))
Df(x)[u] Directional derivative of f at x along u, also D(x 7→ f(x))(x)[u]
∇f(x) Classical gradient of f , seen as a function in a Euclidean space
gradf(x) Riemannian gradient of f , w.r.t. the manifold f is defined on
∇2f(x)[u] Classical Hessian of f at x along u
Hessf(x)[u] Riemannian Hessian of f at x along the tangent vector u at x
Iν(x) Modified Bessel function of the first kind (A.4)
E {Y } Expectation of a random variable Y
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Miscellaneous

x ∼ y Equivalence relation evaluated for two objects x and y
[x] Equivalence class of x for the equivalence relation ∼
i ∼ j For i, j two nodes in a graph, evaluates to true

if i and j are connected by an edge∑
i∼j Sum over the edges of a graph

O(f) Complexity class of f (Landau or big-O notation)

Acronyms and abbreviations

CG Conjugate gradients
SD Steepest-descent
CRB Cramér-Rao bound
FIM Fisher information matrix
ICP Iterative closest point
i.i.d. Independent, identically distributed (random variables)
MLE Maximum likelihood estimator
MSE Mean squared error
PCA Principal component analysis
pdf Probability density function
RCG Riemannian conjugate gradients
RTR Riemannian trust-regions
SDP Semidefinite programming
SDR Semidefinite relaxation
SNL Sensor network localization
SNR Signal to noise ratio
SVD Singular value decomposition
BLUE Best linear unbiased estimator
ECTD Euclidean commute-time distance
LRMC Low-rank matrix completion
QCQP Quadratically constrained quadratic program
RMSE Root mean square error
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Chapter 1

Introduction

This thesis is concerned with optimization and estimation on manifolds, that
is, on smooth nonlinear spaces. It originates in the study of two estimation
problems.

The first problem, low-rank matrix completion (LRMC), is suggested
by the study of recommender systems. In such systems, a collection of
items are available to users. For example, as popularized by the Netflix
prize (Bennett & Lanning, 2007), the items could be movies you rent out
and the users could be your customers. Each of your customers rented
some of the movies you offer and rated them based on how much they liked
them. Your task is to estimate (or predict) how much each of your customers
would like each of the movies they did not rate, so as to make a personalized
recommendation. If there are m movies and n customers, the ratings may
be arranged in an m×n matrix X. Most entries of X are unknown and the
task is to complete it. Of course, unless additional knowledge is brought
in, this is an ill-posed task. One popular regularization is to assume X is
approximately low-rank. This amounts to saying that there exist a small
rank r � m,n and matrices U ∈ Rm×r and W ∈ Rr×n such that X ≈ UW .
One possible interpretation is that there exist a small number r of genres
(action, comedy, romance. . . ) such that if for each movie a vector u (a row of
U) quantifies how much it belongs to each genre and for each customer their
appreciation of these genres is quantified in a vector w (a column of W ),
then the rating that customer would give to that movie is the inner product
u · w. This particular formulation of recommender systems thus results in
the mathematical problem of finding a matrix of low rank which agrees as
well as possible (according to some criterion) with measured entries.

The second problem, synchronization of rotations, follows from the study
of 3D scan registration. The goal is to construct a numerical representation
of the shape of a physical object, such as a statue for example. To this

15



16 Chapter 1. Introduction

end, a 3D scanner can be used. It is a device which, pointed at the statue
under some orientation, measures its topography. Naturally, the scanner
can only image the visible side of the statue, so that the latter needs to be
presented to the scanner under many different orientations. To then obtain
a unified representation of the complete object, the different scans must be
accurately pieced together, that is, each scan must be rotated and translated
appropriately. Known algorithms can detect whether or not two given scans
overlap and, if so, output an estimate of their relative alignment. The so-
called synchronization task consists in using the collected pairwise relative
measurements to estimate the position and orientation of the N individual
scans. The nonlinear part of this problem is the estimation of the rotation
matrices R1, . . . , RN from the measurements of RiR

−1
j for some pairs (i, j).

Both are nonlinear estimation problems in the sense that the sought
parameters belong to a nonlinear space. Furthermore, in both cases the
search spaces are smooth: the set of fixed-rank matrices as well as the set of
rotations form differentiable manifolds. Many such problems are currently
active research topics, see for example metric learning (Bellet et al., 2013),
global registration (Chaudhury et al., 2013), structure from motion (Arie-
Nachimson et al., 2012), distance matrix completion (Mishra et al., 2011a),
cryo-em imaging (Wang et al., 2013), interferometry (Demanet & Jugnon,
2013), phase-less reconstruction (Candès et al., 2012; Waldspurger et al.,
2012), subspace tracking (Balzano et al., 2010), independent component
analysis (Absil & Gallivan, 2006; Theis et al., 2009), estimation of correla-
tion matrices (Grubǐsić & Pietersz, 2007), etc. See also the numerous signal
processing applications listed in (Smith, 2005).

When facing an estimation problem, two principal questions are of in-
terest. First, how can one design efficient algorithms to perform the esti-
mation? Efficiency can be assessed both in terms of required computational
resources and in terms of estimation quality (bias, variance. . . ). Second,
what are the fundamental limits on the estimation quality one can hope
for? Certainly, in general, when data are corrupted by noise, perfect re-
covery of the parameters is impossible. Establishing a link between noise
level and attainable accuracy therefore provides a meaningful benchmark
to compare estimators and, at the same time, is informative with respect to
the nature of the problem.

To address the question of building estimators, optimization is often
the tool of choice. In optimization, we distinguish between two sorts of
solutions: a global optimizer is an absolute best, whereas a local optimizer
is only the best in a neighborhood around itself. Of course, global optimizers
are always the target, but in general they are overwhelmingly difficult to
find.

Some optimization problems can be solved globally in polynomial time
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(up to some precision). We refer to such problems as tractable. Among
them, spectral formulations (which only call for an eigenvector decompo-
sition or a singular value decomposition (SVD)) are often effective. For
example, applying the SVD to the data matrix in LRMC will get you a long
way (Chatterjee, 2012). Similarly, computing a few dominant eigenvectors
of a well-crafted matrix works wonders on synchronization of rotations (Car-
mona et al., 2011; Singer, 2011). Another large class of tractable problems
includes (well-behaved) convex programs (Nesterov, 2004), among which
semidefinite programs (SDP’s) are very popular. In particular, semidefinite
relaxations (SDR’s)—whereby one solves a tractable SDP related to a dif-
ficult problem in the hope that it will yield valuable information about the
latter—play a major role in finding approximate solutions to typically hard
problems from the class of quadratically constrained quadratic programs
(QCQP’s) (Luo et al., 2010). Synchronization of rotations with a least-
squares loss is an example of a nonconvex QCQP. On top of the availability
of global solvers for tractable problems, strong theoretical tools have also
been developed which can often be used to guarantee the performance of
the solutions found with respect to the original estimation task, for example
via dual certificates or randomized analysis.

On the downside, spectral and convex relaxations are limited in the
classes of loss functions they can accommodate, which may preclude full use
of prior knowledge about the noise distribution for example. Additionally,
although convex formulations boast a polynomial time complexity, they
may not be that efficient. Typical SDP solvers run in no-better than cubic
time in the number of variables or constraints, which in a big data world is
becoming less affordable despite the increase in available computing power.
Another source of inefficiency is the fact that SDR’s for QCQP’s ultimately
rely on lifting the problem to a high dimensional search space, where the
problem becomes convex. Similarly for LRMC, convex approaches drop the
rank constraint (Candès & Recht, 2009) and consequently operate in a much
higher-dimensional search space than the target parameter warrants. As a
result, both time and space requirements increase significantly.

It is hence a natural undertaking to try and combine cheap tractable
relaxations of an estimation task at hand (to overcome locally optimizing
traps) with an efficient, more flexible refinement strategy. In this thesis, we
resort to, respectively, spectral relaxations and Riemannian optimization.

Riemannian optimization, or optimization on manifolds, is a natural
candidate for the design of nonlinear estimation algorithms. By operating
directly on the low-dimensional search space, nonlinear as it may be, it is
able to keep the computational costs proportionate to the complexity of the
sought object. Riemannian optimization generalizes well-known tools from
continuous, unconstrained optimization such as gradient descent, Newton



18 Chapter 1. Introduction

methods, trust-region methods etc. In transitioning from the classical Eu-
clidean case to the realm of Riemannian search spaces, little is lost in the
convergence guarantees for these methods. Under essentially the same reg-
ularity conditions, global and local convergence results are established, in
a mature theory laid out by Absil et al. (2008). Obviously, little is gained
with respect to the convergence guarantees too: nonconvex optimization
problems are still hard to solve and the relevance of the reached optimizers
often depends on the quality of the initial guess of the solution.

A downside to the aforementioned blends of cheap relaxations and Rie-
mannian optimization refinements is the absence of generic tools for their
theoretical analysis. The OptSpace algorithm for LRMC (Keshavan et al.,
2010) is a notable exception. Its authors indeed succeeded in establishing
exact and stable recovery guarantees for a method based on a (tweaked)
truncated SVD followed by optimization over Grassmann manifolds. In
general though, conducting such analyses still proves difficult, in part for
lack of dedicated proof techniques. Even assessing numerically whether a
global optimizer was reached on a particular problem instance is usually
difficult.

To address the question of fundamental accuracy limits, one classical tool
is that of Cramér-Rao bounds (CRB’s). While well-established for linear
estimation problems (Rao, 1945), it is only recently that useful general-
izations to the Riemannian setting have been developed, notably through
the work of Smith (2005). The resulting lower bounds on the variance of
any estimator for an estimation problem are one way to alleviate the lack
of theoretical guarantees for an estimation algorithm. Indeed, numerical
demonstration that an estimator has the smallest variance possible, while
not a formal guarantee of success, delivers some peace of mind. Further-
more, specifically when the bounds are derived in closed-form, they may
reveal important information about the structure of the estimation problem
at hand.

Both Riemannian optimization and Riemannian estimation, as laid out
in (Absil et al., 2008) and in (Smith, 2005), are recent endeavors. As such,
their use is not widespread. This is in part due to an entry barrier in the
form of differential geometry prerequisites. In this thesis, we contribute to
both topics in an effort to lower the barriers.

On the optimization side, we develop Manopt, a toolbox for optimiza-
tion on manifolds. The toolbox is open-source and can be operated by a
user familiar with classical unconstrained optimization even without spe-
cific differential geometry background. This software is put to use on the
model problems (LRMC and synchronization of rotations) in combination
with spectral relaxations, with appreciable results.

On the estimation side, we contribute a specialization of the Riemannian
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CRB’s to the important cases of Riemannian submanifolds and Riemannian
quotient manifolds. This notably elucidates how CRB’s may be derived and
interpreted when indeterminacies (ambiguities) remain in the estimation
task. We apply these bounds to synchronization of rotations, which reveals
striking insight into the structure of this problem and into the structure of
estimation on graphs in general.

Much of this manuscript reports on collaborative efforts. Throughout,
this work is written in “we” even though the group of persons concerned
may vary. We identify who intervened in which parts in the outline below.

Outline of the thesis and related publications

The present introduction is followed by an overview of the fundamental
tools of differential geometry we use throughout the thesis, see Chapter 2.
Then, the thesis is divided in two parts, reflecting its twofold aim.

The first part is concerned with optimization on manifolds. Chapter 3
reviews the general topic of optimization on manifolds and describes two
well-established algorithms, namely the Riemannian conjugate gradients
method and the Riemannian trust-region method (Absil et al., 2008). It
finally introduces Manopt, the Matlab toolbox for optimization on man-
ifolds we developed as part of this thesis. The toolbox is available with
documentation at www.manopt.org and is described in a paper accepted
for publication (Boumal et al., 2014). This is a collaboration with Pierre-
Antoine Absil from UCLouvain and with Bamdev Mishra and Rodolphe
Sepulchre from the Université de Liège. The two other chapters in this
first part of the thesis present applications of Riemannian optimization we
describe momentarily. A third application investigated during this thesis
is discrete curve fitting on manifolds. That work is reported in conference
proceedings but left out of the present manuscript (Boumal, 2013a; Boumal
& Absil, 2011a,b).

Chapter 4 reports on LRMC. We propose an algorithm to tackle LRMC
as an optimization problem on the Grassmann manifold, leveraging the
generic tools from Chapter 3. The algorithm compares favorably with a
number of modern competitors on synthetic data and performs adequately
on the Netflix dataset. It is also an original investigation of the broad
and modern topic of optimization under low-rank constraints. The original
version of this algorithm was presented at NIPS 2011 (Boumal & Absil,
2011c) and is further detailed in an extended technical report (Boumal &
Absil, 2012).

Chapter 5 reports on synchronization of rotations. We propose a noise
model which allows for outliers and use second-order Riemannian trust-
regions for the estimation, following a maximum likelihood principle. A
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known spectral relaxation of the problem with performance guarantees (gen-
eralized here) is exploited as initial guess. We further explore the method
numerically on synthetic data and find that it appears to be efficient, as
compared to CRB’s developed in the second part. The method is also
found to perform well on a 3D scan registration task. The proposed estima-
tor, developed with Pierre-Antoine Absil and Amit Singer from Princeton
University, was first presented in a CDC 2013 paper (Boumal et al., 2013b).

The second part is concerned with bounds for estimation on manifolds.
Chapter 6 reviews a derivation of the CRB’s in the generalized setting of
estimation on manifolds, due to Smith (2005). It defines the estimation
theoretic tools required to discuss estimation tasks on manifolds and further
establishes lower bounds on the variance of unbiased estimators for such
tasks. This is the cornerstone to support the other chapters in this part of
the thesis.

Chapter 7 derives a version of the CRB’s introduced in Chapter 6 specif-
ically aimed at estimation problems on Riemannian submanifolds and Rie-
mannian quotient manifolds. This technical work is essentially necessary
to prepare the following chapter, but has the added benefit of shedding
light (not for the first time) on the relationship between indeterminacies in
estimation problems and rank-deficiency in the Fisher information matrix
(FIM). This work appears in the IEEE Transactions on Signal Process-
ing (Boumal, 2013b).

Chapter 8 develops and analyzes CRB’s for synchronization of rotations.
As such, it rests upon the estimation theoretic formulation of that problem
introduced in Chapter 5 and on the adapted bounds developed in Chapter 7.
The accuracy one can hope to reach in synchronization tasks is seen to rely
on the spectrum of the Laplacian of the measurement graph. This leads to
revealing interpretations of the level of difficulty of such problems in terms
of random walks. These findings appear in Information and Inference: a
Journal of the IMA, in collaboration with Pierre-Antoine Absil, Amit Singer
and Vincent Blondel from UCLouvain (Boumal et al., 2013a). Given the
reliance of the bound on the trace of the pseudoinverse of the Laplacian of
the measurement graph, we further investigate what the average bound is
if the available measurements are selected at random. This is discussed in
collaboration with Xiuyuan Cheng from Princeton University in a technical
report, but omitted from the present manuscript (Boumal & Cheng, 2013).

Matlab code for chapters 3, 4, 5 and 8 is available on my personal page,
currently hosted at http://perso.uclouvain.be/nicolas.boumal.



Chapter 2

Elements of Riemannian
geometry

This preliminary chapter gives an overview of essential differential geomet-
ric tools we use throughout the thesis. Our work is focused on Riemannian
manifolds, for the optimization part as well as for the estimation part. Rie-
mannian manifolds have a rich structure which can often be described in a
direct and natural way. However, a proper definition of Riemannian mani-
folds in general requires a definition of smooth manifolds. In turn, defining
smooth manifolds requires notions like charts, atlases and tangent vectors
seen as equivalence classes of curves. These definitions seldom (if ever)
come up in the main chapters of this work because they tend to be tedious
to manipulate. Nevertheless, they constitute the solid ground on which rests
our intuitive understanding of the Riemannian geometry of many familiar
objects and for which more comfortable tools are described.

Besides covering the fundamental definitions leading to the notion of
Riemannian manifold, this chapter deals with useful tools such as notions
of calculus on manifolds (gradients, connections, Hessians) as well as the
exponential and logarithmic maps and vectors transports which make up
for some of the structure lost in transitioning from the realm of linear to
nonlinear spaces. Curvature, as a means to quantify departure from flatness,
is also addressed. Combined, these tools are instrumental in building generic
optimization algorithms and estimation bounds on manifolds, as leveraged
in this thesis.

The exposition adopted in this chapter is based on a similar chapter in
my master’s thesis and is mainly inspired from (Absil et al., 2008). The
figures are courtesy of Absil et al. (2008). All concepts are well-established,
see also (Chavel, 1993; do Carmo, 1992; Lee, 1997; O’Neill, 1983).
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2.1 Charts and manifolds

Manifolds are sets that can be locally identified with patches of Rn. These
identifications are called charts. A set of compatible charts that covers the
whole set is called an atlas for that set. The set and the atlas together
constitute a manifold. More formally:

Definition 2.1 (chart). Let M be a set. A chart of M is a pair (U,ϕ)
where U ⊂ M and ϕ is a bijection between U and an open set of Rn. U
is the chart’s domain and n is the chart’s dimension. Given p ∈ U , the
elements of ϕ(p) = (x1, . . . , xn) are called the coordinates of p in the chart
(U,ϕ).

Definition 2.2 (compatible charts). Two charts (U,ϕ) and (V, ψ) of M , of
dimensions n and m respectively, are smoothly compatible (C∞−compatible)
if either U ∩ V = ∅ or U ∩ V 6= ∅ and

• ϕ(U ∩ V ) is an open set of Rn,

• ψ(U ∩ V ) is an open set of Rm,

• ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is a smooth diffeomorphism (i.e., a
smooth invertible function with smooth inverse).

When U ∩ V 6= ∅, the latter implies n = m.

V

U

R
n

ψ(V )

ϕ ψ

R
n

ϕ(U )
ϕ ◦ ψ−1

ψ ◦ ϕ−1

ϕ(U ∩ V )

ψ(U ∩ V )

Figure 2.1: Charts. Figure courtesy of Absil et al. (2008).
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Definition 2.3 (atlas). A set A = {(Ui, ϕi), i ∈ I} of pairwise smoothly
compatible charts such that ∪i∈IUi = M is a smooth atlas of M .

Two atlases A1 and A2 are compatible if A1 ∪ A2 is an atlas. Given
an atlas A, one can generate a unique maximal atlas A+. Such an atlas
contains A as well as all the charts compatible with A. Classically, we
define:

Definition 2.4 (manifold). A smooth manifold is a pair M = (M,A+),
where M is a set and A+ is a maximal atlas of M .

All the manifolds considered in this work are smooth. Even though
charts are a necessary ingredient to define manifolds, they are seldom used
in practice when working on a specific manifold. The reason for this is
that differential geometric tools are often coordinate-free. Coordinate-free
means the choice of charts is irrelevant: only the ensuing manifold structure
matters. As a result, it is often possible to bypass the explicit definition of
charts to describe a manifold.

Example 2.1. The vector space Rn can be endowed with an obvious mani-
fold structure. Simply consider M = (Rn,A+) where the atlas A+ contains
the identity map (Rn, ϕ), ϕ : U = Rn → Rn : x 7→ ϕ(x) = x.

Often times, we will refer to M when we really meanM and vice versa.
Once the differential manifold structure is clearly stated, no confusion is
possible. For example, the notation M⊂ Rn means M ⊂ Rn.

Definition 2.5 (dimension). Given a manifold M = (M,A+), if all the
charts of A+ have the same dimension n, then dimM := n is the dimension
of the manifold.

All the manifolds considered in this work have a finite dimension. We
need one last definition to assess smoothness of curves, functions and maps
defined on manifolds.

Definition 2.6 (smooth mapping). LetM and N be two smooth manifolds.
A mapping f : M → N is of class Ck if, for all p in M, there is a chart
(U,ϕ) of M and a chart (V, ψ) of N such that p ∈ U , f(U) ⊂ V and

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V )

is of class Ck, that is, if ψ ◦ f ◦ ϕ−1 is k times continuously differentiable.
The latter is called the local expression of f in the charts (U,ϕ) and (V, ψ).
A smooth map is of class C∞.

This definition does not depend on the choice of charts.
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2.2 Tangent spaces and tangent vectors

As is customary in differential geometry, we will define tangent vectors as
equivalence classes of curves. This surprising detour from the very simple
idea underlying tangent vectors (namely that they point in directions one
can follow at a given point on a manifold) stems from the lack of a vector
space structure. We first construct a simpler definition.

Consider a smooth curve c : R→M. IfM = Rn, one classically defines
the derivative of c at t = 0 as:

c′(0) := lim
t→0

c(t)− c(0)

t
.

Unfortunately, ifM is allowed to be any manifold, the difference appearing
in the numerator does not, in general, make sense. For manifolds embedded
in Rn however (such as, e.g., the sphere), we can still make sense of the
definition with the appropriate space identifications. A simple definition of
tangent spaces in this (limited) setting follows.

Definition 2.7 (tangent spaces for manifolds embedded in Rn). Let M⊂
Rn be a smooth manifold. The tangent space at x ∈M, noted TxM, is the
linear subspace of Rn defined by:

TxM = {v ∈ Rn : v = c′(0) for a smooth c : R→M such that c(0) = x} .

The dimension of TxM is the dimension of a chart of M containing x.

In general, M is not embedded in Rn so that a more general definition
of tangent vectors is needed. The following definition does not require the
manifold to be embedded in any space. Let M be a smooth manifold and
p be a point on M. Then,

Cp = {c : I →M : c ∈ C1, 0 ∈ I an open interval in R, c(0) = p}

is the set of differentiable curves on M passing through p at t = 0. Here,
c ∈ C1 is to be understood with Definition 2.6, with the obvious manifold
structure on open intervals of R derived from Example 2.1. We define an
equivalence relation on Cp, noted ∼. Let (U,ϕ) be a chart of M such that
p ∈ U and let c1, c2 ∈ Cp. Then, c1 ∼ c2 if and only if ϕ ◦ c1 and ϕ ◦ c2 have
the same derivative at t = 0, that is:

c1 ∼ c2 ⇔
d

dt
ϕ(c1(t))

∣∣∣∣
t=0

=
d

dt
ϕ(c2(t))

∣∣∣∣
t=0

.

It is easy to prove that this is independent of the choice of chart.
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Definition 2.8 (tangent space, tangent vector). The tangent space to M
at p, noted TpM, is the quotient space

TpM = Cp/∼ = {[c] : c ∈ Cp}.

Given c ∈ Cp, the equivalence class [c] is an element of TpM called a
tangent vector to M at p.

The mapping

θϕp : TpM→ Rn : [c] 7→ θϕp ([c]) =
d

dt
ϕ(c(t))

∣∣∣∣
t=0

= (ϕ ◦ c)′(0)

is bijective and naturally defines a vector space structure over TpM as
follows:

a[c1] + b[c2] := (θϕp )−1
(
aθϕp ([c1]) + bθϕp ([c2])

)
.

This structure, again, is independent of the choice of chart. WhenM⊂ Rn,
it is possible to build a vector space isomorphism (i.e., an invertible linear
map) proving that the two definitions 2.7 and 2.8 are, essentially, equivalent.

The notion of tangent vector induces a notion of directional derivatives.
Let M be a smooth manifold. A scalar field on M is a smooth function
f : M→ R. The set of scalar fields on M is denoted F(M).

Definition 2.9 (directional derivative). The directional derivative of a
scalar field f on M at p ∈ M in the direction ξ = [c] ∈ TpM is the
scalar:

Df(p)[ξ] :=
d

dt
f(c(t))

∣∣∣∣
t=0

= (f ◦ c)′(0).

The equivalence relation over Cp is specifically crafted so that this defini-
tion does not depend on the choice of c, the representative of the equivalence
class ξ. In the above notation, the brackets around ξ are a convenient way of
denoting that ξ is the direction. They do not mean that we are considering
some sort of equivalence class of ξ.

Just like scalar fields associate a scalar to each point of a manifold, it
will often times be useful to associate a tangent vector to each point of a
manifold. This leads to the definition of vector field.

Definition 2.10 (tangent bundle). Let M be a smooth manifold. The
tangent bundle, noted TM, is the set:

TM =
∐
p∈M

TpM,

where
∐

stands for disjoint union. The projection π extracts the root of a
vector, that is, π(ξ) = p if and only if ξ ∈ TpM.
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The tangent bundle inherits a smooth manifold structure from M (Ab-
sil et al., 2008, § 3.5.3). This makes it possible to define vector fields on
manifolds as smooth mappings from M to TM, where smoothness is once
more understood according to Definition 2.6.

Definition 2.11 (vector field). A vector field X is a smooth mapping from
M to TM such that π◦X = Id, the identity map. The vector at p is written
Xp or X(p) and lies in TpM. The set of vector fields on M is denoted as
X(M).

An important example of a vector field is the gradient of a scalar field
on a manifold, which we define in the next section and use extensively in
optimization algorithms. This will require an additional structure on M,
namely, a Riemannian metric.

2.2.1 Embedded submanifolds

A set N may admit several manifold structures N . Given a subset M ⊂ N ,
there may similarly exist several manifold structures for M , but only one
of these is such that M is a d-dimensional embedded submanifold of N , as
defined in (Absil et al., 2008, Prop. 3.3.2): for each point x ∈ M, there
exists a chart (U,ϕ) of N such that M∩ U = {x ∈ U : ϕ(x) ∈ Rd × {0}}.
This inherited structure is a strong tie between M and N . In particular,
smooth functions on N , when restricted to M, become smooth functions
on M.

The special case of a smooth manifoldM which is embedded (contained)
in a Euclidean space (say, Rn) is of particular interest in applications. The
following theorem shows how to define such manifolds by means of equality
constraints on the Cartesian coordinates. This will be one of our favorite
tools to describe smooth manifolds without resorting to charts explicitly.

Theorem 2.1. Let M be a subset of Rn. Statements (1) and (2) below are
equivalent:

(1) M is a smooth embedded submanifold of Rn of dimension n−m;

(2) For all x ∈M, there is an open set V of Rn containing x and a smooth
function f : V → Rm such that the differential Df(x) : Rn → Rm has
rank m and V ∩M = f−1(0).

Furthermore, the tangent space at x is given by TxM = ker Df(x).

Example 2.2. An example of a smooth, two-dimensional submanifold of
R3 is the sphere S2 = {x ∈ R3 : x>x = 1}. Use f : R3 → R : x 7→ f(x) =
x>x − 1 in Theorem 2.1. The tangent spaces are then TxS2 = {v ∈ R3 :
v>x = 0}—see Figure 2.2.
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S
2

c(t)

x = c(0) c
′(0)

Figure 2.2: Tangent space on the sphere. Since S2 is an embedded subman-
ifold of R3, the tangent space TxS2 can be pictured as the plane tangent to
the sphere at x, with origin at x. Figure courtesy of Absil et al. (2008).

2.2.2 Quotient manifolds

Embedded submanifolds can be easily described by means of equality con-
straints on a structure space. Another convenient way of defining smooth
manifolds is by means of equivalence relations.

Let M be a smooth manifold and let ∼ define an equivalence relation
overM. Every point x ∈M belongs to an equivalence class [x] = {y ∈M :
x ∼ y}. Now consider the quotient space M = M/∼ := {[x] : x ∈ M},
that is, the set of equivalence classes. That space may in general admit
several smooth manifold structures. Let us assume dim(M) < dim(M).
Under certain conditions, M admits a unique smooth manifold structure
that turns it into a quotient manifold of the total or structure spaceM. We
leave a proper definition of quotient manifolds to (Absil et al., 2008, § 3.4)
and instead focus on one of their instrumental properties.

The natural projection π : M → M defined by π(x) = [x] will be use-
ful. If M is made a quotient manifold of M, then the equivalence classes
[x] ⊂ M are embedded submanifolds of M. This property is depicted in
Figure 2.3. This excludes for example discrete symmetries, which declare
isolated points of M to be equivalent.

Objects on the quotient manifold such as points and tangent vectors,
although well defined, are rather abstract to work with and do not lend
themselves to an obvious numerical representation. This is a practically
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important point we address now through the definition of horizontal distri-
butions.

One way to represent an equivalence class x ∈ M in a computer is to
store a representation of an arbitrary x ∈ x. Then, considering an (abstract)
tangent vector ξ ∈ TxM, one may represent ξ as a tangent vector ξ ∈ TxM
which has the same “effect” as ξ in terms of derivations. More precisely,
choose any ξ such that for all scalar fields f on M and considering the
scalar field f = f ◦ π : M → R, the following identity holds: Df(x)[ξ] =
Df(x)[ξ]. Unfortunately, this representation is not unique, notably because
the dimension of TxM is larger than that of TxM.

The quotient manifold structure is now leveraged to identify a unique,
privileged vector ξ as described above, to represent ξ. Since the equivalence
class x is an embedded submanifold of M, for each x ∈ x it admits a
tangent space which is a subspace of the (total) tangent space at x in M.
This special tangent space is called the vertical space at x:

Vx := Tx(π(x)) ⊂ TxM.

Thus, for each x, we may choose a complementary space Hx ⊂ TxM, called
the horizontal space at x, such that

TxM = Vx ⊕Hx,

where ⊕ denotes the direct sum of two subspaces—see Figure 2.3. Notice
that this choice is not unique; the chosen mapping H is called a horizontal
distribution onM. There exists a unique horizontal vector ξ ∈ Hx such that
Df(x)[ξ] = Df(x)[ξ] for all scalar fields f ∈ F(M). Equivalently, ξ is the
unique horizontal vector such that Dπ(x)[ξ] = ξ and is called the horizontal
lift of ξ at x.

2.3 Riemannian structure and gradients

Tangent spaces are linear subspaces. Endowing them with inner products
provides notions of length and angles on these spaces.

Definition 2.12 (inner product). Let M be a smooth manifold and fix
p ∈M. An inner product 〈·, ·〉p on TpM is a bilinear, symmetric positive-
definite form on TpM, i.e., ∀ξ, ζ, η ∈ TpM, a, b ∈ R:

• 〈aξ + bζ, η〉p = a 〈ξ, η〉p + b 〈ζ, η〉p,

• 〈ξ, ζ〉p = 〈ζ, ξ〉p, and

• 〈ξ, ξ〉p ≥ 0, with 〈ξ, ξ〉p = 0 ⇔ ξ = 0.
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x

Vx

Hx

π

M = M/∼

M

x = π(x)

[x]

Figure 2.3: Schematic illustration of a quotient manifold. Figure courtesy
of Absil et al. (2008).

The norm of a tangent vector ξ ∈ TpM is ‖ξ‖p =
√
〈ξ, ξ〉p.

Often, when it is clear from the context that ξ and η are rooted at
p, i.e., ξ, η ∈ TpM, we write 〈ξ, η〉 instead of 〈ξ, η〉p. Defining an inner
product on all tangent spaces of a smooth manifold in a smooth way defines
a Riemannian metric on that manifold.

Definition 2.13 (Riemannian manifold). A Riemannian manifold is a pair
(M, g), where M is a smooth manifold and g is a Riemannian metric.
A Riemannian metric is a smoothly varying inner product defined on the
tangent spaces of M, that is, for each p ∈ M, gp(·, ·) = 〈·, ·〉p is an inner
product on TpM.

In this definition, smoothly varying can be understood in the following
sense: for all vector fields X,Y ∈ X(M) onM, the function p 7→ gp(Xp, Yp)
is a smooth function from M to R. A vector space equipped with an inner
product is a special kind of Riemannian manifold called a Euclidean space.

As is customary, we will often refer to a Riemannian manifold (M, g)
simply as M when the metric is clear from the context.
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The following definition is of major importance for our purpose. It
introduces the notion of gradient of a scalar field on a Riemannian manifold.
This constitutes a main reason to require a Riemannian structure in the
context of optimization on M.

Definition 2.14 (gradient). Let f be a scalar field on a Riemannian man-
ifold M. The gradient of f at p, denoted by gradf(p), is defined as the
unique element of TpM satisfying:

Df(p)[ξ] = 〈gradf(p), ξ〉p , ∀ξ ∈ TpM.

Thus, gradf :M→ TM is a vector field on M.

The gradient depends on the Riemannian metric but directional deriva-
tives do not. For a scalar field f on a Euclidean space, gradf is the usual
gradient, which we note ∇f . Remarkably, and similarly to the Euclidean
case, the gradient defined above is the steepest-ascent vector field and the
norm ‖gradf(p)‖p is the steepest slope of f at p. More precisely,

‖gradf(p)‖p = max
ξ∈TpM,‖ξ‖p=1

Df(p)[ξ]

and ξ = gradf(p)/‖gradf(p)‖p achieves the maximum.
Based on this definition, one privileged way to derive an expression for

the gradient of a scalar field f is to work out an expression for the direc-
tional derivatives of f , according to Definition 2.9, then to write it as an
inner product suitable for direct identification in Definition 2.14. For Rie-
mannian submanifolds and Riemannian quotient manifolds, shortcuts are
available. These involve computing classical directional derivatives of ma-
trix functions. Two excellent surveys which can help in this task are the
Matrix Cookbook by Petersen & Pedersen (2006) and the Matrix Reference
Manual by Brookes (2005), both freely available online.

2.3.1 Riemannian submanifolds

Let M be a Riemannian manifold. Naturally, if M ⊂M is a submanifold
ofM, it can be endowed with a Riemannian structure simply by restricting
the metric of M to the tangent spaces of M.

Definition 2.15 (Riemannian submanifold). Let (M, g) be a Riemannian
manifold and let (M, g) be such that M is a submanifold of M and such
that g is the restriction of g to the tangent spaces of M. More precisely,
for all p ∈ M and for all tangent vectors ξ, η ∈ TpM⊂ TpM, the metrics
g and g are compatible in the sense that gp(ξ, η) = gp(ξ, η). Then, M is a

Riemannian submanifold of M.
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Because an inner product is defined on all of the embedding tangent
space TpM, the subspace TpM admits an orthogonal complement, called
the normal space, defined as

T⊥pM := {ξ ∈ TpM : 〈ξ, η〉p = 0 ∀η ∈ TpM}.

All vectors of TpM are uniquely decomposed as ξ = Projp(ξ) + Proj⊥p (ξ)

where Projp and Proj⊥p are orthogonal projectors on the following spaces:

Projp : TpM→ TpM and

Proj⊥p : TpM→ T⊥pM.

Let f be a scalar field on M and let f be its restriction to M (thus, f is a
scalar field on M). Then,

gradf(p) = Projpgradf(p).

Indeed, decomposing gradf(p) into its normal and tangent components, it
is not difficult to check that Definition 2.14 holds: for all ξ in TpM,

Df(p)[ξ] = Df(x)[ξ] =
〈

Projpgradf(p) + Proj⊥p gradf(p), ξ
〉
p

=
〈
Projpgradf(p), ξ

〉
p
.

In particular, if M is a Riemannian submanifold of a Euclidean space Rn,
then

gradf(x) = Projx∇f(x),

that is, a classical gradient followed by an orthogonal projection on the
tangent space.

Example 2.3 (continued from Example 2.2). The Riemannian metric on
the sphere is obtained by restricting the metric on R3 to S2. Hence, for
x ∈ S2 and v1, v2 ∈ TxS2, 〈v1, v2〉x = v>1 v2. The orthogonal projector on
the tangent space TxS2 is Projx = I − xx>.

2.3.2 Riemannian quotient manifolds

Let (M, g) be a Riemannian manifold and let M = M/∼ be a quotient
manifold of M. We will now leverage the Riemannian structure of M to
equip M with a Riemannian structure as well. To this end, we first single
out one horizontal distribution (see Section 2.2.2) as follows. For all x ∈M,

Hx := V⊥x = {ξ ∈ TxM : gx(ξ, η) = 0 ∀η ∈ Vx}.
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Thus, the horizontal lift of an abstract tangent vector ξ ∈ TxM at x ∈ x
is the unique horizontal vector ξ ∈ Hx such that Dπ(x)[ξ] = ξ. If for every
x ∈ M and every ξ, η ∈ TxM the inner product gx(ξ, η) does not depend
on the choice of lifting point x, then

gx(ξ, η) := gx(ξ, η)

defines a Riemannian metric on M and (M, g) is a Riemannian quotient
manifold of M. Furthermore, the canonical projection π : M → M is a
Riemannian submersion, i.e., the restriction of Dπ(x) to Hx is an isometry:
for all ξ, η ∈ Hx,

gx(ξ, η) = gx(Dπ(x)[ξ],Dπ(x)[η]).

Consider a scalar field f on the quotient spaceM. We now demonstrate
how to compute a horizontal lift of the gradient of f at x ∈ M. To this
end, choose any scalar field f on M such that f = f ◦ π. Notice that the
directional derivatives of f along vertical vectors are necessarily zero:

Df(x)[ξ] = Df(π(x))[Dπ(x)[ξ]] = Dπ(x)[0] = 0.

Thus, the gradient of f is a horizontal vector field: ∀x ∈M, gradf(x) ∈ Hx.
This horizontal vector field is actually the horizontal lift of the gradient of
f :

gradf(x) = gradf(x),

where the left hand side denotes the horizontal lift of gradf(x) at x. Indeed,
for all x ∈M and ξ ∈ TxM and for any lifting point x ∈ x,

gx(gradf(x), ξ) = gx(Dπ(x)[gradf(x)],Dπ(x)[ξ])

= gx(Dπ(x)[gradf(x)],Dπ(x)[ξ])

= gx(gradf(x), ξ)

= Df(x)[ξ] = Df(x)[ξ].

The orthogonal projectors on the horizontal and vertical spaces at x
are denoted by, respectively, Projhx : TxM → Hx and Projvx : TxM → Vx.
Orthogonality is understood w.r.t. the metric g.

2.4 Connections and Hessians

Let M be a Riemannian manifold and X,Y be vector fields on M. We
would like to define the derivative of Y at x ∈ M along the direction Xx.
If M were a Euclidean space, we would write:

DY (x)[Xx] = lim
t→0

Y (x+ tXx)− Y (x)

t
.
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Of course, whenM is not a vector space, the above equation does not make
sense because x + tXx is undefined. Furthermore, even if we give meaning
to this sum—and we will in Section 2.6—Y (x + tXx) and Y (x) would not
belong to the same vector spaces, hence their difference would be undefined
too.

To overcome these difficulties, we need the concept of connection. A
connection is an additional structure on top of the differentiable manifold
structure that, loosely stated, makes it possible to compare vectors in tan-
gent spaces of nearby points. This can be generically defined for manifolds.
Since we are mainly interested in Riemannian manifolds, we focus on the so
called Riemannian, or Levi-Civita connections. The derivatives defined via
these connections are notably interesting because they give a coordinate-
free means of defining acceleration along a curve (i.e., the derivative of the
velocity vector) as well as the Hessian of a scalar field (i.e., the derivative
of the gradient vector field).

We now go over the definition of affine connection for manifolds and
the Levi-Civita theorem, specific to Riemannian manifolds. This leads to a
notion of Riemannian Hessian. Useful theorems to specialize these notions
for Riemannian submanifolds and Riemannian quotient manifolds are then
provided.

Definition 2.16 (affine connection). Let X(M) denote the set of smooth
vector fields on M and F(M) denote the set of smooth scalar fields on M.
An affine connection ∇ on a manifold M is a mapping

∇ : X(M)× X(M)→ X(M) : (X,Y ) 7→ ∇XY

which satisfies the following properties:

(1) F(M)-linearity in X: ∇fX+gY Z = f∇XZ + g∇Y Z,

(2) R-linearity in Y : ∇X(aY + bZ) = a∇XY + b∇XZ,

(3) Product rule (Leibniz’ law): ∇X(fY ) = (Xf)Y + f∇XY ,

in which X,Y, Z ∈ X(M), f, g ∈ F(M) and a, b ∈ R.

The symbol ∇ is pronounced “nabla” or “del”; it is not the gradient
operator. We have used a standard interpretation of vector fields as deri-
vations on M. The notation Xf stands for a scalar field on M such that
Xf(p) = Df(p)[Xp]. Compare the above properties to the usual properties
of derivations in Rn. Every smooth manifold admits infinitely many affine
connections. This approach is called an axiomatization: we state the prop-
erties we desire in the definition, then only investigate whether such objects
exist.
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Definition 2.17 (covariant derivative). The vector field ∇XY is called the
covariant derivative of Y with respect to X for the affine connection ∇.
Since (∇XY )p ∈ TpM depends on X only through Xp, we can make sense
of the notation ∇ξY where ξ ∈ TpM as ∇ξY = (∇XY )p for an arbitrary
X ∈ X(M) such that Xp = ξ.

At each point p ∈ M, the vector (∇XY )p captures how the vector field
Y varies at p along the direction Xp. The following example shows a natural
affine connection in Euclidean space.

Example 2.4. In Rn, the classical directional derivative defines an affine
connection:

(∇XY )x = lim
t→0

Y (x+ tXx)− Y (x)

t
= DY (x)[Xx].

This should give us confidence that Definition 2.16 is a good definition.
As often, the added structure of Riemannian manifolds makes for stronger
results. The Levi-Civita theorem singles out one particular affine connection
for each Riemannian manifold.

Theorem 2.2 (Levi-Civita). On a Riemannian manifold M there exists a
unique affine connection ∇ that satisfies

(1) ∇XY −∇YX = [X,Y ] (symmetry), and

(2) Z 〈X,Y 〉 = 〈∇ZX,Y 〉+〈X,∇ZY 〉 (compatibility with the Riemannian
metric),

for all X,Y, Z ∈ X(M). This affine connection is called the Levi-Civita
connection or the Riemannian connection.

In the above definition, we used the notation [X,Y ] for the Lie bracket of
X and Y , which is a vector field defined by [X,Y ]f = X(Y f)−Y (Xf),∀f ∈
F(M), again using the interpretation of vector fields as derivations. Not
surprisingly, the connection exposed in Example 2.4 is the Riemannian con-
nection on Euclidean spaces for the canonical inner product.

Since connections provide a notion of derivative of a vector field, for a
Riemannian manifold we may define a notion of Hessian as the derivative
of the gradient vector field.

Definition 2.18 (Riemannian Hessian). Given a scalar field f on a Rie-
mannian manifoldM equipped with the Riemannian connection ∇, the Rie-
mannian Hessian of f at a point x ∈M is the linear mapping Hessf(x) from
TxM into itself defined by

Hessf(x)[ξ] = ∇ξgradf = (∇Xgradf)x,

where X is any vector field on M such that Xx = ξ.
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In particular, the Riemannian Hessian is a symmetric operator with
respect to the Riemannian metric:

〈Hessf(x)[ξ], η〉x = 〈ξ,Hessf(x)[η]〉x .

For the special cases of Riemannian submanifolds and Riemannian quo-
tient manifolds, connections and Hessians are often simpler to compute than
for the general case.

2.4.1 Riemannian submanifolds

The next theorem is an important result about the Riemannian connection
of a submanifold of a Riemannian manifold taken from (Absil et al., 2008).
This situation is illustrated on Figure 2.4.

X

∇XX

M

M

Figure 2.4: Riemannian connection ∇ in a Euclidean space M applied to
a tangent vector field X to a circle. We observe that ∇XX is not tangent
to the circle, hence simply restricting ∇ to the circle is not an option. As
Theorem 2.3 shows, we need to project (∇XX)x on the tangent space TxM
to obtain (∇XX)x. Figure courtesy of Absil et al. (2008).

Theorem 2.3. LetM be a Riemannian submanifold of a Riemannian man-
ifold M and let ∇ and ∇ denote the Riemannian connections on M and
M. Then,

(∇XY )p = Projp(∇XY )p

for all X,Y ∈ X(M).

In particular, if M is a Euclidean space (Example 2.4), then

(∇XY )x = Projx(DY (x)[Xx]). (2.1)

This means that the Riemannian connection on M can be computed via
a classical directional derivative in the embedding space followed by a pro-
jection on the tangent space. Thus, for the Riemannian Hessian it holds



36 Chapter 2. Elements of Riemannian geometry

that:

Hessf(x)[ξ] = Projx(D(x 7→ Projx∇f(x))[ξ]),

where ∇f(x) denotes the classical gradient of f seen as a scalar field on the
embedding Euclidean space. In other words: compute the classical gradient
of f , project it, then compute the classical directional derivative of the result
and project it.

2.4.2 Riemannian quotient manifolds

The Riemannian connections of a Riemannian manifold and one of its Rie-
mannian quotient manifolds are tightly related.

Theorem 2.4. Let M be a Riemannian manifold and M = M/ ∼ be a
Riemannian quotient manifold of M. Let ∇ and ∇ be the Riemannian
connections on M and M respectively. Then,

(∇XY )x = Projhx(∇XY )x

for all X,Y ∈ X(M), x ∈ M, x ∈ x. Overlines denote horizontal lifts and
Projhx is the orthogonal projector onto the horizontal space at x.

In particular, if the structure spaceM is a Euclidean space, this reduces
to

(∇XY )x = Projhx(DY (x)[Xx]),

that is, a classical directional derivative of the horizontal vector field Y
followed by a horizontal projection. For the Riemannian Hessian, this is
spelled out as:

Hessf(x)[ξ] = Projhx(D∇f(x)[ξ]),

where ∇f is the classical gradient of f seen as a function on the total space
M (remember that this is naturally a horizontal vector field). In other
words: compute the classical gradient of f , compute its classical directional
derivatives and project to the horizontal space.

2.5 Distances and geodesic curves

A characteristic of line segments in Rn seen as curves with arc-length pa-
rameterization is that they have zero acceleration. The next definitions
generalize the concept of straight lines, preserving this zero acceleration
characteristic, to manifolds.
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Let us first introduce a notation for tangent vectors to curves (velocity
vectors). Given a curve of class C1, γ : [a, b] → M, and t ∈ [a, b], define
another such curve on M by shifting its parameter:

γt : [a− t, b− t]→M : τ 7→ γt(τ) = γ(t+ τ).

This curve is such that γt(0) = γ(t). Thus, the equivalence class [γt] ∈
Tγ(t)M is a vector tangent to γ at time t (Definition 2.8). We propose to
write

γ̇(t) , [γt].

When using Definition 2.7 for tangent vectors to submanifolds of a Euclidean
space Rn, γ̇(t) is identified with γ′(t), the classical derivative of γ seen as a
curve in Rn.

Definition 2.19 (acceleration along a curve). LetM be a smooth manifold
equipped with a connection ∇. Let γ : I →M with I an open interval of R
be a C2 curve on M. The acceleration along γ is given by:

t 7→ ∇γ̇(t)γ̇(t) ∈ Tγ(t)M.

The above equation abuses the notation for γ̇, which is tacitly supposed
to be smoothly extended to an arbitrary vector field X ∈ X(M) such that
Xγ(t) = γ̇(t) for all t (proceed locally if γ crosses itself). For submanifolds of
a Euclidean space Rn, by equation (2.1) and using Definition 2.7 for tangent
vectors, this reduces to:

∇γ̇(t)γ̇(t) = Projγ(t)γ
′′(t),

where γ′′(t) is the classical second-derivative of γ seen as a curve in Rn.

Definition 2.20 (geodesic). A curve γ : I →M with I an open interval of
R is a geodesic if and only if it has zero acceleration on all its domain.

Notice that the choice of connection ∇ induces a notion of acceleration
and hence defines the corresponding geodesics onM. IfM is a Riemannian
manifold and ∇ is the Riemannian connection on M, then these geodesics
have additional extremal properties we outline now.

For Riemannian manifolds M, the availability of inner products on the
tangent spaces makes for an easy definition of curve length and distance.

Definition 2.21 (length of a curve). The length of a curve of class C1,
γ : [a, b] → M, on a Riemannian manifold (M, g), with 〈ξ, η〉p , gp(ξ, η),
is defined by

length(γ) =

∫ b

a

√
〈γ̇(t), γ̇(t)〉γ(t) dt =

∫ b

a

‖γ̇(t)‖γ(t) dt.
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IfM is a Riemannian submanifold of a Euclidean space Rn, γ̇(t) can be
replaced by γ′(t).

Definition 2.22 (Riemannian distance). The Riemannian distance (or ge-
odesic distance) on M is given by:

dist : M×M→ R+ : (p, q) 7→ dist(p, q) = inf
γ∈Γ

length(γ),

where Γ is the set of all C1 curves γ : [0, 1] → M such that γ(0) = p and
γ(1) = q.

Under very reasonable conditions (see (Absil et al., 2008, p. 46)), one
can show that the Riemannian distance defines a metric. The definition
above captures the idea that the distance between two points is the length
of the shortest path joining these two points. In a Euclidean space, such a
path would simply be the line segment joining the points

For close points, geodesics as defined by the Riemannian connection are
shortest paths w.r.t. the Riemannian metric. This is not true for any two
points on a geodesic though. Indeed, think of two points on the equator of
the unit sphere in R3. The equator itself, parameterized by arc-length, is
a geodesic. Following this geodesic, one can join the two points via a path
of length r or a path of length 2π − r. Unless r = π, one of these paths
is bound to be suboptimal. Most often, we implicitly consider minimal
geodesics, that is, geodesics of minimal length.

2.6 Exponential and logarithmic maps

Exponentials are mappings that, given a point x on a manifold and a tangent
vector ξ at x, generalize the concept of “x + ξ”. In a Euclidean space, the
sum x + ξ is a point in space that can be reached by leaving x in the
direction ξ and traveling a distance equal to the length of ξ. On a manifold
equipped with a connection, Expx(ξ) is a point on the manifold that can
be reached by leaving x and moving in the direction ξ while remaining
on the manifold. Furthermore, the trajectory followed is a geodesic (zero
acceleration). For a Riemannian manifold equipped with the Riemannian
connection, the distance traveled equals the norm of ξ.

Definition 2.23 (exponential map). LetM be a smooth manifold endowed
with a connection ∇ and let x ∈ M. For every ξ ∈ TxM, there exists an
open interval I 3 0 and a unique geodesic γ(t;x, ξ) : I →M such that γ(0) =
x and γ̇(0) = ξ. Moreover, we have the homogeneity property γ(t;x, aξ) =
γ(at;x, ξ). The mapping

Expx : TxM→M : ξ 7→ Expx(ξ) = γ(1;x, ξ)
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is called the exponential map at x. In particular, Expx(0) = x, ∀x ∈M.

In Section 5.2, the geometry of the group of rotations is introduced.
There, it will be noted that the exponential map is explicitly computable
using the matrix exponential, whence the name. The domain of definition
I of the geodesic γ(t;x, ξ) does not necessarily include t = 1 for all ξ, so
that Expx is not necessarily defined over the whole tangent space at x.

Definition 2.24 (geodesically complete manifold). When for all x ∈ M,
Expx is defined over the whole tangent space TxM, the manifold M is said
to be geodesically complete.

Exponentials can be expensive to compute. The concept of retraction
admits a simpler definition which requires neither a connection nor a met-
ric, but still captures the most important aspects of exponentials as far as
optimization is concerned. Essentially, we drop the requirement that the
trajectory γ be a geodesic, as well as the equality between distance traveled
and ‖ξ‖. Figure 2.5 illustrates the concept.

x

M

TxM

Rx(ξ)

ξ

Figure 2.5: Retraction. Figure courtesy of Absil et al. (2008).

Definition 2.25 (retraction). A retraction on a manifold M is a smooth
mapping R from the tangent bundle TM onto M with the following prop-
erties. For all x in M, Let Rx denote the restriction of R to TxM. Then,

(1) Rx(0) = x, where 0 is the zero element of TxM, and

(2) The differential (DRx)0 : T0(TxM) ≡ TxM → TxM is the identity
map on TxM, that is, (DRx)0 = Id (local rigidity).
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Equivalently, the local rigidity condition can be stated as: ∀ξ ∈ TxM,
the curve γξ : t 7→ Rx(tξ) satisfies γ̇ξ(0) , [γξ] = ξ. In particular, an expo-
nential map is a retraction. One can think of retractions as mappings that
share the important properties we need with the exponential map, while
being defined in a flexible enough way that we will be able to propose re-
tractions that are, computationally, cheaper than exponentials. Retractions
are the core concept needed to generalize descent algorithms to manifolds.

A related concept is the logarithmic map. Not surprisingly, it is defined
as the inverse mapping of the exponential map. For two points x and y,
logarithms generalize the concept of “y − x”. This is useful notably to
define a notion of error vector Logθ(θ̂) in estimation theory, where θ ∈ M
is a parameter to estimate and θ̂ ∈M is an estimate of θ. In that context,
Logθ(θ̂) is a tangent vector at θ which quantifies the estimation error “θ̂−θ”
in both magnitude and direction.

Definition 2.26 (logarithmic map). Let M be a Riemannian manifold.
We define

Logx : M→ TxM : y 7→ Logx(y) = ξ,

such that Expx(ξ) = y and ‖ξ‖x = dist(x, y).

Given a root point x and a target point y, the logarithmic map returns a
tangent vector at x pointing toward y and such that ‖Logx(y)‖ = dist(x, y).
As is, this definition is not perfect. There might indeed be more than one
eligible ξ. For example, think of the sphere S2 and place x and y at the poles:
for any vector η ∈ TxS2 such that ‖η‖ = π, we have Expx(η) = y. For a
more careful definition of the logarithm, see for example (do Carmo, 1992).
As long as x and y are not “too far apart”, this definition is satisfactory.

2.7 Parallel translation

In Euclidean spaces, it is natural to compare vectors rooted at different
points in space, so much that the notion of root of a vector is utterly unim-
portant. On manifolds, each tangent vector belongs to a tangent space
specific to its root point. Vectors from different tangent spaces cannot be
compared immediately. We need a mathematical tool capable of transport-
ing vectors between tangent spaces while retaining the information they
contain.

The proper tool from differential geometry for this is called parallel trans-
lation. Let us consider two points x, y ∈M, a vector ξ ∈ TxM and a curve
γ onM such that γ(0) = x and γ(1) = y. We introduce X, a vector field de-
fined along the trajectory of γ and such that Xx = ξ and ∇γ̇(t)X(γ(t)) ≡ 0.
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We say that X is constant along γ. The transported vector is Xy; it depends
on γ.

In general, computing Xy requires one to solve a differential equation on
M. Just like we introduced retractions as a simpler proxy for exponentials,
we now introduce the concept of vector transport as a proxy for parallel
translation. This concept was first described by Absil et al. (2008, § 8.1).

The notion of vector transport defines how to transport a vector ξ ∈
TxM from a point x ∈ M to a point Rx(η) ∈ M, η ∈ TxM. We first
introduce the Whitney sum then quote the definition of vector transport.

TM⊕ TM = {(η, ξ) : η, ξ ∈ TxM, x ∈M}

Hence TM⊕TM is the set of pairs of tangent vectors belonging to a same
tangent space. In the next definition, one of them will be the vector to
transport and the other will be the vector along which to transport. This
definition is illustrated on Figure 2.6.

x

M

TxM

η

Rx(η)

ξ

Transpη(ξ)

Figure 2.6: Vector transport. Figure courtesy of Absil et al. (2008).

Definition 2.27 (vector transport). A vector transport on a manifold M
is a smooth mapping

Transp: TM⊕ TM→ TM : (η, ξ) 7→ Transpη(ξ)

satisfying the following properties for all x ∈M:

(1) (associated retraction) There exists a retraction R, called the retrac-
tion associated with Transp, such that Transpη(ξ) ∈ TRx(η)M,

(2) (consistency) Transp0(ξ) = ξ for all ξ ∈ TxM,
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(3) (linearity) Transpη(aξ + bζ) = aTranspη(ξ) + bTranspη(ζ), ∀η, ξ, ζ ∈
TxM, a, b ∈ R.

This definition is permissive on purpose: it is sufficient to analyze a
number of optimization algorithms while authorizing much freedom on the
user side.

In this work, we will more often be interested in transporting a vector
ξ from a point x to a point y rather than along a vector η. The following
notation is more useful in such contexts:

Transpy←x(ξ) := TranspR−1
x (y)(ξ).

The mapping Transpy←x : TxM→ TyM is a vector transport provided it
depends smoothly on x and y, it is linear in ξ and Transpx←x is the identity
map.

Example 2.5. A valid retraction on the sphere S2 is given by:

Rx(η) =
x+ η

‖x+ η‖
.

An associated vector transport is:

Transpη(ξ) =

(
I − (x+ η)(x+ η)>

(x+ η)>(x+ η)

)
ξ.

On the right-hand side, x, η and ξ are to be treated as elements of R3.
Equivalently,

Transpy←x(ξ) =
(
I − yy>

)
ξ = Projyξ.

Thus, ξ is considered as a vector in the ambient space R3 and projected
orthogonally on the tangent space at y.

Vector transports are notably useful to define the Riemannian conjugate
gradients method for optimization, see Section 3.1.

2.8 Curvature

We briefly outline the concept of curvature of a Riemannian manifold. The
exposition in this section is limited to a few concepts that come up in the
second part of this thesis. The monograph by Lee (1997) offers a thorough
introduction to curvature and serves as reference for this section.

A Riemannian manifoldM is flat if it is locally isometric to a Euclidean
space, that is, if for all x in M, there exists a neighborhood U ⊂ M of x
and an isometry ϕ : U → V ⊂ Rd. An isometry preserves distances, that
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is, dist(x, y) = ‖ϕ(x) − ϕ(y)‖, with ‖ · ‖ denoting the Euclidean norm on
Rd. The intuition behind this definition is that a manifold is flat if it can
be locally flattened without distortion. Naturally, the sphere S2 ⊂ R3 with
the usual Riemannian submanifold geometry is not flat: cutting out a small
piece of an orange peal and trying to flatten it will necessarily result in
tearing or wearing. Probably less naturally, a cylinder R × S1 ⊂ R3 with
the usual Riemannian submanifold geometry is flat. One way to see this
is to notice that, by the above definition, all one-dimensional Riemannian
manifolds are flat. Since furthermore a product of flat spaces is flat too, the
cylinder must be flat (and the circle S1 too).

The arguably counterintuitive notion that circles and cylinders are flat
according to the present definition results from the difference between in-
trinsic and extrinsic curvature. The circle may be embedded in R2 in many
different ways without changes in notions of distance, thus without changes
in its Riemannian structure. Various embeddings may result in various ex-
trinsic (or apparent) curvatures. On the contrary, an imaginary being living
on the curve, oblivious to its surroundings (R2), would be unable to per-
ceive that curvature (at least locally) because it cannot sense the specific
way in which it is embedded in R2. Thus, from an intrinsic point of view,
the circle has no curvature, and that is what the above definition captures.
The sphere S2 on the other hand has both extrinsic and intrinsic curvature.

Now consider a Riemannian manifoldM with its Riemannian connection
∇ (Theorem 2.2). Theorem 7.3 in (Lee, 1997) states that M is flat if and
only if for all vector fields X,Y, Z,

∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z,

where [X,Y ] denotes the Lie bracket, as defined below Theorem 2.2. Thus,
for vector fields X,Y such that [X,Y ] = 0, the covariant derivatives com-
mute on a flat manifold. This generalizes the well-known fact that for
smooth maps on Rn, partial derivatives commute.

Consequently, as a means to quantify departure from flatness, the fol-
lowing tensor is defined.

Definition 2.28 (Riemannian curvature tensor). For any given vector fields
X,Y, Z on a Riemannian manifold M equipped with the Riemannian con-
nection ∇, the Riemannian curvature tensor R : X(M)×X(M)×X(M)→
X(M) is defined as

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The manifold M is flat if and only if R vanishes identically.

The curvature tensor enjoys the following symmetries, as in (Lee, 1997,
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Prop. 7.4):

R(X,Y ) = −R(Y,X)

〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉 (2.2)

R(X,Y )Z +R(Z,X)Y +R(Y,Z)X = 0.

Lee (1997) refers to R as the Riemannian curvature endomorphism and
refers to the map from X(M)4 to F(M)

(X,Y, Z,W ) 7→ 〈R(X,Y )Z,W 〉

as the Riemannian curvature tensor instead. Both are linear in each of their
(three or four) arguments. The following symmetry follows from the three
above:

〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉 . (2.3)

Although it is not directly obvious from the definition of R, note that the
scalar 〈R(X,Y )Z,W 〉p is only a function of Xp, Yp, Zp and Wp. Indeed, it is
certainly true that the dependence on W is only through Wp. Then, owing
to (2.2), it also only depends on Z through Zp. The symmetry (2.3) similarly
shows the dependence on X and Y is limited to Xp and Yp. See also (O’Neill,
1983, p. 74). This legitimates the notation 〈R(x, y)z, w〉p in the second
part of this thesis, where x, y, z, w are tangent vectors at p. Indeed, this
quantity is equal to 〈R(X,Y )Z,W 〉p for any vectors fields X,Y, Z,W such
that Xp = x, Yp = y, Zp = z and Wp = w. The limited dependence also
makes it possible to define sectional curvatures as follows.

Definition 2.29 (sectional curvature). Let p ∈M and X,Y be two vector
fields on M such that Xp, Yp form a basis of a two-dimensional subspace
Π ⊂ TpM. The sectional curvature of M associated with Π is defined as
the real number

K(Π) = K(Xp, Yp) =
〈R(X,Y )Y ,X〉p

‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉
.

In the second part of this thesis, Kmax refers to max |K(Π)|, where the
maximum is taken over all p ∈M and all two-dimensional planes Π ⊂ TpM.
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Optimization
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Chapter 3

Optimization on manifolds

Optimization on manifolds, or Riemannian optimization, is a fast growing
research topic in the field of nonlinear optimization. Its purpose is to provide
efficient numerical algorithms to find (at least local) optimizers for problems
of the form

min
x∈M

f(x), (3.1)

where the search spaceM is a Riemannian manifold, as we defined in Chap-
ter 2. In a nutshell, this means M can be linearized locally at each point
x as a tangent space TxM and an inner product 〈·, ·〉x which smoothly de-
pends on x is available on TxM. For example, when M is a submanifold
of Rn×m, a typical inner product is 〈H1, H2〉X = trace(H>1H2).

Such geometric structure in an optimization problem originates in mainly
two ways. In some scenarios, problem (3.1) is a constrained optimization
problem for x in a Euclidean space, say Rn, such that M is a smooth
submanifold of Rn. For example, M = {x ∈ Rn : x>x = 1}. In other sce-
narios, problem (3.1) comes from an unconstrained problem minu∈Rn f(u)
such that f presents symmetries in the form of an equivalence relation ∼
over Rn: u ∼ v ⇒ f(u) = f(v). Then, f is constant over equivalence classes
x = [u] = {v ∈ Rn : u ∼ v} and descends as a well-defined function over the
quotient manifold M = Rn/∼ = {[u] : u ∈M}.

As covered in Chapter 2, the rich geometry of Riemannian manifolds
makes it possible to define gradients and Hessians of cost functions f , as
well as systematic procedures (called retractions) to move on the manifold
starting at a point x, along a specified tangent direction at x. Those are
sufficient ingredients to generalize standard nonlinear optimization methods
such as gradient descent, conjugate-gradients, quasi-Newton, trust-regions,
etc.

47
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Building upon many earlier results not reviewed here, the recent mono-
graph by Absil et al. (2008) sets an algorithmic framework to analyze prob-
lems of the form (3.1) when f is a smooth function, with a strong em-
phasis on building a theory that leads to efficient numerical algorithms
on special manifolds. In particular, it describes the necessary ingredients
to design first- and second-order algorithms on Riemannian submanifolds
and quotient manifolds of linear spaces. These algorithms come with nu-
merical costs and convergence guarantees essentially matching those of the
Euclidean counterparts they generalize. For example, the Riemannian trust-
region method converges globally (that is, regardless of the initial iterate)
toward critical points and converges locally (that is, once close enough to
convergence) quadratically when the Hessian of f is available.

In this chapter, we present two Riemannian optimization methods: the
Riemannian conjugate gradients method and the Riemannian trust-region
method. Both of these methods are discussed in (Absil et al., 2008, Ch. 8).
As a small contribution for these background sections, we give an explicit
treatment of preconditioners for these algorithms. This is not new per se,
but rarely mentioned explicitly in the Riemannian setting.

The maturity of the theory of smooth Riemannian optimization, its
widespread applicability and its excellent track record performance-wise
prompted us to build the Manopt toolbox: a user-friendly piece of software
to help researchers and practitioners experiment with these tools. Code
and documentation are available at www.manopt.org. The last part of this
chapter presents Manopt, which we use in the application chapters of this
first part of the thesis.

3.1 Riemannian conjugate gradients

When it comes to solving a continuous, unconstrained, nonlinear optimiza-
tion problem of the form

min
x∈Rn

f(x),

such that f is continuously differentiable, the steepest descent (SD) or gra-
dient descent method is arguably one of the simplest and most well-known
algorithms available. Given an initial guess or initial iterate x0 ∈ Rn, it
attempts to iteratively improve its predicament by greedily following the
most promising direction. More precisely, it generates a sequence of iter-
ates x0, x1, . . . ∈ Rn according to the update equation

xk+1 = xk + αkdk, (3.2)

where dk = −∇f(xk) is the steepest-descent direction at xk and αk > 0 is a
well-chosen step size. The nonlinear conjugate gradients (CG) method adds
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a sophistication layer to this simple algorithm by constructing an alternative
search direction dk which is a carefully crafted linear combination of both
−∇f(xk) and the previous search direction dk−1, thus incorporating a form
of inertia in the search procedure:

dk = −∇f(xk) + βk−1dk−1. (3.3)

SD can be conceived as a special case of CG by letting βk = 0 for all k.
From the update equation (3.2) and the search direction equation (3.3),

it is apparent that the CG method relies on the vector space structure
of Rn, by composing points and vectors using linear combinations. This
dependence is not fundamental though, and both equations can be modified
so that they will still make sense for optimization problems of the form (3.1)
where the search space M is a Riemannian manifold. We do need the
Riemannian structure so that we have a notion of gradient.

The update equation (3.2) produces xk+1, a new point on the search
space, by moving away from xk along the direction αkdk. The notion of
retraction (Definition 2.25) embodies this very same idea and suggests the
more general update formula:

xk+1 = Rxk(αkdk),

where dk ∈ TxkM is a tangent vector at xk. Similarly, the search direction
equation (3.3) produces the tangent vector dk by combining two vectors:
−gradf(xk) and dk−1, where the former is the Riemannian gradient of f
at xk (Definition 2.14). Those are, respectively, tangent vectors at xk and
xk−1. As a result, they cannot be combined directly: they do not belong to
the same subspace. One way of fixing this issue is to transport dk−1 to xk
using a vector transport (Definition 2.27):

d+
k−1 = Transpxk←xk−1

(dk−1).

The search direction equation then becomes:

dk = −gradf(xk) + βk−1d
+
k−1.

Notice that the vector transport is not needed for the SD method.
A standard trick to accelerate the CG algorithm is to precondition

the iterations by operating a change of variables on the tangent spaces
TxkM (Hager & Zhang, 2006, § 8). This change of variable should be cho-
sen so as to decrease the condition number of the Hessian of the cost func-
tion. Typically, this is achieved by aiming for a change of variables closely
related to the inverse of the Hessian nearby or at a critical point. Of course,
a change of variables on TxkM amounts to a change of Riemannian met-
ric gxk , so that it is theoretically sufficient to describe a CG method on
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Riemannian manifolds without explicitly allowing for preconditioning. In
practice though, it is convenient to separate the work of describing mani-
folds (giving them a Riemannian structure, defining retractions, geodesics,
projectors, etc.) and that of describing a cost function. Since the precon-
ditioner depends on the cost function, we allow for explicit preconditioning
of the Riemannian CG method, with the following preconditioner:

Precon f(x) : TxM→ TxM.

The linear operator Precon f(x) must be symmetric w.r.t. the Riemannian
metric, positive definite and, ideally, be some kind of cheap approximation
of (Hess f(x))−1. The search direction equation now reads:

dk = −Precon f(xk)[gradf(xk)] + βk−1d
+
k−1.

Notice that if Precon f(x) = (Hessf(x))−1 and βk−1 = 0, this is a Newton
step. When no preconditioner is available or necessary, it is replaced by the
identity operator.

The step size αk is chosen by a line search algorithm which approxi-
mately solves the one-dimensional optimization problem

min
α>0

φ(α) := f(Rxk(αdk)). (3.4)

If dk is a descent direction for f (which is typically enforced), then φ′(0) < 0
and it is necessarily possible to decrease φ (and hence f) with a positive step
size. It does not matter whether we solve (3.4) exactly or not. Typically,
it is sufficient to compute a large enough step size such that a sufficient
decrease is obtained, according to the Armijo criterion:

f(xk+1) = φ(αk) ≤ φ(0) + cdecreaseαkφ
′(0)

= f(xk) + cdecrease ·Df(xk)[αkdk].

The constant 0 < cdecrease < 1 is the sufficient decrease parameter, set to
10−4 by default in our case. The simple backtracking line search, Algo-
rithm 2, guarantees this condition is satisfied. Default values for the other
parameters, 0 < cinitial, 0 < coptimism and 0 < ccontraction < 1, are cinitial = 1,
coptimism = 1.1 and ccontraction = 0.5.

The line search problem (3.4) is not any different from the standard
line search problem studied in classical textbooks. For example, our line
search, Algorithm 2, is based on recommendations in (Nocedal & Wright,
1999, § 3.5). Notice that it is invariant under offsetting and positive scaling
of f (assuming a fixed preconditioner). This is a good property: if the
cost function changes from f(x) to 8f(x) + 3, arguably, any reasonable
optimization algorithm should still make the same steps. The line search
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algorithm is also invariant under rescaling of the search direction d in the
following sense: the output α is such that the product αd is not a function
of ‖d‖. Consequently, the combination of Algorithms 1 and 2 as a whole is
invariant under offsetting and positive scaling.

For the special case βk ≡ 0 (SD), the combination of Algorithms 1
and 2 fits the framework in (Absil et al., 2008, § 4.2). Indeed, noting αk,0
the first α tried by Algorithm 2 at iteration k, it is easily checked that
{αk,0dk} is a gradient-related sequence (Absil et al., 2008, Definition 4.2.1)
since αk,0‖dk‖ is bounded away from zero. Corollary 4.3.2 in that reference
then guarantees global convergence toward critical points provided the level
set {x ∈ M : f(x) ≤ f(x0)} is compact. Global convergence means that
regardless of the initial guess x0, in the limit, ‖gradf(xk)‖ goes to zero.

It remains to specify how the inertia parameters βk are computed. The
survey paper by Hager & Zhang (2006) covers a number of suggestions
that have appeared in the literature. Those are readily adapted to the
Riemannian setting, with special care as outlined in (Hager & Zhang, 2006,
§ 8) in the presence of a preconditioner. As we already mentioned, the
trivial choice βk = 0 yields the SD method. A more sophisticated choice
known as the modified Hestenes-Stiefel rule is displayed in Algorithm 1.
This choice is motivated by its automatic restart property. Indeed, when a
negative βk would be produced (meaning that the next step would revert
some of the previous progress), βk is set to zero instead. This induces a
steepest descent step, often considered a restart of the CG algorithm. Refer
to (Hager & Zhang, 2006) for more rules together with an analysis of when
which rules work best.

Even in the Euclidean caseM = Rn, the convergence analysis of nonlin-
ear CG is not a simple matter, see for example (Gilbert & Nocedal, 1992).
In recent work, Sato & Iwai (2013) show how a careful choice of both the βk
coefficients (following the Fletcher-Reeves rule) and the vector transport,
together with a line search which satisfies strong Wolfe conditions, can lead
to global convergence guarantees for Riemannian CG. The overall algorithm
is more involved than the combination of Algorithms 1 and 2 proposed here,
especially in its requirements regarding vector transports. In view of the
satisfactory numerical performance of the latter combination of algorithms
in applications, we choose to carry on with the simple implementation for
the present work.
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Algorithm 1 RCG : preconditioned Riemannian conjugate gradients

1: Given: x0 ∈M
2: Init: g0 = grad f(x0), p0 = Precon f(x0)[g0], d0 = −p0, k = 0
3: repeat
4: if 〈gk, dk〉 ≥ 0 then . if dk is not a descent direction
5: dk = −pk . restart
6: end if
7: αk = linesearch(xk, dk, xk−1) . Armijo backtracking
8: xk+1 = Rxk(αkdk) . make the step
9: gk+1 = grad f(xk+1)

10: pk+1 = Precon f(xk+1)[gk+1]
11: d+

k = Transpxk+1←xk(dk) . transport to the new tangent space

12: g+
k = Transpxk+1←xk(gk)

13: βk = max
(
0,
〈
gk+1 − g

+
k , pk+1

〉
/
〈
gk+1 − g

+
k , d

+
k

〉)
. HS+

14: dk+1 = −pk+1 + βkd
+
k . new search direction

15: k = k + 1
16: until a stopping criterion triggers

Algorithm 2 Linesearch : modified Armijo backtracking

1: Given: x ∈M, d ∈ TxM (optional: xprev ∈M)

2: α :=

{
coptimism · 2 f(x)−f(xprev)

Df(x)[d] if xprev is available,

cinitial/‖d‖ otherwise.

3: if α‖d‖ < 10−12 then . Make sure α is neither negative nor too small
4: α := cinitial/‖d‖
5: end if
6: while f(Rx(αd)) > f(x) + cdecrease ·Df(x)[αd] do
7: α := ccontraction · α
8: end while
9: return α
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3.2 Riemannian trust-regions

The Riemannian trust-region (RTR) method (Absil et al., 2007)(Absil et al.,
2008, Ch. 7) is a generalization of the classical trust-region optimization
scheme (Conn et al., 2000), (Nocedal & Wright, 1999, Ch. 4) to problems
of the form (3.1). For smooth cost functions f , the convergence analysis
for RTR guarantees global convergence toward critical points (Absil et al.,
2007, Thm 4.4, Cor. 4.6). Global convergence means the algorithm con-
verges regardless of the initial iterate. Furthermore, when the true Hessian
is available, the local convergence rate is superlinear (Absil et al., 2007,
Thm 4.14) (quadratic even, if the parameter θ defined below is set to 1,
which is typically the case).

The RTR method is an iterative descent method. Just like the clas-
sical trust-region method, it consists in an outer algorithm (Algorithm 3)
which uses an inner algorithm (Algorithm 4) to (approximately) minimize a
model of the cost function within a trust-region around the current iterate.
Depending on the performance of the inner solve, the outer algorithm de-
cides to accept or reject the proposed step, and possibly decides to increase
or reduce the size of the trust-region. Similarly to the discussion of the
CG algorithm in the previous section, we give a description of the precondi-
tioned Riemannian trust-region method. In the absence of a preconditioner,
assume Precon f(x) = Id for all x.

The inner problem at the current iterate x ∈M is the following:

min
η∈TxM
‖η‖M≤∆

mx(η) := f(x) + 〈η, grad f(x)〉+
1

2
〈η,Hess f(x)[η]〉 , (3.5)

where mx : TxM→ R is a quadratic model of the lifted cost function f ◦Rx

defined on the same space and the M -norm on TxM is defined via the
preconditioner as:

‖η‖2M :=
〈
η, (Precon f(x))−1[η]

〉
x
.

Since the preconditioner is a positive definite operator supposed to resem-
ble the inverse of the Hessian, the trust-region constraint ‖η‖M ≤ ∆ corre-
sponds more or less to a bound on the quadratic term in mx. Another point
of view is that we trust the quadratic model only in a ball of radius ∆, the
ball in question being distorted into an ellipsoid by the preconditioner. Be-
cause the lifted cost and the model are both defined over a linear subspace,
the classical methods to solve this inner problem are available for the task.
Algorithm 4 is the truncated Steihaug-Toint method (tCG), as championed
in (Absil et al., 2007), based on (Conn et al., 2000, Alg. 7.5.1). The resulting
(optimal or suboptimal) vector η is retracted to produce a candidate next
iterate x+ = Rx(η). Algorithm 3 dictates when this candidate is accepted.
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Algorithm 3 RTR : preconditioned Riemannian trust-region method

1: Given: x0 ∈M, 0 < ∆0 ≤ ∆̄ and ρ′ > 0
2: Init: k = 0
3: repeat
4: ηk = tCG(xk,∆k) . solve inner problem (approximately)
5: x+

k = Rxk(ηk) . candidate next iterate
6: ρ1 = f(xk)− f(x+

k ) . actual improvement
7: ρ2 = −〈grad f(xk), ηk〉 − 1

2 〈Hess f(xk)[ηk], ηk〉 . model improv.
8: if ρ1/ρ2 < 1/4 then . if the model made a poor predicition
9: ∆k+1 = ∆k/4 . reduce the trust region radius

. if the model is good but the region is too small
10: else if ρ1/ρ2 > 3/4 and tCG hit the boundary then
11: ∆k+1 = min(2∆k, ∆̄) . enlarge the radius
12: else
13: ∆k+1 = ∆k

14: end if
15: if ρ1/ρ2 > ρ′ then . if the decrease is sufficient
16: xk+1 = x+

k . accept the step
17: else . otherwise
18: xk+1 = xk . reject it
19: end if
20: k = k + 1
21: until a stopping criterion triggers

As detailed in the notes following (Conn et al., 2000, Alg. 7.5.1), it is
never necessary to apply the inverse of the preconditioner in practice to
compute the M -norm: access to Precon f(x) as a black box is sufficient.

RTR requires three parameters. The step acceptance threshold ρ′ is set
to 0.1 by default. The other two are the maximum and initial trust-region
radii, respectively ∆̄ and ∆0. The trust-region radius at a given iterate is
the upper bound on the M -norm of acceptable steps—see eq. (3.5).

The two parameters for the tCG algorithm are θ and κ (see (Absil et al.,
2007)), which we set to 1 and 0.1 respectively by default. These serve in
the stopping criterion of tCG. Setting θ = 1 forces a locally quadratic
convergence rate for RTR when the true Hessian is available. The number
of inner iterations can be limited too.

We note that, close to convergence, the ratio ρ1/ρ2 becomes challenging
to evaluate accurately, given that both numbers become small and ρ1 is
obtained as the difference between two possibly large numbers. Heuristics
such as the one proposed in (Conn et al., 2000, § 17.4.2) address this issue.
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Algorithm 4 tCG : Steihaug-Toint truncated CG method

1: Given: x ∈M and ∆, θ, κ > 0
2: Init: η0 = 0 ∈ TxM, r0 = grad f(x), z0 = Precon f(x)[r0], δ0 = −z0
3: for k = 0 . . .max inner iterations− 1 do
4: κk = 〈δk,Hess f(x)[δk]〉
5: αk = 〈zk, rk〉 /κk
6: if κk ≤ 0 or ‖ηk + αkδk‖M ≥ ∆ then

. the model Hessian has negative curvature or TR exceeded:
7: Set τ to be the positive root of ‖ηk + τδk‖2M = ∆2,

as in (Conn et al., 2000, eqs.(7.5.5–7))
8: ηk+1 = ηk + τδk . hit the boundary
9: return ηk+1

10: end if
11: ηk+1 = ηk + αkδk
12: rk+1 = rk + αkHess f(x)[δk]
13: if ‖rk+1‖ ≤ ‖r0‖ ·min(‖r0‖θ, κ) then
14: return ηk+1 . this approximate solution is good enough
15: end if
16: zk+1 = Precon f(x)[rk+1]
17: βk = 〈zk+1, rk+1〉 / 〈zk, rk〉
18: δk+1 = −zk+1 + βkδk
19: end for
20: return ηlast

3.3 Manopt, a Matlab toolbox for
optimization on manifolds

Manopt is a Matlab toolbox for optimization on manifolds. We started its
development at UCL, originally with Pierre Borckmans (UCL) and now ac-
tively with Bamdev Mishra (Université de Liège). The toolbox originated as
a project of the RANSO group, led by Pierre-Antoine Absil, Yurii Nesterov
and Rodolphe Sepulchre. The purpose of Manopt is to facilitate exper-
imentation with optimization on manifolds as well as sharing geometries
and algorithms.

The toolbox architecture is based on a separation of the manifolds, the
solvers and the problem descriptions. For basic use, one only needs to
pick a manifold from the library, describe the cost function (and possible
derivatives) on this manifold and pass it on to a solver. Accompanying
tools help the user in common tasks such as numerically checking whether
the cost function agrees with its derivatives up to the appropriate order,
approximating the Hessian based on the gradient of the cost, etc.
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Manifolds in Manopt are represented as structures and are obtained by
calling a factory. The manifold descriptions include projections on tangent
spaces, retractions, helpers to convert Euclidean derivatives (gradient and
Hessian) to Riemannian derivatives, etc. See the next section for a list of
supported manifolds.

Solvers are functions in Manopt that implement generic Riemannian
minimization algorithms. All options have default values. Solvers log stan-
dard information at each iteration and comply with standard stopping cri-
teria. Extra information can be logged via callbacks and, similarly, user-
defined stopping criteria are allowed. Currently available solvers include
Riemannian trust-regions (based on (Absil et al., 2007)) and conjugate-
gradients (both with preconditioning), as well as steepest-descent and a
couple of derivative-free schemes. More solvers can be added, with an out-
look toward BFGS (Ring & Wirth, 2012), stochastic gradients (Bonnabel,
2013), nonsmooth subgradients schemes (Dirr et al., 2007), etc.

An optimization problem in Manopt is represented as a problem struc-
ture. The latter includes a field which contains a structure describing a
manifold, as obtained from a factory. Additionally, the problem structure
hosts function handles for the cost function f and (possibly) its derivatives.
An abstraction layer at the interface between the solvers and the problem
description offers great flexibility in the cost function description. As the
needs grow during the life-cycle of the toolbox and new ways of describ-
ing f become necessary (subdifferentials, partial gradients, etc.), it will be
sufficient to update this interface.

Computing f(x) typically produces intermediate results which can be
reused in order to compute the derivatives of f at x. To prevent redundant
computations, Manopt incorporates an (optional) caching system, which
becomes useful when transitioning from a proof-of-concept draft of the al-
gorithm to a convincing implementation.

3.3.1 Some supported manifolds

This list of manifolds which work out of the box with the current version of
Manopt is intended to give a feeling of the types of optimization problems
which can be tackled with Riemannian optimization techniques in general,
and with Manopt in particular. More could be added of course, such as the
shape space (Ring & Wirth, 2012), the set of low-rank tensors (Kressner
et al., 2013), etc. Cartesian products of known manifolds are automatically
supported too, via tools named productmanifold and powermanifold.

• The oblique manifold

M = {X ∈ Rn×m : diag(X>X) = 1m}
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is a product of spheres. That is, X ∈ M if each column of X has
unit 2-norm in Rn. Absil & Gallivan (2006) show how independent
component analysis can be cast on this manifold as non-orthogonal
joint diagonalization.

• When furthermore it is only the product Y = X>X which matters
(with X in the oblique manifold), matrices of the form QX are equiv-
alent for all orthogonal Q. Quotienting out this equivalence relation
yields the fixed-rank elliptope

M = {Y ∈ Rm×m : Y = Y >� 0, rank(Y ) = n, diag(Y ) = 1m}.

For increasing n ≥ 2, this yields increasingly relaxed search spaces
for max-cut, ultimately culminating in the acclaimed SDP relaxation
of max-cut for n = m. Journée et al. (2010b) show how to exploit
this sequence of relaxed formulations of max-cut as Riemannian opti-
mization problems to efficiently compute good cuts. See the example
below for application to the max-cut problem. The packing problem
on the sphere, where one wishes to place m points on the unit sphere
in Rn such that the two closest points are as far apart as possible (Dirr
et al., 2007), is another example of an optimization problem on the
fixed-rank elliptope. Grubǐsić & Pietersz (2007) optimize over this set
to produce low-rank approximations of covariance matrices.

• The (compact) Stiefel manifold is the Riemannian submanifold of
orthonormal matrices,

M = {X ∈ Rn×m : X>X = Im}.

Amari (1999) and Theis et al. (2009) formulate versions of indepen-
dent component analysis with dimensionality reduction as optimiza-
tion over the Stiefel manifold. Journée et al. (2010a) investigate sparse
principal component analysis via optimization over the Stiefel mani-
fold.

• The Grassmann manifold is the manifold

M = {col(X) : X ∈ Rn×m∗ },

where Rn×m∗ is the set of full-rank matrices in Rn×m and col(X) de-
notes the subspace spanned by the columns ofX. That is, col(X) ∈M
is a subspace of Rn of dimension m. It is often given the geometry
of a Riemannian quotient manifold of either Rn×m∗ or of the Stiefel
manifold, where two matrices are equivalent if their columns span the
same subspace. Among other things, optimization over the Grass-
mann manifold proves useful in low-rank matrix completion, where it
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is observed that if one knows the column space spanned by the sought
matrix, then completing the matrix according to a least-squares crite-
rion is easy, see Chapter 4. See also the landmark paper by Edelman
et al. (1998) for algorithms and applications on both the Stiefel and
the Grassmann manifolds.

• The special orthogonal group

M = {X ∈ Rn×n : X>X = In and det(X) = 1}

is the group of rotations, typically considered as a Riemannian sub-
manifold of Rn×n. Optimization problems involving rotation matrices
notably occur in robotics and computer vision, when estimating the
attitude of vehicles or the pose of cameras, see Chapter 5.

• The set of fixed-rank matrices

M = {X ∈ Rn×m : rank(X) = k}

admits a number of different Riemannian structures. Vandereycken
(2013) proposes an embedded geometry forM and exploits Riemann-
ian optimization on that manifold to address the low-rank matrix com-
pletion problem. Shalit et al. (2012) use the same geometry to address
similarity learning. Mishra et al. (2012a) cover a number of quotient
geometries for M and similarly address low-rank matrix completion.

• Symmetric, positive semidefinite, fixed-rank matrices

M = {X ∈ Rn×n : X = X>� 0, rank(X) = k}

also form a manifold. Meyer et al. (2011b) exploit this to propose low-
rank algorithms for metric learning. This space is tightly related to
that of Euclidean distance matricesX such that Xij is the squared
distance between two fixed points xi, xj ∈ Rk. Mishra et al. (2011a)
leverage this geometry to formulate efficient low-rank algorithms for
Euclidean distance matrix completion.

• The fixed-rank spectrahedron

M = {X ∈ Rn×n : X = X>� 0, trace(X) = 1 and rank(X) = k},

without the rank constraint, is a convex set which can be used to solve
relaxed (lifted) formulations of the sparse PCA problem. Journée et al.
(2010b) show how optimizing over the fixed-rank spectrahedron can
lead to efficient algorithms for sparse PCA.
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3.3.2 Example I: the maximum cut problem

Given an undirected graph with n nodes and weights wij ≥ 0 on the edges
such that W ∈ Rn×n is the weighted adjacency matrix and D ∈ Rn×n is
the diagonal degree matrix with Dii =

∑
j wij , the graph Laplacian is the

positive semidefinite matrix L = D −W . The max-cut problem consists
in building a partition s ∈ {+1,−1}n of the nodes in two classes such

that 1
4s
>Ls =

∑
i<j wij

(si−sj)2
4 , i.e., the sum of the weights of the edges

connecting the two classes, is maximum. Let X = ss>. Then, max-cut is
equivalent to:

max
X∈Rn×n

trace(LX)/4

s.t. X = X>� 0,diag(X) = 1n and rank(X) = 1.

Goemans & Williamson (1995) proposed and analyzed the famous relax-
ation of this problem which consists in dropping the rank constraint, yield-
ing a semidefinite program. Alternatively relaxing the rank constraint to
be rank(X) ≤ r for some 1 < r < n yields a tighter but nonconvex relax-
ation. Journée et al. (2010b) observe that fixing the rank with the constraint
rank(X) = r turns the search space into a smooth manifold, the fixed-rank
elliptope, which can be optimized over using Riemannian optimization. In
Manopt, simple code for this reads (with Y ∈ Rn×r such that X = Y Y >):

% The problem structure hosts a manifold structure as well as
% function handles to define the cost function and its derivatives
% (here provided as Euclidean derivatives, which will be converted
% to their Riemannian equivalent).
problem.M = elliptopefactory(n, r);
problem.cost = @(Y) −trace(Y'*L*Y)/4;
problem.egrad = @(Y) −(L*Y)/2;
problem.ehess = @(Y, U) −(L*U)/2; % optional

% These diagnostics tools help make sure the gradient and Hessian
% are correctly implemented.
checkgradient(problem); pause;
checkhessian(problem); pause;

% Minimize with trust−regions, a random initial guess and default
% options.
Y = trustregions(problem);

Randomly projecting Y yields a cut: s = sign(Y*randn(r, 1)). The
Manopt distribution includes advanced code for this example, where the
caching functionalities are used to avoid redundant computations of the
product LY in the cost and the gradient, and the rank r is increased grad-
ually to obtain a global solution of the max-cut SDP (and hence a formal
upperbound), following the procedure in (Journée et al., 2010b).
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3.3.3 Example II: sphere packing on the sphere

As a second example, we consider the problem of placing points x1, . . . , xn
on a sphere Sd−1 = {x ∈ Rd : x>x = 1} such that the two closest points
(w.r.t. the geodesic distance dist) are as far apart as possible (Cohn & Ku-
mar, 2007). This problem, known as the Thomson or Tammes problem and
also as spherical coding or packing, is directly linked to that of placing as
many points as possible on a sphere such that no two points are closer to
each other than a given tolerance. Applications may be found in coding
theory. In such a setting, one wishes to discretize the sphere such that
sending the symbol xi over a noisy channel, resulting in the receiver receiv-
ing xi + noise ∈ Sd−1, will as often as possible lead to correct decoding:
argminxj∈{x1,...,xn} dist(xi + noise, xj) = xi.

Formally, the optimization problem is the following structured non-
smooth problem:

max
x1,...,xn∈Sd−1

min
1≤i<j≤n

dist(xi, xj).

Dirr et al. (2007) address the similar problem of sphere packing on the
Grassmannian directly, demonstrating the applicability of Clarke’s calculus
in a Riemannian setting for nonsmooth optimization problems, resulting in
subgradient methods. We follow a different route and propose a smoothing
of the cost instead.

First, observe that the geodesic distance dist(xi, xj) = arccos(x>i xj) is a

strictly decreasing function of x>i xj , such that

min
x1,...,xn∈Sd−1

max
1≤i<j≤n

x>i xj (3.6)

is an equivalent formulation of the problem. We now resort to the classical
log-sum-exp approximation of the max function, based on the following
bounds. Let y1, . . . , ym ∈ R and ymax = maxi yi. Then, since yi − ymax ≤ 0
for all i,

ymax ≤ ε log

(∑
i

exp
(yi
ε

))
= ε log

(
exp

(ymax

ε

)∑
i

exp

(
yi − ymax

ε

))
≤ ε log

(
m exp

(ymax

ε

))
= ymax + ε log(m).

Thus, for a fixed value of ε > 0, the following is a smooth approximation
of (3.6) which can be tackled using the optimization algorithms described
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in this chapter:

min
x1,...,xn∈Sd−1

f(x1, . . . , xn) = ε log

 ∑
1≤i<j≤n

exp

(
x>i xj
ε

) .

Let X ∈ Rn×d such that x1, . . . , xn denote its (unit-norm) rows. We write
f(x1, . . . , xn) = f(X). Furthermore, it is apparent that f is only a function
of XX>. Thus, f(X) = f(XQ) for any orthogonal matrix Q ∈ O(d). In-
deed: applying a global rotation to the points on the sphere does not change
the distances separating them. The set of acceptable matrices XX> is ex-
actly the fixed-rank elliptope from the previous example, thus we optimize
f over that manifold. Since f is smooth over this smooth manifold, both
RCG and RTR can be used to obtain a sphere packing algorithm.

The code below, run for d = 3 and various values of n, generates the
configurations depicted in Figure 3.1. We also compare against a collection
of best known packings in Figure 3.2 and find that the algorithm attains
decent solutions.
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% Pick a small enough value to get a good approximation of the max
% function, but a large enough value to avoid numerical trouble.
epsilon = 0.0015;

M = elliptopefactory(n, d);

% Define the cost function with caching system used: the store
% structure we receive as input is tied to the input point X.
% Every time this cost function is called at this point X, we
% will receive the same store structure back. We may modify the
% store structure inside the function and return it:
% the changes are remembered for next time.
function [f store] = cost(X, store)

if ∼isfield(store, 'ready')
XXt = X*X';
expXXt = exp(XXt/epsilon);
expXXt(1:(n+1):end) = 0; % Zero out the diagonal
u = sum(sum(triu(expXXt, 1)));
store.XXt = XXt;
store.expXXt = expXXt;
store.u = u;
store.ready = true;

end
u = store.u;
f = epsilon*log(u);

end

% Define the gradient of the cost. When the gradient is called at
% a point X for which the cost was already called, the store
% structure we receive remembers everything that the cost function
% stored in it, so we can reuse previously computed elements.
function [g store] = grad(X, store)

if ∼isfield(store, 'ready')
[∼, store] = cost(X, store);

end
% Compute the Euclidean gradient
eg = store.expXXt*X / store.u;
% Convert to the Riemannian gradient (by projection)
g = M.egrad2rgrad(X, eg);

end

% Setup the problem structure with its manifold and cost+grad
problem.M = M;
problem.cost = @cost;
problem.grad = @grad;

% Call a solver on our problem with a few options defined.
% A random initial guess (default) is not too bad for this problem:
% it corresponds to a uniformly random sample on the sphere.
opts.tolgradnorm = 1e−8;
opts.maxtime = 10;
opts.maxiter = 1e3;
X = conjugategradient(problem, [], opts);
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Figure 3.1: Computed sphere packings on the sphere in R3, with n = 8, 12
and 300 points. Two vertices are linked by an edge if they are separated by
a distance no more than 20% above the smallest distance. For n = 12, the
solution appears to be an icosahedron, which is a platonic solid. This is not
always the case, as the solution for n = 8 demonstrates: it is not a cube.
The maximum inner products x>i xj are 0.2615, 0.4472 and 0.9789. These
packings were produced in 1.0, 1.7 and 10.2 seconds on a desktop computer
from 2010.
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Figure 3.2: On his web page http://neilsloane.com/packings/, N.J.A.
Sloane collects the best known packings of n points on the sphere in Rd for
d = 3, 4, 5 and n = d+1 . . . 130 and reports the minimal angle αbest between
any two points for each of these packings (which is to be maximized). For
each pair (d, n), we compute 5 packings (with a different random initial
guess each time) and record the best one, αours. This figure represents how
far away our packings are from the best known ones (on January 7, 2014), as
a relative offset: (αbest − αours)/αbest. We never outperform the best ones,
but we get close overall. It is interesting to note that for d = 4 and n = 120,
we recover the best known packing, where any two points are separated by
an angle of at least 36◦. For 95% of the instances, the computation times
are well under 20 seconds.



Chapter 4

Low-rank matrix
completion

We address the problem of recovering a low-rank m×n matrix X of which a
few entries are observed, possibly with noise. Throughout, we assume that
r = rank(X)� m ≤ n is known and note Ω ⊂ {1 . . .m} × {1 . . . n} the set
of indices of the observed entries of X, i.e., Xij is known iff (i, j) ∈ Ω.

It was shown in numerous publications referenced below that low-rank
matrix completion is applicable in various situations, notably to build rec-
ommender systems. In this setting, the rows of the matrix may correspond
to items and the columns may correspond to users. The known entries
are the ratings given by users to some items. The aim is to predict the
unobserved ratings to generate personalized recommendations. Such appli-
cations motivate the study of scalable algorithms given the size of practical
instances (billions of entries to predict based on millions of observed entries).
However, it is also clear by now, as exemplified by the winning entry of the
Netflix prize (Bell et al., 2008), that low-rank matrix completion is not suf-
ficient: effective recommendation systems require more application-specific
insight than the sole, algorithmically motivated low-rank prior. This is why
the focus of the present chapter is the mathematical problem of low-rank
matrix completion and not recommendation systems per se. We propose an
algorithm based on Riemannian optimization and test it on synthetic data
under different scenarios. Each scenario challenges the proposed method
and prior art on a different aspect of the problem, such as the size of the
problem, the conditioning of the target matrix, the sampling process, etc.
Finally, we demonstrate the applicability of the proposed algorithms on the
Netflix dataset.

Some of the more technical parts of this chapter are concerned with the

65
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computation of the Hessian of the cost function we introduce. The deriva-
tion of this Hessian is instrumental in developing second-order optimization
schemes as well as in deriving an appropriate preconditioner. Nevertheless,
these derivations are not important for the implementation of the first-order
optimization algorithms investigated. Hence, the technical derivations ded-
icated to the Hessian may be skipped without loss of continuity.

Related work

In the noiseless case, one could state the minimum rank matrix recovery
problem as follows:

min
X̂∈Rm×n

rank X̂, such that X̂ij = Xij ∀(i, j) ∈ Ω. (4.1)

This problem, however, is NP-hard (Candès & Recht, 2009). A possible
convex relaxation of (4.1) introduced by Candès & Recht (2009) is to use the
nuclear norm of X̂ as objective function, i.e., the sum of its singular values,
noted ‖X̂‖∗. The SVT method (Cai et al., 2010) for example attempts
to solve such a convex problem using tools from compressed sensing. The
ADMiRA method (Lee & Bresler, 2010) does so using matching pursuit-like
techniques. One important advantage of proceeding with convex relaxations
is that the resulting algorithms can be analyzed thoroughly. In this line of
work, a number of algorithms have been proven to attain exact recovery in
noiseless scenarios and stable recovery in the face of noise.

In noisy scenarios, one may want to minimize a least-squares data fitting
term regularized with a nuclear norm term. For example, NNLS (Toh &
Yun, 2010) is an accelerated proximal gradient method for nuclear norm-
regularized least-squares problems of this kind.

Jellyfish (Recht et al., 2011) by Recht and Ré is a stochastic gradient
method to solve this type of problems on parallel computers. They focus on
obviating fine-grained locking, which enables them to tackle very large scale
problems. Another parallel approach for very large scale matrix completion
is the divide-and-conquer scheme by Mackey et al. (2011), where the errors
introduced by the division step are statistically described and their effect
on the global problem is controlled during the conquer step.

As an alternative to (4.1), one may minimize the discrepancy between
X̂ and X at entries Ω under the constraint that rank(X̂) ≤ r for some small
constant r. Since any matrix X̂ of rank at most r may be written in the
form UW with U ∈ Rm×r and W ∈ Rr×n, a reasonable formulation of the
problem reads:

min
U∈Rm×r

min
W∈Rr×n

∑
(i,j)∈Ω

(
(UW )ij −Xij

)2
. (4.2)
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This is also NP-hard (Gillis & Glineur, 2011), but only requires manipu-
lating small matrices. The LMaFit method (Wen et al., 2012) addresses
this problem by alternatively fixing either of the variables and solving the
resulting least-squares problem efficiently. The IRLS-M method (Fornasier
et al., 2011) similarly proceeds by solving successive least-squares problems.

The factorization of a matrix X̂ into the product UW is not unique.
Indeed, for any r × r invertible matrix M , we have UW = (UM)(M−1W ).
All the matrices UM share the same column space. Hence, the optimal
value of the inner optimization problem in (4.2) is a function of col(U)—the
column space of U—rather than U specifically. Dai et al. (Dai et al., 2011,
2012) exploit this to recast (4.2) on the Grassmann manifold Gr(m, r), i.e.,
the set of r-dimensional linear subspaces of Rm (see Section 4.1):

min
U ∈Gr(m,r)

min
W∈Rr×n

∑
(i,j)∈Ω

(
(UW )ij −Xij

)2
, (4.3)

where U ∈ Rm×r is any matrix such that col(U) = U and is often cho-
sen to be orthonormal. Unfortunately, the objective function of the outer
minimization in (4.3) may be discontinuous at points U for which the least-
squares problem in W does not have a unique solution. Dai et al. (2011)
propose ingenious ways to deal with the discontinuity. Their focus, though,
is on deriving theoretical performance guarantees rather than developing
fast algorithms. Likewise, Balzano et al. (2010) introduce GROUSE, a sto-
chastic gradient descent method for subspace identification, applicable to
matrix completion. They also work on a single Grassmannian but with
more emphasis on computational efficiency.

Keshavan & Oh (2009) state the problem on the Grassmannian too, but
propose to simultaneously optimize on the row and column spaces, yielding
a smaller, largely overdetermined least-squares problem which is likely to
have a unique solution, resulting in a smooth objective function. In a related
paper (Keshavan & Montanari, 2010), they solve:

min
U ∈Gr(m,r),V ∈Gr(n,r)

min
S∈Rr×r

∑
(i,j)∈Ω

(
(USV >)ij−Xij

)2
+λ2

∥∥USV >∥∥2

F
, (4.4)

where U and V are any orthonormal bases of U and V , respectively, and λ
is a regularization parameter. The authors propose an efficient SVD-based
initial guess for U and V which they refine using a steepest descent method,
along with strong theoretical guarantees. Ngo & Saad (2012) exploit this
idea further by applying a Riemannian conjugate gradient method to this
formulation. They endow the Grassmannians with a preconditioned metric
in order to better capture the conditioning of low-rank matrix completion,
with excellent results.
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Mishra et al. (2011b) propose another geometric approach. They address
the problem of low-rank trace norm minimization and propose an algorithm
that alternates between fixed-rank optimization and rank-one updates, with
applications to low-rank matrix completion.

Vandereycken (2013) investigates a Riemannian conjugate gradient ap-
proach based on a submanifold geometry for the manifold of fixed-rank
matrices. Meyer et al. (2011a) and Absil et al. (2013) propose a few quo-
tient geometries for the manifold of fixed-rank matrices. In recent work,
Mishra et al. (2012b) endow these geometries with preconditioned metrics,
akin to the ones developed simultaneously by Ngo & Saad (2012) on a dou-
ble Grassmannian, and use Riemannian conjugate gradient methods, also
with excellent results.

There are many variations on the theme of low-rank matrix completion.
For example, Tao & Yuan (2011), among others, focus on identifying a sum
of low-rank and sparse matrices as the target matrix. This notably applies
to background extraction in videos.

Our contribution and outline of the chapter

Dai et al.’s initial formulation (4.3) has a discontinuous objective function
on the Grassmannian. The OptSpace formulation (4.4) on the other hand
has a continuous objective, but optimizes on a higher-dimensional search
space (two Grassmannians), while it is arguably preferable to keep the di-
mension of the manifold search space low, even at the expense of a larger
least-squares problem. Furthermore, the OptSpace regularization term is
efficiently computable since

∥∥USV >∥∥
F

= ‖S‖F, but it penalizes all entries
instead of just the entries (i, j) /∈ Ω. The preconditioned metrics introduced
in (Mishra et al., 2012b) and (Ngo & Saad, 2012) bring notable improve-
ments, suggesting that one should strive for a formulation which admits
efficient preconditioners.

To keep the nonlinear part of the optimization problem small, we favor
an approach with a single Grassmannian, that is, we optimize over the
column space (which is smallest). This is particularly useful for rectangular
matrices (m � n), which is often the case in applications. We equip (4.3)
with a regularization term weighted by λ > 0 as follows:

min
U ∈Gr(m,r)

min
W∈Rr×n

1

2

∑
(i,j)∈Ω

C2
ij

(
(UW )ij −Xij

)2
+
λ2

2

∑
(i,j)/∈Ω

(UW )2
ij . (4.5)

A positive value of λ ensures that the inner least-squares problem has a
unique solution which is a continuous function of U , so that the cost function
in U is smooth—see Section 4.2.3. The confidence indices Cij > 0 for each
observation Xij may be useful in applications. Mathematically, introducing
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a regularization term is essential to ensure smoothness of the objective and
hence obtain good convergence properties. For real datasets, regularization
is practically important, as Section 4.5 demonstrates.

In computing the Hessian of the resulting cost function on Gr(m, r),
it turns out that the latter is cheap to compute, motivating the study of
second-order methods. More importantly, having access to an explicit ex-
pression for the true Hessian, a simplified analysis is carried out to propose a
preconditioner for it. The resulting preconditioner is very similar to the pre-
conditioned metrics proposed in (Mishra et al., 2012b; Ngo & Saad, 2012).
The differences are: (i) it operates over a single Grassmannian, and (ii) we
do not scale the Riemannian metric, but rather precondition the iterations
of the optimization algorithms used. This means the standard geometry of
the Grassmannian is all we need.

The cost function is then minimized using a preconditioned Riemannian
trust-region method (RTRMCp) or a preconditioned Riemannian conjugate
gradient method (RCGMCp), as described in Chapter 3.

Section 4.1 covers essential tools on the Grassmann manifold. Section 4.2
specifies the cost function and develops expressions for its gradient and
Hessian, along with a preconditioner for the latter. Section 4.3 details how
the optimization algorithms from Chapter 3 are set in place. Sections 4.4
and 4.5 show a few results of numerical experiments demonstrating the
effectiveness of the proposed approach.

4.1 Geometry of the Grassmann manifold

We tackle low-rank matrix completion as an optimization problem on the
Grassmann manifold. The objective function (which we construct later on)
f (4.18) is defined over said manifold Gr(m, r), the set of r-dimensional
linear subspaces of Rm. Absil et al. (2008) give a computation-oriented
description of the geometry of this manifold. This section only gives a
summary of the required tools. The standard differential geometric concepts
used in this chapter are covered in Chapter 2.

Each point U ∈ Gr(m, r) is a linear subspace we may represent numer-
ically as the column space of a full-rank matrix U :

Gr(m, r) = {U = col(U) : U ∈ Rm×r∗ }.

The notation Rm×r∗ stands for the set of full-rank m× r matrices. For nu-
merical reasons, we only use orthonormal matrices U ∈ St(m, r) to represent
subspaces. The set St(m, r) is the (compact) Stiefel manifold:

St(m, r) = {U ∈ Rm×r∗ : U>U = Ir}. (4.6)
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We view St(m, r) as a Riemannian submanifold of the Euclidean space
Rm×r, endowed with the classical metric 〈H1, H2〉 = trace(H>1H2). We fur-
ther endow Gr(m, r) with the unique Riemannian metric such that Gr(m, r)
is a Riemannian quotient manifold of St(m, r). In other words, the mapping

col : St(m, r)→ Gr(m, r) : U 7→ col(U) = the column space spanned by U

becomes a Riemannian submersion. The Riemannian metric on Gr(m, r)
is the (essentially) unique metric that is invariant by rotation of Rm (Le-
ichtweiss, 1961). The submersion col induces an equivalence relation such
that U and U ′ are equivalent if col(U) = col(U ′), that is, if U and U ′

represent the same column space. Let

O(r) = {Q ∈ Rr×r∗ : Q>Q = Ir}

denote the set of r × r orthogonal matrices. Since U and U ′ are equivalent
if and only if there exists some Q ∈ O(r) such that U ′ = UQ, we say that
Gr(m, r) is a quotient of St(m, r) by the action of O(r):

Gr(m, r) = St(m, r)/O(r). (4.7)

The Grassmannian is a manifold, and as such admits a tangent space
at each point U , noted TU Gr(m, r). The latter is a linear subspace of
dimension dim Gr(m, r) = r(m − r). A tangent vector H ∈ TU Gr(m, r),
where U represents U , is represented by a matrix H ∈ Rm×r verifying
d
dt col(U + tH)

∣∣
t=0

= H . This representation H of H , known as its hori-

zontal lift at U , is one-to-one if we further impose U>H = 0. For practical
purposes, we often refer to U and H using their matrix counterparts U
and H instead. This slight abuse of notation has the benefit of making it
clearer how one can numerically work with the abstract objects U and H .
In simplified notation then, the tangent space to Gr(m, r) at U is the set:

TUGr(m, r) = {H ∈ Rm×r : U>H = 0}.

Each tangent space is endowed with an inner product (the Riemannian
metric) that varies smoothly from point to point. It is inherited from the
embedding space Rm×r of the matrix representation of tangent vectors:

∀H1, H2 ∈ TUGr(m, r), 〈H1, H2〉U = trace(H>1H2).

The orthogonal projector from Rm×r onto the tangent space TUGr(m, r) is
given by:

ProjU : Rm×r → TUGr(m, r) : H 7→ ProjUH = (I − UU>)H.
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One can similarly define the tangent space at U to the Stiefel manifold:

TUSt(m, r) = {H ∈ Rm×r : U>H +H>U = 0}.

The projector from the ambient space Rm×r onto the tangent space of the
Stiefel manifold is given by:

ProjSt
U : Rm×r → TUSt(m, r)

: H 7→ ProjSt
U H = (I − UU>)H + U skew

(
U>H

)
,

where skew(A) = (A−A>)/2 extracts the skew-symmetric part of A.
We now concern ourselves with the differentiation of functions defined

on the Grassmannian. Let f̄ be a suitably smooth mapping from Rm×r∗ to
R. Let f̄

∣∣
St

denote its restriction to the Stiefel manifold and let us further
assume that

∀U ∈ St(m, r), Q ∈ O(r), f̄
∣∣
St

(U) = f̄
∣∣
St

(UQ).

Under this assumption, f̄
∣∣
St

is only a function of the column space of its
argument, hence

f : Gr(m, r)→ R : col(U) 7→ f(col(U)) = f̄
∣∣
St

(U)

is well defined. The gradient of f at U is the unique tangent vector grad f(U)
in TUGr(m, r) satisfying

∀H ∈ TUGr(m, r), 〈grad f(U), H〉U = Df(U)[H],

where Df(U)[H] is the directional derivative of f at U along H,

Df(U)[H] = lim
t→0

f(col(U + tH))− f(col(U))

t
.

Observe that grad f(U) is an abuse of notation. In fact, grad f(U) is the
so-called horizontal lift of grad f(U ) at U , and the way we abuse nota-
tions is justified by the theory of Riemannian submersions, see (Absil et al.,
2008, § 3.6.2, § 5.3.4). A similar definition holds for grad f̄ (the usual gradi-
ent) and grad f̄

∣∣
St

. Since St(m, r) is a Riemannian submanifold of Rm×r∗ ,
Section 2.3.1 has it that

grad f̄
∣∣
St

(U) = ProjSt
U grad f̄(U). (4.8)

That is, the gradient of the restricted function is obtained by computing
the gradient of f̄ in the usual way, then projecting the resulting vector onto
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the tangent space to the Stiefel manifold. Furthermore, since Gr(m, r) is a
Riemannian quotient manifold of St(m, r), Section 2.3.2 has it that

grad f(U) = grad f̄
∣∣
St

(U). (4.9)

The notation grad f(U) denotes the matrix representation of the abstract
tangent vector grad f(col(U)) with respect to the (arbitrary) choice of or-
thonormal basis U . They are related by:

d

dt
col(U + t grad f(U))

∣∣∣∣
t=0

= grad f(col(U)). (4.10)

Notice that TUGr(m, r) is a linear subspace of TUSt(m, r), so that ProjU ◦
ProjSt

U = ProjU . Since grad f(U) belongs to TUGr(m, r), it is invariant
under ProjU . Combining (4.8) and (4.9) and applying ProjU on both sides,
we finally obtain a practical means of computing the gradient of f :

grad f(U) = ProjUgrad f̄(U) = (I − UU>)grad f̄(U). (4.11)

In practice, this means that we need only compute the gradient of f̄ in the
usual way and then project accordingly.

Similar techniques apply to derive the Hessian of f at U along H in the
tangent space TUGr(m, r). Define the vector field F̄ : Rm×r∗ → Rm×r:

F̄ (U) = (I − UU>)grad f̄(U).

The restriction of F̄ to the Stiefel manifold, F̄
∣∣
St

, is a tangent vector

field, i.e., F̄ (U) ∈ TUSt(m, r) for all U ∈ St(m, r). Then, for all H in
TUGr(m, r) ⊂ TUSt(m, r), following Section 2.4.1,

∇HF̄
∣∣
St

(U) = ProjSt
U DF̄ (U)[H],

where DF̄ (U)[H] is the usual directional derivative of F̄ at U along H and
∇H denotes the Levi-Civita connection on the Stiefel manifold w.r.t. any
smooth tangent vector field X such that XU = H. This is the analog on
manifolds of directional derivatives of vector-valued functions. Furthermore,
Section 2.4.2 yields:

Hess f(U)[H] = ProjU∇HF̄
∣∣
St

(U),

where Hess f(U)[H] is the derivative at U along H (w.r.t. the Levi-Civita
connection on the Grassmannian) of the gradient vector field grad f . Putting
these two statements together and remembering that ProjU ◦ ProjSt

U =
ProjU , we find a simple expression for the Hessian of f at col(U) along
H w.r.t. the (arbitrary) choice of orthonormal basis U :

Hess f(U)[H] = ProjUDF̄ (U)[H] = (I − UU>)DF̄ (U)[H]. (4.12)
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In practice then, we simply need to differentiate the expression for grad f(U)
“as if it were defined on Rm×r∗ ” and project accordingly.

We use the following retraction (Definition 2.25) on Gr(m, r) to move
away from a given point U along a prescribed direction H while remaining
on the manifold:

RU (H) = polar(U +H),

where polar(A) ∈ St(m, r) designates the m × r orthonormal factor of the
polar decomposition of A ∈ Rm×r. This is computed using the thin SVD
for example: A = UΣV > and polar(A) = UV >. In abstract terms, this
corresponds to having col(RU (H)) = col(U + H). For tangent vectors,
U>H = 0 so that U +H is always full rank and this is well-defined. Notice
that if H is a tangent vector at U such that RU (H) = V , then RUQHQ =
V Q for all orthogonal matrices Q.

For the Riemannian conjugate gradient method (Section 3.1) it is nec-
essary to compare vectors belonging to different tangent spaces. Typically,
this happens when one wants to combine the gradient at the present iterate
with the search direction followed at the previous iterate. One proper way
of achieving this is to use a vector transport in accordance with the chosen
retraction, see Definition 2.27. We use the following simple procedure to
transport a tangent vector H at U to the tangent space at V :

TranspV←U (H) = (I − V V >)H. (4.13)

It is readily checked that TranspV Q←UQ(HQ) = (TranspV←U (H))Q for all
orthogonal matrices Q. This invariance property guarantees that (4.13)
consistently induces a vector transport on the Grassmann manifold.

4.2 The cost function and its derivatives

We seek an m× n matrix X̂ of rank at most r (and usually exactly r) such
that X̂ agrees as much as possible with a matrix X whose entries at the
observation set Ω are given. Furthermore, we are given a weight matrix
C ∈ Rm×n indicating the confidence we have in each observed entry of X.
The matrix C is positive at entries in Ω and zero elsewhere. To this end,
we propose to minimize the following cost function w.r.t. U ∈ Rm×r∗ and
W ∈ Rr×n, where (XΩ)ij equals Xij if (i, j) ∈ Ω and is zero otherwise:

g : Rm×r∗ × Rr×n → R

: (U,W ) 7→ g(U,W ) =
1

2
‖C � (UW −XΩ)‖2Ω +

λ2

2
‖UW‖2Ωc

. (4.14)
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The notation � denotes the entry-wise product, λ > 0 is a regularization
parameter, Ωc is the complement of the set Ω and

‖M‖2Ω ,
∑

(i,j)∈Ω

M2
ij .

The interpretation is as follows: we are looking for an optimal matrix X̂ =
UW of rank at most r; we have confidence Cij that X̂ij should equal Xij

for (i, j) ∈ Ω and smaller confidence λ that X̂ij should equal 0 for (i, j) /∈ Ω.
For a fixed U , computing the matrix W that minimizes (4.14) is a least-

squares problem. As we shall see in Section 4.2.3, the solution to that
problem exists and is unique since we assume λ > 0. Let us note gU (W ) ,
g(U,W ). The mapping between U and this unique optimal W ,

WU = W (U) = argmin
W∈Rr×n

gU (W ),

is smooth and easily computable—see Section 4.2.3. It is thus natural to
consider the following cost function defined over the set of full-rank matrices
U ∈ Rm×r∗ :

f̂ : Rm×r∗ → R : U 7→ f̂(U) =
1

2
‖C � (UWU −XΩ)‖2Ω +

λ2

2
‖UWU‖2Ωc

.(4.15)

By virtue of the discussion in the introduction of this chapter, we expect
that the function f̂ be constant over sets of full-rank matrices U spanning
the same column space. Let

GL(r) = {M ∈ Rr×r : M is invertible}

denote the general linear group. The following holds:

∀M ∈ GL(r), WUM = M−1WU .

Indeed, since g(U,W ) merely depends on the product UW , for any M ∈
GL(r) we have that gU (W ) and gUM (M−1W ) are two identical functions of
W . Hence, since WU is the unique minimizer of gU , it holds that M−1WU

is the unique minimizer of gUM , i.e., WUM = M−1WU . As a consequence,
X̂ = UWU = (UM)WUM for all M ∈ GL(r). For such matrices M , it then
follows as expected that:

f̂(UM) = f̂(U).

This induces an equivalence relation ∼ over the m× r matrices of full rank,
Rm×r∗ . Two such matrices are equivalent if and only if they have the same
column space:

U ∼ U ′ ⇔ ∃M ∈ GL(r) s.t. U ′ = UM ⇔ col(U) = col(U ′).
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This is equivalent to stating that U and U ′ are equivalent if they lead to
the same reconstruction model X̂ = UWU = U ′WU ′ , which certainly makes
sense for our purpose. For each U ∈ Rm×r∗ , we write

[U ] = {UM : M ∈ GL(r)} = {U ′ ∈ Rm×r∗ : col(U ′) = col(U)}

for the equivalence class of U , and identify it with col(U), the column space
of U . The set of all such equivalence classes is the Grassmann manifold
Gr(m, r): the set of r-dimensional linear subspaces embedded in Rm—see
Section 4.1. Under this description, the Grassmannian is seen as the quo-
tient space Rm×r∗ /GL(r), which is an alternative to the quotient structure
St(m, r)/O(r) (4.7) developed in Section 4.1.

Consequently, f̂ descends to a well-defined function over the Grassmann
manifold. Our task is to minimize this function. Doing so singles out a
column space col(U). We may then pick any basis of that column space,
say U , and compute WU . The product X̂ = UWU (which is invariant w.r.t.
the choice of basis U of col(U)) is then our completion of the matrix X. In

the next section, we rearrange the terms in f̂ to make it easier to compute
and give a slightly modified definition of the objective function.

4.2.1 Rearranging the objective function

Considering (4.15), it may seem that evaluating f̂(U) requires the computa-
tion of the product UWU at the entries in Ω and Ωc, i.e., we would need to
compute the whole matrix UWU , which cannot cost much less thanO(mnr).
Since applications typically involve very large values of the product mn,
this is not acceptable. Fortunately, the regularization term ‖UWU‖2Ωc

can
be computed cheaply based on the computations that need to be executed
for the principal term. Indeed, observe that:

‖UWU‖2Ω + ‖UWU‖2Ωc
= ‖UWU‖2F = trace(U>UWUW

>
U). (4.16)

The right-most quantity is computable in O((m + n)r2) flops and since
(UWU )Ω has to be computed for the first term in the objective function,

‖UWU‖2Ωc
turns out to be cheap to obtain. As a result, we see that comput-

ing f̂(U) as a whole only requires the computation of (UWU )Ω as opposed

to the whole product UWU , conferring to f̂ a computational cost that is
linear in the number of observed entries k = |Ω|.

We have the freedom to represent a column space with any of its bases.
From a numerical standpoint, it is sound to restrict our attention to or-
thonormal bases. The set of orthonormal bases U is termed the Stiefel
manifold (4.6). Assuming U ∈ St(m, r), U>U = Ir and equation (4.16)
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yield a simple expression for the regularization term:

‖UWU‖2Ωc
= ‖WU‖2F − ‖UWU‖2Ω .

Based on this observation, we introduce the following function over Rm×r∗ :

f̄ : Rm×r∗ → R : U 7→ f̄(U) =
1

2
‖C � (UWU −XΩ)‖2Ω

+
λ2

2

(
‖WU‖2F − ‖UWU‖2Ω

)
. (4.17)

In particular, it is the restriction of f̄ to St(m, r) ⊂ Rm×r∗ that makes sense
for our problem:

f̄ |St : St(m, r)→ R : U 7→ f̄ |St(U) = f̄(U).

Notice that this restriction coincides with the original cost function: f̂ |St ≡
f̄ |St. We then define our objective function f over the Grassmannian:

f : Gr(m, r)→ R : col(U) 7→ f(col(U)) = f̄ |St(U), (4.18)

where U is any orthonormal basis of the column space col(U). This is
well-defined since f̄ |St(U) = f̄ |St(UQ) for all orthogonal Q. On the other
hand, notice that f̄ does not reduce to a function on the Grassmannian (it
does not have the invariance property f̄(UM) = f̄(U) ∀M ∈ GL(r)), which
explains why we had to first go through the Stiefel manifold.

Computing f(col(U)) only requires the computation of UWU at entries
in Ω, at a cost of O(kr) flops, where k = |Ω| is the number of known

entries. Computing ‖WU‖2F costs O(nr) flops, hence a total evaluation cost
of O((k + n)r) flops, to which we add the (dominating) cost of computing
WU in Section 4.2.3 to obtain the total complexity of evaluating f .

4.2.2 Gradient and Hessian of the objective function

We now obtain the first- and second-order derivatives of f (4.18). As out-
lined in Section 4.1, grad f(col(U)) is a tangent vector to the quotient man-
ifold Gr(m, r). Because of the abstract nature of quotient manifolds, this
vector is an abstract object too. In practice, we represent it as a con-
crete matrix grad f(U) w.r.t. an (arbitrary) orthonormal basis U of col(U).
Equation (4.10) establishes the link between grad f(col(U)) and grad f(U).
Following (4.11), we have a convenient expression for grad f(U):

grad f(U) = (I − UU>) grad f̄(U).

We thus first set out to compute grad f̄(U), which is a classical gradient.
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Introduce the function h : Rm×r∗ × Rr×n → R as follows:

h(U,W ) =
1

2
‖C � (UW −XΩ)‖2Ω +

λ2

2

(
‖W‖2F − ‖UW‖

2
Ω

)
. (4.19)

Obviously, h is related to f̄ via

f̄(U) = min
W

h(U,W ) = h(U,WU ).

By definition of the classical gradient, grad f̄(U) ∈ Rm×r is the unique
vector that satisfies the following condition:

∀H ∈ Rm×r, Df̄(U)[H] =
〈
H, grad f̄(U)

〉
,

where Df̄(U)[H] is the directional derivative of f̄ at U along H and 〈A,B〉 =
trace(A>B) is the usual inner product on Rm×r. We thus need to compute
the directional derivatives of f̄ , which can be done in terms of the directional
derivatives of h. Indeed, by the chain rule, it holds that:

Df̄(U)[H] = D1h(U,WU )[H] + D2h(U,WU )[WU,H ],

where Di indicates differentiation w.r.t. the ith argument and

WU,H , DW (U)[H]

is the directional derivative of the mapping U 7→WU at U along H. Since

WU = argmin
W

h(U,W ),

WU is a critical point of h(U, ·) and it holds that D2h(U,WU ) = 0. This sub-
stantially simplifies the computations as now Df̄(U)[H] = D1h(U,WU )[H]:
we simply need to differentiate h w.r.t. U , considering WU as constant. Let
us define the mask Λ ∈ Rm×n as:

Λij =

{
λ if (i, j) ∈ Ω,

0 otherwise.

Using this notation, we may rewrite h in terms of Frobenius norms only:

h(U,W ) =
1

2
‖C � (UW −XΩ)‖2F +

λ2

2
‖W‖2F −

1

2
‖Λ� (UW )‖2F .

This is convenient for differentiation, since for suitably smooth mappings g,

D
(
X 7→ 1/2 ‖g(X)‖2F

)
(X)[H] = 〈Dg(X)[H], g(X)〉 .
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The following holds for all real matrices A,B,C of identical sizes:

〈A�B,C〉 = 〈B,A� C〉 ,

It thus follows that:

Df̄(U)[H] = D1h(U,WU )[H]

= 〈C � (HWU ), C � (UWU −XΩ)〉 − 〈Λ� (HWU ),Λ� (UWU )〉

=
〈
H,
[
C(2) � (UWU −XΩ)

]
W>U −

[
Λ(2) � (UWU )

]
W>U

〉
=
〈
H,
[
(C(2) − Λ(2))� (UWU −XΩ)

]
W>U − λ2XΩW

>
U

〉
=
〈
H, grad f̄(U)

〉
. (4.20)

Throughout this chapter, we use the notation M (n) for entry-wise exponen-
tiation, i.e.,

(M (n))ij , (Mij)
n.

For ease of notation, let us define the following m × n matrix with the
sparsity structure induced by Ω:

Ĉ = C(2) − Λ(2). (4.21)

We also introduce the sparse residue matrix RU :

RU = Ĉ � (UWU −XΩ)− λ2XΩ. (4.22)

By identification in (4.20), we obtain a simple expression for the sought
gradient:

grad f̄(U) = RUW
>
U .

We pointed out that D2h(U,WU ) = 0 because WU is a critical point of
h(U, ·). This translates into the following matrix statement:

∀H ∈ Rr×n, 0 = D2h(U,WU )[H]

= 〈C � (UH), C � (UWU −XΩ)〉+ λ2 〈H,WU 〉
− 〈Λ� (UH),Λ� (UWU )〉

=
〈
H,U>RU + λ2WU

〉
.

Hence,

U>RU + λ2WU = 0. (4.23)
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Summing up, we obtain the gradient of f (4.18):

grad f(U) = (I − UU>)RUW>U = RUW
>
U + λ2U(WUW

>
U), (4.24)

We now differentiate (4.24) according to the identity (4.12) for the Hes-
sian of f . To this end, consider F̄ : Rm×r∗ → Rm×r:

F̄ (U) = RUW
>
U + λ2U(WUW

>
U).

According to (4.12), the Hessian of f is given by:

Hess f(U)[H] = (I − UU>)DF̄ (U)[H]. (4.25)

Let us compute the differential of F̄ :

DF̄ (U)[H] = [Ĉ � (HWU + UWU,H)]W>U +RUW
>
U,H

+ λ2H(WUW
>
U) + λ2U(WU,HW

>
U +WUW

>
U,H).

Applying the projector I − UU> to DF̄ (U)[H] cancels out all terms of the
form UM (since (I − UU>)U = 0) and leave all terms of the form HM
unaffected (since U>H = 0). As a consequence of (4.23), applying the
projector to RUW

>
U,H yields:

(I − UU>)RUW>U,H = RUW
>
U,H+ λ2UWUW

>
U,H.

Applying these observations to (4.25), we obtain an expression for the Hes-
sian of our objective function on the Grassmann manifold:

Hess f(U)[H] = (I − UU>)
[
Ĉ � (HWU + UWU,H)

]
W>U

+RUW
>
U,H+ λ2H(WUW

>
U) + λ2U(WUW

>
U,H). (4.26)

Not surprisingly, the formula for the Hessian requires the computation of
WU,H , the differential of the mapping U 7→WU along H. The next section
provides formulas for WU and WU,H .

4.2.3 WU and its derivative WU,H

We still need to provide explicit formulas for WU and WU,H . We assume
U ∈ St(m, r) since we use orthonormal matrices to represent points on the
Grassmannian and U>H = 0 since H ∈ TUGr(m, r).

The vectorization operator, vec, transforms matrices into vectors by
stacking their columns—in Matlab notation, vec(A) = A(:). Denoting the
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Kronecker product of two matrices by ⊗, the following well-known identity
holds, for matrices A, Y,B of appropriate sizes (Brookes, 2005):

vec(AY B) = (B>⊗A)vec(Y ).

We also write IΩ for the orthonormal k ×mn matrix such that

vecΩ(M) = IΩvec(M)

is a vector of length k = |Ω| corresponding to the entries Mij for (i, j) ∈ Ω,
taken in order from vec(M).

ComputingWU comes down to minimizing the least-squares cost h(U,W )
(4.19) with respect to W . We manipulate h to reach a standard form for
least-squares. To this end, first define S ∈ Rk×mn:

S = IΩdiag(vec(C)).

This will come in handy through the identity

‖C �M‖2Ω = ‖vecΩ(C �M)‖22 = ‖IΩvec(C �M)‖22
= ‖IΩdiag(vec(C))vec(M)‖22 = ‖Svec(M)‖22 .

We use this in the following transformation of h:

h(U,W ) =
1

2
‖C � (UW −XΩ)‖2Ω +

λ2

2
‖W‖2F −

λ2

2
‖UW‖2Ω

=
1

2
‖Svec(UW )− vecΩ(C �XΩ)‖22 +

λ2

2
‖vec(W )‖22

− λ2

2
‖vecΩ(UW )‖22

=
1

2
‖S(In ⊗ U)vec(W )− vecΩ(C �XΩ)‖22 +

1

2
‖λIrnvec(W )‖22

− 1

2
‖λIΩ(In ⊗ U)vec(W )‖22

=
1

2

∥∥∥∥[S(In ⊗ U)
λIrn

]
vec(W )−

[
vecΩ(C �XΩ)

0rn

]∥∥∥∥2

2

− 1

2

∥∥[λIΩ(In ⊗ U)
]

vec(W )
∥∥2

2

=
1

2
‖A1w − b1‖22 −

1

2
‖A2w‖22

=
1

2
w>(A>1A1 −A>2A2)w − b>1A1w +

1

2
b>1b1,
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with w = vec(W ) ∈ Rrn, 0rn ∈ Rrn is the zero-vector and the obvious
definitions for A1, A2 and b1. If A>1A1 −A>2A2 is positive-definite there is a
unique minimizing vector vec(WU ), given by:

vec(WU ) = (A>1A1 −A>2A2)−1A>1b1.

It is easy to compute the following:

A>1A1 = (In ⊗ U>)(S>S)(In ⊗ U) + λ2Irn,

A>2A2 = (In ⊗ U>)(λ2I>ΩIΩ)(In ⊗ U),

A>1b1 = (In ⊗ U>)S>vecΩ(C �XΩ) = (In ⊗ U>)vec(C(2) �XΩ).

Note that S>S − λ2I>ΩIΩ = diag(vec(Ĉ)). Let us call this matrix B:

B , S>S − λ2I>ΩIΩ = diag(vec(Ĉ)).

Then define A ∈ Rrn×rn as:

A , A>1A1 −A>2A2 = (In ⊗ U>)B(In ⊗ U) + λ2Irn. (4.27)

Observe that the matrix A is block-diagonal, with n symmetric blocks of
size r. This structure stems from the fact that each column of WU can be
computed separately from the others. Each block is indeed positive-definite
provided λ > 0 (making A positive-definite too). Thanks to the sparsity
of Ĉ, we can compute these n blocks with O(kr2) flops. To solve systems
in A, we compute the Cholesky factorization of each block, at a total cost
of O(nr3) flops. Once these factorizations are computed, each system only
costs O(nr2) flops to solve (Trefethen & Bau, 1997). Collecting all equations
in this section, we obtain a closed-form formula for WU :

vec(WU ) = A−1(In ⊗ U>)vec(C(2) �XΩ)

= A−1vec
(
U>[C(2) �XΩ]

)
, (4.28)

where A is a function of U and we have a fast way of applying A−1 to
vectors.

We would like to differentiate WU with respect to U , that is, compute

vec(WU,H) = D (U 7→ vec(WU )) (U)[H]

= D
(
U 7→ A−1

)
(U)[H] · vec

(
U>[C(2) �XΩ]

)
+A−1vec

(
H>[C(2) �XΩ]

)
. (4.29)
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Using the formula D(Y 7→ Y −1)(X)[H] = −X−1HX−1 (Brookes, 2005) for
the differential of the inverse of a matrix, we obtain

D
(
U 7→ A−1

)
(U)[H] = −A−1 ·D (U 7→ A) (U)[H] ·A−1

= −A−1
[
(In ⊗H>)B(In ⊗ U) + (In ⊗ U>)B(In ⊗H)

]
A−1.

Plug this back in (4.29), recalling (4.28) for WU :

vec(WU,H) = −A−1
[
(In ⊗H>)B(In ⊗ U) + (In ⊗ U>)B(In ⊗H)

]
vec(WU )

+A−1vec
(
H>[C(2) �XΩ]

)
= −A−1

[
(In ⊗H>)Bvec(UWU ) + (In ⊗ U>)Bvec(HWU )

]
+A−1vec

(
H>[C(2) �XΩ]

)
= −A−1

[
(In ⊗H>)vec(Ĉ � UWU ) + (In ⊗ U>)vec(Ĉ �HWU )

]
+A−1vec

(
H>[C(2) �XΩ]

)
= −A−1

[
vec(H>[Ĉ � UWU ]) + vec(U>[Ĉ �HWU ])

]
+A−1vec

(
H>[C(2) �XΩ]

)
. (4.30)

Now recall the definition of RU (4.22) and observe that

Ĉ � UWU − C(2) �XΩ = Ĉ � UWU − Ĉ �XΩ − Λ(2) �XΩ = RU .

Plugging the latter in (4.30) yields a compact expression for the directional
derivative WU,H :

vec(WU,H) = −A−1vec
(
H>RU + U>

(
Ĉ � (HWU )

))
. (4.31)

The most expensive operation involved in computing WU,H ought to be
solving a linear system in A. Fortunately, we already factored the n small
diagonal blocks of A in Cholesky form to compute WU . Consequently, after
computing WU , computing WU,H is cheap. The computational complexities
are summarized in Section 4.2.5.

4.2.4 Preconditioning the Hessian

As Section 4.4 demonstrates with the numerical experiment (scenario 3), the
Hessian of the cost function Hess f (4.26) can be badly conditioned when the
target matrix X is itself badly conditioned. Such conditioning issues slow
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down optimization algorithms, and it is known that good preconditioners
can have a dramatic effect on performance in such cases (Conn et al., 2000;
Hager & Zhang, 2006). In this section, we consider a simplified version
of the low-rank matrix completion problem, which allows us to simplify
the expression of the Hessian. This, in turn, yields an approximation of
the inverse of the Hessian. That operator is then used to precondition the
Hessian in the optimization algorithms discussed in Section 4.3. Figure 4.4
demonstrates the effectiveness of this preconditioner.

In order to (drastically) simplify the problem at hand, assume all entries
of X are observed, with identical confidence Cij = c. Hence, Ĉ = (c2 −
λ2)1m×n where 1 is the all-ones matrix. Then, remembering that U>H = 0,
we get successively for RU (4.22) and the Hessian (4.26):

RU = c2(UWU −XΩ)− λ2UWU , and

Hess f(U)[H] = c2H(WUW
>
U) + (RU + λ2UWU )W>U,H

= c2H(WUW
>
U) + c2(UWU −XΩ)W>U,H.

Now consider WU,H . Recalling equations (4.31) for WU,H and (4.27) for A,

still under the same assumption on Ĉ, it follows that:

Avec (WU,H) = −vec
(
H>RU

)
= vec

(
λ2WU,H + (c2 − λ2)WU,H

)
= c2vec (WU,H) .

Hence,

WU,H = − 1

c2
H>RU = H>XΩ, and

Hess f(U)[H] = c2H(WUW
>
U) + c2(UWU −XΩ)X>ΩH.

Further assuming we are close to convergence and the observations are not
too noisy, that is, XΩ ≈ UWU , then UWU − XΩ ≈ 0 and X>ΩH ≈ 0.
The second term is thus small and the Hessian may be approximated by
the mapping H 7→ c2H(WUW

>
U). Notice that this mapping is linear and

symmetric, from and to the tangent space at U . This observation prompts
the following formula for a preconditioner:

Precon f(U)[H] =
1

c2
H(WUW

>
U)−1. (4.32)

The small r × r matrix WUW
>
U is already computed when the gradient at

U is computed. Applying the preconditioner further requires solving linear
systems in that matrix. The cost of this is O(r3) to prepare a Cholesky
factorization of WUW

>
U (once per iteration) and an additional O(mr2) per
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application. Notice that this cheap cost is independent of the number of
observed entries k. In practice, c can be chosen to be the average value of
the positive Cij ’s.

It is important that a preconditioner be symmetric and positive definite
on the tangent space at U . The proposed preconditioner indeed fulfills these
requirements provided WU is full-rank. The factor WU is expected to be
full-rank near convergence provided the lowest-rank matrix compatible with
the observation XΩ is of rank at least r. In practice, we could monitor the
condition number of WUW

>
U at each iteration, and decrease r if it becomes

too large (indicating we overshot the true rank of the sought matrix X).
Preconditioning the Hessian with (4.32) is tightly related to the ap-

proaches favored by Mishra et al. (2012b) and by Ngo & Saad (2012). In
the latter reference, the authors pose low-rank matrix completion as an opti-
mization problem on two Grassmannians (one for the row space and one for
the column space). If (U, V ) is a couple of orthonormal matrices representing
the row and column spaces of the current estimate USV >, then the metric
on the first Grassmannian is scaled by SS>= (SV >)(SV >)>and likewise the
metric on the second Grassmannian is scaled by S>S = (US)>(US) (notice
the cross-talk between U and V , akin to our preconditioning iterations on U
using the W factor). Mishra et al. (Mishra et al., 2012b) represent low-rank
matrices on a quotient space of factorizations of the form GH>. The metric
on G is scaled by H>H and likewise the metric on H is scaled by G>G. The
effect of changing the metric is similar to the effect of preconditioning, in
that it makes the cost function “look more isotropic”.

Underlying the preconditioner (4.32) is the approximation of the Hessian
at U as

(Precon f(U))−1[H] = c2H(WUW
>
U).

This operator induces a norm on the tangent space at U , which we call the
M -norm (following notation of (Conn et al., 2000, Alg. 7.5.1)):

‖H‖2M =
〈
H, (Precon f(U))−1[H]

〉
U

= c2 〈HWU , HWU 〉 . (4.33)

This norm appears in the description of the preconditioned Riemannian
trust-region method (Section 3.2) but needs never be computed explicitly.

4.2.5 Numerical complexities

By exploiting the sparsity of many of the matrices involved and the special
structure of the matrix A (4.27) appearing in the computation of WU and
WU,H , it is possible to compute the objective function f (4.18) as well as its
gradient (4.24) and its Hessian (4.26) on the Grassmannian in time linear
in the size of the data k = |Ω|. Memory complexities are also linear in k.
We summarize the computational complexities in Table 4.1. Note that most
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computations are easily parallelizable, but we do not take advantage of it
here.

The computational cost of WU (4.28) is dominated by the computation
of the n diagonal blocks of A of size r × r—O(kr2)—and by the Cholesky
factorization of these—O(nr3)—hence a total cost of O(kr2 + nr3) flops.
The computation of f(U) is dominated by the cost of computing WU , hence
they have the same complexity. Computing the gradient of f once WU

is known involves just a few supplementary matrix-matrix multiplications.
Exploiting the sparsity of these matrices keeps the cost low: O(kr + (m +
n)r2) flops. Computing the Hessian of f along H requires (on top of WU )
the computation of WU,H and a few (structured) matrix-matrix products.
Computing WU,H involves solving a linear system in A. Since we computed
WU already, we have a Cholesky-factored representation of A, hence solving
a system in A is cheap: O(nr2) flops. The total cost of computing WU,H

and Hess f(U)[H] is O(kr + (m+ n)r2) flops.
Notice that computing the gradient and the Hessian is cheaper than

computing f . This stems from the fact that once we have computed f at
a certain point U , much of the work (such as computing and factoring the
diagonal blocks of A) can be reused to compute higher-order information.
This prompts us to investigate methods that exploit second-order informa-
tion.

Computation Complexity By-products Formulas
WU and f(U) O(kr2 + nr3) Cholesky of A (4.17)–(4.18),

(4.27), (4.28)
grad f(U) O(kr + (m+ n)r2) RU , WUW

>
U (4.21), (4.22),

(4.24)
Hess f(U)[H] O(kr + (m+ n)r2) WU,H (4.26), (4.31)
Precon f(U)[H] O(mr2) (4.32)

Table 4.1: All complexities are at most linear in k = |Ω|, the number of
observed entries.

4.3 Riemannian optimization setup

To minimize the cost function f on the Grassmann manifold, we choose
Riemannian optimization algorithms which can be preconditioned: the Rie-
mannian trust-region method (RTR) and the Riemannian conjugate gra-
dient method (RCG). Both of these methods are described in Chapter 3
and are implemented in Manopt. RTR can make full use of the Hessian
information, while RCG does not use the Hessian at all. The algorithms are
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implemented while making full use of Manopt’s built-in caching capabilities,
which help prevent redundant computations.

4.3.1 Initial guess

Both the RTR and the RCG methods require an initial guess for the column
space, col(U0). To this end, compute the r dominant left singular vectors of
the masked matrix XΩ. In Matlab, this is achieved by calling [U0, S0, V0] =
svds(XΩ, r). Since XΩ is sparse, this has a reasonable cost (linear in k).
The initial model is thus U0WU0

. Alternative methods to compute an initial
guess, with analysis, as well as to guess the rank r if it is unknown can be
found in (Keshavan & Oh, 2009) and, more recently, in (Chatterjee, 2012).

4.3.2 Preconditioned Riemannian trust-regions

We use RTR (Section 3.2) with and without preconditioner, and call the
resulting methods RTRMC 2p and RTRMC 2, respectively. RTR accepts a
few parameters. Among them, the maximum and initial trust-region radii
are denoted respectively ∆̄ and ∆0.

The trust-region radius at a given iterate is the upper bound on the
M -norm (4.33) of the steps one is willing to take—see eq. (3.5). To keep
things proportioned when talking about both the preconditioned and the
unpreconditioned variants, let

s2 = λmax(c2WU0
W>U0

)

when the preconditioner is used, and let s = 1 otherwise. That is: s is the
2-norm of the approximation of the square root of the Hessian underlying
the preconditioner. Since the Grassmann manifold is compact, it makes
sense to choose ∆̄ in proportion to the diameter of this manifold, i.e., the
largest geodesic distance between any two points on Gr(m, r). The distance
between two subspaces is

√
θ2

1 + · · ·+ θ2
r , where the θi’s are the principal

angles between these spaces. Since these angles are bounded by π/2, we
set ∆̄ = sπ

√
r/2. Accordingly, we set the initial trust-region radius as

∆0 = ∆̄/8.
The number of inner iterations for the tCG algorithm (inner solve) is

limited to 500. While this limit may jeopardize the quadratic convergence
rate of RTR, we find that it is seldom (if ever) reached for reasonably well-
conditioned problems, and otherwise prevents excessive running times.

All other parameters are set to their default values.
As a means to investigate the role of second-order information in this

algorithm, we also experiment with RTRMC 1, which is the same method
but the Hessian is “approximated” by the identity matrix. The analysis of
the RTR method still guarantees global convergence for this setup.
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4.3.3 Preconditioned Riemannian conjugate gradients

The RCG method from Section 3.1 is applied as is to the matrix completion
problem, with and without preconditioning. The resulting methods are
referred to as RCGMCp and RCGMC respectively.

4.4 Numerical experiments

The proposed algorithms are tested on synthetic data and compared against
ADMiRA (Lee & Bresler, 2010), OptSpace (Keshavan & Oh, 2009), SVT
(Cai et al., 2010), Balanced Factorization (Meyer et al., 2011a), GROUSE
(Balzano et al., 2010), LMaFit (Wen et al., 2012), LRGeom (Vandereycken,
2013), qGeomMC-CG (Mishra et al., 2012b) and ScGrass-CG (Ngo & Saad,
2012) in terms of accuracy and computation time. We observed that the
first four mentioned algorithms are never competitive with the best algo-
rithms, so that we omit them in the discussion. Jellyfish (Recht et al., 2011)
and the divide-and-conquer approach of Mackey et al. (2011) explicitly tar-
get parallel architectures. The previously mentioned algorithms could be
parallelized but this was not the focus of the authors, nor is it ours. We
thus did not compare with parallel implementations. We could not compare
against NNLS (Toh & Yun, 2010) since the code provided by the authors of-
ten crashes (as also observed by the authors of Jellyfish), but we do compare
with GROUSE (Balzano et al., 2010), whose authors point out it outper-
forms NNLS. We significantly enhanced the implementation of GROUSE
by implementing the rank-one updates it performs using a C-Mex file. This
file calls the BLAS level 2 routine dger directly. GROUSE’s performance
is sensitive to its step-size parameter. After experiments on a wide range of
values, we decided to set it to 0.3 or 0.5, whichever performs best.

All algorithms are run sequentially by Matlab on the same computer.1

This computer has 12 cores. Even though none of the tested codes are
explicitly multithreaded, some of them get some mileage out of the multicore
architecture owing to Matlab’s built-in parallelization of some tasks. All
Matlab implementations call subroutines in C-Mex code to efficiently deal
with the sparsity of the matrices involved. All of these C-Mex codes are
single-threaded even though they are typically embarrassingly parallelizable.
Profiling indicates a lot of computation time could be saved there, but
this is beyond our scope. See (Recht et al., 2011) for emphasis on parallel
computing for LRMC.

The proposed methods (RTRMC 2 and 2p, RCGMC and RCGMCp)
as well as the competing methods GROUSE, LRGeom, qGeomMC-CG and

1HP DL180 + Intel Xeon X5670 2.93 GHz (12 core), 144Go RAM, Matlab 7.10
(R2010a), Linux (64 bits)
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ScGrass-CG require knowledge of the target rank r. LMaFit includes a
mechanism to guess the rank, but benefits from knowing it, hence we provide
the target rank to LMaFit too.

Remark 4.1 (About guessing the rank). If one over-estimates the rank, the
factorization UWU results in a rank deficient factor WU . This is detectable
by monitoring the condition number of the r×r matrix WUW

>
U . If this num-

ber becomes too large, r could be reduced. If one under-estimates the rank,
the algorithm is expected to converge toward a lower-rank approximation of
the target matrix, which typically is the desired behavior—see scenario 7
below. Guessing strategies for the rank (some of them rather refined and
sophisticated) have been proposed that can be used with any fixed-rank ma-
trix completion algorithm (Chatterjee, 2012; Keshavan & Oh, 2009; Wen
et al., 2012). It has also been shown that starting from a rank 1 approxi-
mation and iteratively increasing the rank until no significant improvement
is detected can be beneficial, see for example the so-called homotopy strat-
egy in (Vandereycken, 2013). All algorithms tested here could be adapted to
work iteratively with increasing rank.

We use the root mean square error (RMSE) criterion to assess the quality
of reconstruction of X with X̂:

RMSE(X, X̂) = ‖X − X̂‖F/
√
mn.

This quantity is cheap to compute when the target matrix is given in fac-
tored low-rank form X = AB and X̂ is (by construction) in the same
form X̂ = UW . The RMSE may then accurately be computed in O((m +

n)r2) flops observing that AB − UW =
[
A U

] [
B> −W>

]>
. Comput-

ing thin (rank 2r) QR decompositions of both terms as Q1R1 =
[
A U

]
and Q2R2 =

[
B> −W>

]
yields the following formula: ‖AB − UW‖F =∥∥Q1R1R

>
2Q
>
2

∥∥
F

=
∥∥R1R

>
2

∥∥
F

. This is much more accurate than the algo-
rithm we used previously in (Boumal & Absil, 2011c). For the purpose of
comparing the algorithms, we add code to all implementations so that the
RMSE is computed at each iterate. The time spent in this calculation is
discounted from the reported timings.

A number of factors intervene in the difficulty of a low-rank matrix
completion task. Obviously, the size m × n of the matrix X to recover
and its rank r are fundamental quantities. Among others, the presence or
absence of noise is important. If the observations XΩ are noisy, then XΩ

is not the masked version of a low-rank matrix X, but of a matrix which is
close to being low-rank: X + noise. Of course, different noise distributions
(with and without outliers etc.) can be investigated. The search space—the
manifold of m×n matrices of rank r—has dimension d = r(m+n−r). The
oversampling ratio k/d is a crucial quantity: the larger it is, the easier the



4.4. Numerical experiments 89

task is. The sampling process also plays a role in the difficulty of matrix
completion. Under uniform sampling for example, all entries of the matrix
X have identical probability of being observed. Uniform sampling prevents
pathological cases (where some rows or columns have no observed entry at all
for example) from happening with high probability. Real datasets often have
nonuniform samplings. For example, some movies are particularly popular
and some users rate particularly many movies. Finally, the conditioning
of the low-rank matrix X (the ratio of its largest to its smallest nonzero
singular values) may affect the difficulty of matrix completion too.

The following numerical experiments explore these various pitfalls. For
the noiseless scenarios, in our methods, we let λ = 0 (no regularization).
All observed entries are trusted with the same confidence Cij = 1. For the
preconditioner, let c = 1 (the average confidence). In practice, because it is
numerically convenient, we scale the whole cost function by 1/k.

Scenario 1: low oversampling ratio We first compare the convergence
behavior of the different methods with square matrices m = n = 10 000
and rank r = 10. We generate A ∈ Rm×r and B ∈ Rr×n with i.i.d. normal
entries of zero mean and unit variance. The target matrix is X = AB.
We sample 3d entries uniformly at random without noise, which yields a
sampling ratio of 0.6%. This is fairly low. Figure 4.1 is typical and shows
the evolution of the RMSE as a function of time. Most modern methods
are efficient on such a standard task.

Scenario 2: rectangular matrices In this second test, we repeat the
previous experiment with rectangular matrices: m = 1 000, n = 30 000, r =
5 and a sampling ratio of 2.6% (5d known entries), see Figure 4.2. We
expect and confirm that RTRMC, RCGMC and GROUSE perform well
on rectangular matrices since they optimize over the smallest of either the
column space or the row space, and not both at the same time.

Scenario 3: bad conditioning For this third test, we generate A and
B as in Scenario 1 with m = n = 1 000, r = 10. We then compute the
thin SVD of the product AB = USV >, which can be done efficiently using
economic QR factorizations of A and B separately. The diagonal r × r
matrix S is replaced with a diagonal matrix S+ whose diagonal entries
decay exponentially as follows: (S+)ii =

√
mn exp(−5(i − 1)/(r − 1)), for

i = 1 . . . r. The product X = US+V
> is then formed and this is the rank-r

target matrix, of which we observe 5d entries uniformly at random (that
is about 10%). Notice that X has much worse conditioning (e5 ≈ 148)
than the original product AB (typical conditioning below 2) without being
unrealistically bad. From the numerical results in Figure 4.3, it appears that
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Figure 4.1: Scenario 1: standard completion task on a square 10 000×10 000
matrix of rank 10, with a low oversampling ratio of 3, that is, 99.4% of the
entries are unknown. Most methods perform well. As the test is repeated,
the ranking of the top-performing algorithms varies a little. Since the prob-
lem is well-conditioned, the preconditioned variants of our algorithms per-
form almost the same as the standard algorithms. They are omitted for
legibility.
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Figure 4.2: Scenario 2: completion task on a rectangular matrix of size
1 000 × 30 000 of rank 5, with an oversampling ratio of 5. For rectangular
matrices, RTRMC and GROUSE are especially efficient since they optimize
over a single Grassmann manifold. As a consequence, the dimension of
their nonlinear search space grows linearly in min(m,n), whereas for most
methods the growth is linear in m + n. Preconditioned variants perform
about the same and are omitted for legibility.
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most methods have difficulties solving this task, while our preconditioned
algorithms RTRMC 2p and RCGMCp quickly solve them to high accuracy.
RTRMC 2 also succeeds, at the cost of more Hessian evaluations than before.

We venture an explanation of the better performance of the proposed
second-order and preconditioned methods here by studying the condition
number of the Hessian of the cost function f at the solution col(U)—see
Figure 4.4. This Hessian is a symmetric linear operator on the linear sub-
space TUGr(m, r) of dimension r(m−r) = 9900. For the present experiment
(target US+V

>), we compute the 9900 associated eigenvalues with Matlab’s
eigs. They are all positive. The condition number of the Hessian is 72 120.
The fact that the bad conditioning of X translates into even worse condi-
tioning of the Hessian at the solution can be explained by the approximate
expression for the Hessian, c2WUW

>
U (Section 4.2.4). Then, at the solution

U ,

cond(Hess f(U)) ≈ cond(WUW
>
U) = cond2(X). (4.34)

As seen from Figure 4.4, the preconditioner nicely reduces the condition
number of the Hessian to 7.3 by an appropriate change of variable.

Scenario 4: nonuniform sampling As a fourth test, we generate A
and B as in Scenario 1 with m = 1 000, n = 10 000 and r = 10. The
target matrix is X = AB, of which we observe entries with a nonuniform
distribution. The chosen artificial sampling mimics a situation where rows
correspond to movies and columns correspond to raters. Some of the movies
are much more often rated than others, and some of the raters rate many
more movies than others. Each of the 100 first movies (they are the least
popular ones) has a probability of being rated that is 5 times smaller than
the 800 following movies. The 100 last movies are 5 times as likely to be
rated as the 800 latter (they are the popular ones). Furthermore, each
rater rates between 15 and 50 movies, uniformly at random, resulting in an
oversampling ratio of 2.94 (3.2%). Figure 4.5 shows the associated mask
probability, where raters (columns) have been sorted by number of given
ratings.

Figure 4.6 shows the behavior of the various methods tested on this
instance of the problem. It appears that the proposed algorithms can cope
with some non-uniformity in the sampling procedure.

Scenario 5: larger instances In this fifth test, we try out the various
algorithms on a larger instance of matrix completion: m = 10 000, n =
100 000, r = 20 with oversampling ratio of 5, that is, 1.1% of the entries
are observed, sampled uniformly at random. The target matrix X = AB
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(formed as previously) has a billion entries. Figure 4.7 shows that RTRMC
2(p) performs well on such instances.

Scenario 6: noisy observations As a sixth test, we try out RTRMC
on a class of noisy instances of matrix completion with m = n = 5 000, r =
10 and oversampling ratio of 4, that is, 1.6% of the entries are observed,
sampled uniformly at random. The target matrix X = AB is formed as
before with A ∈ Rm×r, B ∈ Rr×n whose entries are i.i.d. normal random
variables. Notice that this implies the Xij ’s are also zero-mean Gaussian
variables but with variance r and not independent. We then generate a noise
matrix NΩ, such that the (NΩ)ij ’s for (i, j) in Ω are i.i.d. normal random
variables (Gaussian distribution with zero mean, unit variance), and the
other entries of N are zero. The observed matrix is XΩ + σNΩ, where σ2

is the noise variance. The signal to noise ratio (SNR) is thus r/σ2. This is
the same setup as the standard scenario in (Keshavan et al., 2009).

All algorithms based on a least-squares strategy should perform rather
well on this scenario, since least-squares are particularly well-suited to filter
out Gaussian noise. And indeed, as they perform almost the same, we only
show results for RTRMC. We should however expect those same algorithms
to perform suboptimally in the face of outliers. RTRMC makes no claim
of being robust against outliers, hence we only test against Gaussian noise
and show excellent behavior in that case on Figure 4.8. For comparison,
we use the same oracle as in (Keshavan et al., 2009), that is: we compare
the RMSE obtained by RTRMC with the RMSE we could obtain if we
knew the column space col(X). This is known to be equal to RMSEoracle =
σ
√

(2nr − r2)/k (in expectation). Figure 4.8 illustrates the fact that, not
surprisingly, RTRMC reaches almost the same RMSE as the oracle as soon
as the SNR is large enough.

Scenario 7: underestimating the rank As a seventh test, the target
matrix X has true rank 32, with positive singular values decaying expo-
nentially from

√
mn to

√
mn · 10−10 (see Scenario 3). We challenge the

algorithms to reconstruct a matrix of rank 8 which best approximates X.
Such a scenario is motivated in (Vandereycken, 2013), in the context of
approximating almost separable functions of two variables.

The size of X is given by m = n = 5 000 and 10d entries are observed
uniformly at random, that is, 3.2%. An oracle knowing the matrix X per-
fectly would simply return the SVD of X truncated to rank 8, committing
an RMSE of 3 · 10−3. In repeated realizations of this test, the only meth-
ods we observed converging close to the oracle bound are preconditioned
methods, see Figure 4.9.
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Figure 4.3: Scenario 3: completion task on a square 1 000× 1 000 matrix of
rank 10 with an oversampling factor of 5 and a condition number of about
150. RTRMC 2, using more Hessian applications than on better conditioned
problems, shows good convergence quality. Our preconditioned algorithms
RCGMCp and RTRMC 2p perform even better. Surprisingly, ScGrassCG
and qGeomMC, which both are (in a slightly different way) preconditioned
too, sometimes solve the problem too, but less often than not and require
more time.
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Figure 4.4: Spectrum (in log10) of the Hessian and of the preconditioned
Hessian at the solution of scenario 3. The target matrix has a condition
number of about 150. This translates into a challenging Hessian condition
number of more than 72 000. Preconditioning the Hessian controls this
condition number back to 7.3, explaining the success of RTRMC 2p and
RCGMCp on scenario 3. Notice that the spectrum of the Hessian has
r = 10 modes.
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Figure 4.5: Proposed nonuniform sampling density for Scenario 4. This im-
age represents a 1 000×10 000 matrix. Each entry is colored on a grayscale.
The lighter the color, the slimmer the chances that this entry is observed.
We see that entries in the top 100 rows are much less likely to be observed
than in the bottom 100 rows. Columns on the right are also more densely
sampled than columns on the left. This artificial sampling process mimics
a situation where some objects are more popular than others (and hence
more often rated) and some raters are more active than others.
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Figure 4.6: Scenario 4: completion task on a rectangular 1 000 × 10 000
matrix or rank 10, with 3.2% (OS = 2.9) of the entries revealed following
a nonuniform sampling as depicted in Figure 4.5. It appears most methods
can withstand some non-uniformity GROUSE is slowed down by the non-
uniformity, possibly because it operates one column at a time.
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Figure 4.7: Scenario 5: completion task on a larger 10 000× 100 000 matrix
of rank 20 with an oversampling ratio of 5.
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Figure 4.8: Scenario 6: RTRMC is well suited to solve matrix completion
tasks under Gaussian noise, owing to its least-squares objective function
(m = n = 5 000, r = 10, |Ω|/(mn) = 1.6%). The straight blue line indicates
the RMSE that an oracle who knows the column space of the target matrix
X would reach (this is a lower bound on the performance of any practical
algorithm). For different values of SNR, we generate 10 problem instances
and solve them with RTRMC. The red dots report the RMSE’s reached by
RTRMC. For SNR’s larger than 1, the dots are mostly indistinguishable
and close to the oracle quality, which shows that Gaussian noise is easily
filtered out.
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Figure 4.9: Scenario 7: in this challenging completion task, the target ma-
trix is square, 5 000× 5 000, and has rank 32 with singular values decaying
exponentially from

√
mn to

√
mn·10−10. The various algorithms attempt to

construct a matrix of rank 8 best approximating the ill-conditioned target
matrix, based on 3.2% of revealed entries (OS = 10). The best methods al-
most reach the oracle RMSE (dashed line), which corresponds to the RMSE
reached by an SVD of the true matrix X truncated to rank 8. The out-
come of this test is less constant than the others. Over many runs, the
typical result is that RCGMCp and RTRMC 2p almost always converge as
depicted, while qGeomMC and ScGrass-CG (the only two other precondi-
tioned methods in this test) sometimes converge as well, but less often than
not. RTRMC 2 and RCGMC sometimes achieve good reconstructions too
(as depicted) but are always much slower than their preconditioned counter-
parts. Over many runs, we did not witness the other methods reach values
close to the oracle bound.
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4.5 Application: the Netflix prize

The competing algorithms are now tested on the Netflix data.2 The com-
plete matrix is 17 770× 480 189 with 100 198 805 entries revealed for train-
ing and 281 702 additional entries reserved for validation. Each row cor-
responds to a movie and each column corresponds to a user. Entries are
integer ratings between 1 and 5. The data is preprocessed to remove users
who rated less than 10 movies and movies which were rated less than 100
times—more on this momentarily. The resulting matrix is 16 777× 462 746
with k = 100 028 462 training entries (1.29%) and ktest = 276 279 test en-
tries. The training data is centered around the mean of the training entries
(3.6047), since the regularized cost function (4.18) implicitly puts a prior
on the value of each unknown entry being 0.

Figure 4.10 shows the behavior of the various algorithms we propose,
with test RMSE as a function of time. The test RMSE is computed over
the test entries only, not over the training entries. The rank is set to r = 10
(corresponding to an oversampling factor of 20.86). The regularization pa-
rameter λ of our algorithms is set to 0.1. The preconditioned algorithms
seem to perform the best on this real dataset. We use RCGMCp to pro-
duce Table 4.2, where various values for the regularization λ as well as the
reconstruction rank r are tested.

We tried our best to run the other algorithms on this same dataset,
without success. As shown by Table 4.2, regularization is of prime impor-
tance on this dataset, which may explain why non-regularized competing
algorithms fail (their test RMSE increases with iterations, well above 1).
For ScGrass-CG, which supports regularization, we tested setting the reg-
ularization parameter to k

mn10−4, as suggested by the authors (without
guarantees on their part), as well as 0.01 (which essentially corresponds to
the same regularization as what we use for our algorithms). For GROUSE,
we tested multiple values of the step-size reduction speed. For LRGeom, we
tried starting it with our initial guess U0WU0 , without any more success.
We also tried all algorithms on the full dataset, without preprocessing, and
all algorithms (including ours) fail. This explains why the rows and columns
with too few known entries are removed in this test.

A baseline RMSE to compare with is the one reached by an algorithm
which simply returns the average training rating. This RMSE is 1.128.
The RMSE reached by RCGMCp in 12 minutes for rank 10, λ = 0.1, is
0.953. This corresponds to the RMSE reached by Cinematch, Netflix’s own
algorithm, at the onset of the competition (Koren, 2009). Better scores
can be reached, even using only low-rank matrix completion. But more
importantly, from the literature on the Netflix competition, it is known

2http://hazy.cs.wisc.edu/hazy/victor/download/
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that plain low-rank approximation is not sufficient to reach the best known
scores, although it can provide an important basis for better predictors. For
example, temporal information (how recent a rating is) should be taken into
account. Perhaps most fundamentally, the least-squares criterion at the root
of RTRMC and RCGMC, which necessarily leads to poor outlier rejection,
is to blame for their humble performance. Nevertheless, the positive impact
of preconditioning on this real dataset is interesting to note.
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Figure 4.10: Convergence of our algorithms on a large fraction of the Netflix
dataset: 16 777× 462 746 with k = 100 · 106 known ratings. The test RMSE
is evaluated on 276 279 test ratings (not used for training). The algorithms
aim for a rank 10 fitting of the data, with regularization parameter λ = 0.1.
The preconditioned algorithms perform the best on this real dataset.
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rank r = 10
regul. λ 0.001 0.01 0.1 0.2 1
RMSE (initial) 2.108 1.160 1.011 1.017 1.086
RMSE 1.104 0.970 0.953 0.985 1.086
Time [min] 75 58 12 7 2

regularization λ = 0.1
rank r 1 2 5 10 15 20
RMSE (initial) 1.086 1.047 1.023 1.011 1.009 1.014
RMSE 1.067 1.006 0.967 0.953 0.951 0.953
Time [min] 3 3 5 12 24 48

Table 4.2: Test RMSE of the initial guess, then best test RMSE reached by
RCGMCp on a large fraction of the Netflix dataset, with various values of
the regularization parameter λ and of the reconstruction rank r. Reported
timings include the computation of the initial guess and of the RCGMCp
iterations. A first conclusion is that regularization is necessary on this
dataset. Another conclusion, looking at the increase in RMSE going from
rank 15 to 20, is that aiming at large rank reconstruction “from scratch” may
not be efficient. This suggests looking at incremental rank procedures such
as the ones described in (Vandereycken, 2013). We did try incrementing the
rank gradually as follows: obtain an SVD-based initial guess for rank r = 1
(similarly for r = 10), apply RCGMCp with λ = 0.1, then complement the
obtained orthonormal basis U with a uniformly random column orthogonal
to the column space of U . This is now a rank r+ 1 basis which can be used
as initial guess for RCGMCp. We iterate up to rank 20. The observation
(not depicted) is that even though the cost value does steadily decrease, the
RMSE’s reached after convergence stagnate close to a best value of 0.951.
Hence, it is not clear that incremental rank procedures could boost the
performance of the proposed methods in this setting.
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4.6 Conclusions

Our contribution is a regularized cost function for low-rank matrix comple-
tion on a single Grassmann manifold, along with a set of efficient numerical
methods to minimize it: RTRMC 2(p) and RCGMC(p). These are re-
spectively second-order Riemannian trust-region methods and Riemannian
conjugate gradient methods, with or without preconditioning. These algo-
rithms compete with the state-of-the-art. The trust-region methods further
enjoy global and local convergence to critical points, with a quadratic local
convergence rate for RTRMC 2(p).

The methods we propose are particularly efficient on rectangular ma-
trices. We believe this is because the dimension of the nonlinear search
space, Gr(m, r), grows as min(m,n), whereas for most competing methods
the growth is in m+ n. We also observed that second-order and precondi-
tioned methods perform better than first-order methods when the matrix
to complete is badly conditioned. We believe this is because the bad con-
ditioning of the target matrix translates into an even worse conditioning of
the Hessian of the cost function at the solution, as shown in the numerical
experiments (4.34). Furthermore, the proposed algorithms can withstand
low oversampling ratios or non-uniformity in the sampling process. RTRMC
is effective against Gaussian noise, which is not surprising given its least-
squares nature. Those combined strengths make RTRMC and RCGMC
reasonably efficient on the Netflix dataset too.

A major drawback of the proposed algorithms is their strong reliance on
the explicit solve of the inner least-squares problem in (4.5). This precludes
simple adaptations of these algorithms to reach for better outlier rejection.
Least-squares are indeed well-suited against Gaussian noise but perform
poorly against wildly erroneous measurements. This explains at least in part
the modest RMSE’s reached on the Netflix dataset. Competing methods
such as LRGeom, qGeomMC or Jellyfish may more easily accommodate
better suited loss functions.

As future improvement, all the proposed methods could be parallelized
to compete with very large scale implementations such as Jellyfish (Recht
et al., 2011) or the divide and conquer scheme of Mackey et al. (2011).
Indeed, the expensive operations involved in computing the cost and its
derivatives are inherently parallelizable over the columns.

Matlab code for RTRMC and RCGMC is available at:
http://sites.uclouvain.be/absil/RTRMC/.



Chapter 5

Synchronization of
rotations

Synchronization of rotations is the problem of estimating rotation matrices
R1, . . . , RN ∈ SO(n) from noisy measurements of relative rotations RiR

>
j ,

where SO(n) is the special orthogonal group:

SO(n) = {R ∈ Rn×n : R>R = In,det(R) = +1}. (5.1)

The set of available measurements gives rise to a graph structure, where
the N nodes correspond to the rotations {Ri}i=1...N and an edge is present
between two nodes i and j if a measurement of RiR

>
j is given. Depending

on the application, some rotations may be known in advance or not. The
known rotations, if any, are called anchors. In the absence of anchors, it
is only possible to recover the rotations up to a global rotation, since the
measurements only reveal relative information.

Synchronization of rotations appears naturally in a number of important
applications. Tron & Vidal (2009) for example consider a network of cam-
eras. Each camera has a certain position in R3 and orientation in SO(3). For
some pairs of cameras, a calibration procedure produces a noisy measure-
ment of relative position and relative orientation. The task of using all rela-
tive orientation measurements simultaneously to estimate the configuration
of the individual cameras is a synchronization problem. An example of prac-
tical setup for this problem is the calibration of the Panoptic camera system:
a golf ball-sized dome on which cameras are mounted, pointing outward, to
acquire a representation of all of the surroundings simultaneously (Afshari
et al., 2013). See also the structure from motion problem (Arie-Nachimson
et al., 2012) and the global registration problem (Chaudhury et al., 2013;
Krishnan et al., 2007). Cucuringu et al. (2012b) address sensor network
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localization based on inter-node distance measurements. In their approach,
they decompose the network in small, overlapping, rigid patches. Each
patch is easily embedded in space owing to its rigidity, but the individual
embeddings are noisy. These embeddings are then aggregated by aligning
overlapping patches. For each pair of such patches, a measurement of rel-
ative orientation is produced. Synchronization permits the use all of these
measurements simultaneously to prevent error propagation. In related work,
Cucuringu et al. (2012a) apply a similar approach to the molecule problem.
Tzveneva et al. (2011) and Wang & Singer (2013) apply synchronization
to the construction of 3D models of objects based on scans of the objects
under various unknown orientations (See Section 5.6). Singer & Shkolnisky
(2011) study cryo-EM imaging. In this problem, the aim is to produce a 3D
model of a macro-molecule based on many projections (pictures) of the mol-
ecule under various random and unknown orientations. A procedure specific
to the cryo-EM imaging technique helps estimating the relative orientation
between pairs of projections, but this process is very noisy. In fact, most
measurements are outliers. The task is to use these noisy measurements of
relative orientations of images to recover the true orientations under which
the images were acquired. This naturally falls into the scope of synchro-
nization of rotations, and calls for very robust algorithms. More recently,
Sonday et al. (2013) use synchronization as a means to compute rotationally
invariant distances between snapshots of trajectories of dynamical systems,
as an important preprocessing stage before dimensionality reduction. In a
different setting, Yu (Yu, 2009, 2012) applies synchronization of in-plane
rotations (under the name of angular embedding) as a means to rank ob-
jects based on pairwise relative ranking measurements. This approach is in
contrast with existing techniques which realize the embedding on the real
line, but appears to provide unprecedented robustness. Hartley et al. (2013)
address a broad class of rotation averaging problems, with a specific outlook
for characterizations of the existence and uniqueness of global optimizers of
the related optimization problems. Synchronization is addressed too under
the name of multiple rotation averaging.

In some of these applications, a large subset of the measurements may
be of poor quality. These applications call for robust synchronization al-
gorithms, capable of withstanding outliers. Hartley et al. (2011) propose
to estimate the rotations by minimizing an L1 norm of the disagreement
between the model and the measurements, the Weiszfeld algorithm. The
resulting algorithm is simple, fast and is shown to produce good results, but
comes with little theoretical guarantees because of the nonconvexity and
the nonsmoothness of the optimization problem they solve. Wang & Singer
(2013) propose LUD, a convex relaxation of the synchronization problem
we describe in Section 5.5.2. LUD achieves exact recovery when a given
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portion of the measurements are exact, the other measurements being uni-
formly random. When the former measurements are slightly noisy rather
than perfect, LUD remains stable.

Both the Weiszfeld algorithm and LUD address the synchronization
problem by proposing a certain cost function at the onset. In contrast,
we will address synchronization by first assuming a specific noise model on
the measurements. This statistical approach to the problem has a number
of advantages: (i) the underlying assumptions about the noise are clear and
could be adapted to individual applications; (ii) Cramér-Rao bounds can be
derived that provide a meaningful target to compare algorithms against, as
we do in Chapter 8; and (iii) the definition of maximum likelihood estimator
(MLE) naturally suggests an estimation algorithm.

In this chapter, we first propose a noise model for synchronization of
rotations and define the associated MLE (Section 5.1). The MLE is the
solution of an optimization problem on a manifold whose geometry is de-
scribed in Section 5.2 for the anchored case. The latter optimization prob-
lem is nonconvex and we will need a good initial guess to (hope to) solve
it. To that effect, Section 5.3 presents the eigenvector method, a spectral
relaxation of the synchronization problem, together with an analysis due
to Singer (2011) and slightly adapted for our purpose. Then we describe an
algorithm to try to compute the MLE (Section 5.4) and we study, in Sec-
tion 5.5, its performance against existing algorithms and the Cramér-Rao
bounds (CRB) which we derive later, in Chapter 8. The conclusion will be
that, in many scenarios, the computed proxy for the MLE seems to reach
the CRB’s. This, in turn, gives credit to the interpretations of the CRB.

5.1 Robust synchronization of rotations

In synchronization, the target quantities (the parameters) are the rotation
matrices

R1, . . . , RN ∈ SO(n).

In order to estimate these rotations, we are given measurements Hij . Each
Hij is a noisy measurement of the relative rotation RiR

>
j . The available

measurements define an undirected measurement graph or synchronization
graph

G = (V, E), (5.2)

with vertex set V = {1, . . . , N} and edge set E , where {i, j} ∈ E if a
measurement Hij is available. By symmetry, Hij = H>ji. The measurements
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are modeled as follows:

Hij = ZijRiR
>
j , (5.3)

where Zij ∈ SO(n) is a random variable. In order to model a measurement
that is concentrated around the true relative rotation, one can give Zij a
probability density function (pdf) that is concentrated around the identity
matrix In.

A popular Gaussian-like distribution on SO(n) is the Langevin distribu-
tion, which has the following pdf:

`κ : SO(n)→ R+, `κ(Z) =
1

cn(κ)
exp
(
κ trace(Z)

)
, (5.4)

where κ ≥ 0 is the concentration parameter. The pdf `κ(Z) attains it
maximum at Z = In. The larger κ is, the more `κ is concentrated around the
identity. As an extreme case, `0 is constant over SO(n), i.e., it corresponds
to a uniform distribution. If Zij is uniformly distributed, then so is Hij

and the measurement contains no information. On the other hand, `∞ is
the point-mass function at the identity. If Zij is deterministically equal to
In, then Hij is a noiseless measurement. For 0 < κ <∞, the measurement
Hij is isotropically distributed around its mean RiR

>
j . The normalization

constant cn(κ) ensures that `κ has unit integral over SO(n) with respect to
the Haar measure—see Section 8.3.

In order to model the fact that only a fraction 0 ≤ p ≤ 1 of the mea-
surements are of decent quality while the remaining measurements contain
little or no information, we propose to consider the following pdf for the
noise rotations Zij :

f : SO(n)→ R+, f(Z) = p `κ(Z) + (1− p) `κ′(Z). (5.5)

This mixture of Langevin’s indeed captures the presence of a fraction 1− p
of outliers if we let κ′ be small compared to κ. With probability p, a
measurement Hij is distributed around RiR

>
j with high concentration κ,

and with probability 1−p, it is distributed around the same mean with low
concentration κ′. In the sequel, we will often consider κ′ = 0.

We make the following assumption on the noise rotations:

Assumption 5.1. The Zij’s pertaining to different measurements are in-
dependent, identically distributed, with probability density function f (5.5).

The assumption that the Zij ’s are identically distributed is merely to al-
low for a cleaner exposition. All of what follows goes through if one assumes
specific values of p, κ and κ′ for each measurement individually (indeed, the
Matlab code used in Section 5.5 allows for such freedom). Independence,
on the other hand, is a central assumption in the present work and cannot
be relaxed easily. For convenience we further assume connectivity:
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Assumption 5.2. The measurement graph (5.2) is connected.

If the graph is not connected, all of what follows may be applied to each
connected component separately. With a little more care, it is not even
necessary to work on separate components.

Under Assumption 5.1, the log-likelihood function L for synchronization
of rotations is as follows:

L : SO(n)
N → R, L(R̂) =

∑
i∼j

log f(HijR̂jR̂
>
i ). (5.6)

The summation is over the edges of the measurement graph.
Depending on the application, some of the rotations may be known in

advance. They are called anchors. If no anchor is provided, synchronization
can only be performed up to a global rotation. It is then acceptable, for the
purpose of obtaining an estimator, to fix an arbitrary rotation to, say, the
identity matrix. Let A ⊂ {1, . . . , N} denote the set of indices of anchors.
The parameter space, that is, the space of acceptable values for an estimator,
is

PA = {R̂ ∈ SO(n)
N

: ∀i ∈ A, R̂i = Ri}. (5.7)

The maximum likelihood estimator (MLE) R̂MLE is the parameter that
maximizes the log-likelihood function L:

R̂MLE = argmax
R̂∈PA

L(R̂). (5.8)

That it, R̂MLE is the assignment of rotations R1, . . . , RN that best explains
the observations Hij under the assumed noise model and in the absence of
prior information on the rotations. Since L is a smooth function defined
over the smooth and compact manifold PA, a global maximizer exists.

Remark 5.1 (least-squares case). In particular, if we assume that there
are no outliers, then we may set p = 1, set κ to some appropriate value,
and κ′ is irrelevant. The pdf of the Zij’s reduces to a simple Langevin prior:
f(Z) = `κ(Z). The log-likelihood function then reads:

L(R̂) =
∑
i∼j

κ trace(HijR̂jR̂
>
i ) + constant. (5.9)

Since ∥∥HijR̂j − R̂i
∥∥2

F
=
∥∥HijR̂j

∥∥2

F
+
∥∥R̂i∥∥2

F
− 2 trace(HijR̂jR̂

>
i )

= 2
(
n− trace(HijR̂jR̂

>
i )
)
,
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where ‖·‖F denotes the Frobenius norm, maximizing L is equivalent to min-
imizing ∑

i∼j
κ
∥∥HijR̂j − R̂i

∥∥2

F
.

Hence, synchronization algorithms based on the minimization of the above
least-squares criterion over PA are maximum likelihood estimators under a
Langevin prior.

5.2 Geometry of the parameter space,
with anchors

The MLE is defined as the global optimizer of an optimization problem over
the Riemannian manifold PA (5.7). In order to apply the Riemannian op-
timization tools detailed in Chapter 3 to this situation, we need to describe
the geometry of PA, which is the focus of this section. We start with a quick
reminder of the geometry of SO(n). This exposition relies on the differential
geometric definitions from Chapter 2.

The group of rotations SO(n) (5.1) is a connected, compact Lie group
of dimension d = n(n − 1)/2. Being a Lie group, it is also a manifold and
thus admits a tangent space TQSO(n) at each point Q. The tangent space
at the identity plays a special role. It is known as the Lie algebra of SO(n)
and is the set of skew-symmetric matrices:

TISO(n) = so(n) , {Ω ∈ Rn×n : Ω + Ω>= 0}.

The other tangent spaces are easily obtained from so(n):

TQSO(n) = Qso(n) = {QΩ : Ω ∈ so(n)}.

Indeed, differentiating the constraint Q>Q = In yields the condition Q>Q̇+
Q̇>Q = 0 for a vector Q̇ to be a tangent vector at Q. We endow SO(n) with
the usual Riemannian metric by defining the following inner product on all
tangent spaces:

〈QΩ1, QΩ2〉Q = trace(Ω>1Ω2), ‖QΩ‖2Q = 〈QΩ, QΩ〉Q = ‖Ω‖2F .

Thus, SO(n) is a Riemannian submanifold of Rn×n with its standard metric.
For better readability, we often omit the subscripts Q. The orthogonal
projector from the embedding space Rn×n onto the tangent space TQSO(n)
is:

ProjQ(H) = Q skew
(
Q>H

)
, with skew(A) , (A−A>)/2.
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It plays an important role in the computation of gradients of functions on
SO(n), which will come up in optimization algorithms. The exponential
map and the logarithmic map with respect to the Riemannian structure
(Section 2.6) accept simple expressions in terms of matrix exponential and
logarithm:

ExpQ : TQSO(n)→ SO(n), LogQ : SO(n)→ TQSO(n)

ExpQ(QΩ) = Q exp(Ω), LogQ1
(Q2) = Q1 log(Q>1Q2). (5.10)

The mapping t 7→ ExpQ(tQΩ) defines a geodesic curve on SO(n), passing
through Q with velocity QΩ at time t = 0. Geodesic curves have zero
acceleration and may be considered as the equivalent of straight lines on
manifolds (Section 2.5). The logarithmic map LogQ is (locally) the inverse
of the exponential map ExpQ. In the context of an estimation problem,

LogQ(Q̂) represents the estimation error of Q̂ for the parameter Q, that

is, it is a notion of difference between Q and Q̂. This will be useful in
Chapter 8. The geodesic (or Riemannian) distance on SO(n) is the length
of the shortest path (the geodesic arc) joining two points:

dist(Q1, Q2) =
∥∥LogQ1

(Q2)
∥∥
Q1

= ‖log(Q>1Q2)‖F. (5.11)

In particular, for rotations in the plane (n = 2) and in space (n = 3), the
geodesic distance between Q1 and Q2 is

√
2θ, where θ ∈ [0, π] is the angle

by which Q>1Q2 rotates.
Let f̃ : Rn×n → R be a differentiable function, and let f = f̃ |SO(n) be

its restriction to SO(n). The gradient of f is a tangent vector field to SO(n)
uniquely defined by:

〈gradf(Q), QΩ〉 = Df(Q)[QΩ] ∀Ω ∈ so(n),

with gradf(Q) ∈ TQSO(n) and Df(Q)[QΩ] the directional derivative of f

at Q along QΩ. Let ∇f̃(Q) be the usual gradient of f̃ in Rn×n. Then, the
Riemannian gradient of f is easily computed as the orthogonal projection
of ∇f̃(Q) on the tangent space at Q (Section 2.3). In the sequel, we often
write ∇f to denote the gradient of f seen as a function in Rn×n, even if it
is defined on SO(n), and express the Riemannian gradient simply as

gradf(Q) = Q skew
(
Q>∇f(Q)

)
.

Similarly, from Section 2.4, an expression for the Riemannian Hessian of
f at Q along QΩ follows, in terms of the classical Hessian of f seen as a
function in Rn×n which we write ∇2f(Q)[QΩ]:

Hess f(Q)[QΩ] = Q skew
(
Q>∇2f(Q)[QΩ]− Ω sym

(
Q>∇f(Q)

))
.
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Above, sym(A) = (A+A>)/2 extracts the symmetric part of a matrix. The
Hessian comes up in second-order optimization algorithms.

The parent parameter space for synchronization is the product Lie group
P = SO(n)

N
. Its geometry is trivially obtained by element-wise extension

of the geometry of SO(n) just described. In particular, tangent spaces and
the Riemannian metric are given by:

TRP = {RΩ = (R1Ω1, . . . , RNΩN ) : Ω1, . . . ,ΩN ∈ so(n)},

〈RΩ,RΩ′〉R =

N∑
i=1

trace(Ω>i Ω′i). (5.12)

In the presence of anchors indexed in A ⊂ {1, . . . , N}, the parameter space

is PA (5.7), a Riemannian submanifold of P. The tangent space at R̂ ∈ PA
is given by:

TR̂PA = {RΩ ∈ TR̂P : ∀i ∈ A,Ωi = 0},

such that the orthogonal projector ProjR̂ : TR̂P → TR̂PA simply sets
to zero all components of a tangent vector that correspond to anchored
rotations. All tools on PA (exponential and logarithmic map for example)
are inherited in the obvious fashion from P. In particular, the geodesic
distance on PA is:

dist2(R̂, R̂′) =
∑
i/∈A

‖log(R̂>i R̂
′
i)‖2F. (5.13)

5.3 The eigenvector method
and its phase transition point

The synchronization problem, although not convex, admits surprisingly ef-
ficient tractable relaxations in the form of semidefinite programs (SDP’s)
or even, as we now discuss, in the form of a simple spectral problem. We
refer to the solution based on the spectral relaxation as the eigenvector
method. These relaxations were first addressed by Singer (2011) then fur-
ther studied in a number of directions (Bandeira et al., 2013b; Tzveneva
et al., 2011). This section is concerned with the simplest version of the
eigenvector method, namely for a complete measurement graph and iden-
tical weights for all measurements. This is more amenable to analysis. In
Section 5.4.1, a more general version of the eigenvector method is described,
for practical use as an initial guess.

In his original paper, Singer (2011) focuses on in-plane rotations (n = 2)
and studies a simple but revealing noise model where measurements are
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either perfect (with probability p) or uniformly distributed (with probability
1 − p). This allows to investigate the outlier-resilience of the eigenvector
method. The analysis relies heavily on tools from random matrix theory, as
we outline momentarily. Tzveneva et al. (2011) extends that analysis to the
case of rotations in R3, with the same noise model, and further considers the
case of an incomplete measurement graph following an Erdös-Rényi model.
In this section, we reproduce much of their analysis for context, and spell
out as a minor contribution the application of this analysis to the large class
of noise models satisfying Assumptions 8.1–8.3 from Chapter 8 for rotations
in SO(n), arbitrary n. It is good to keep this analysis in mind to compare
with what the Cramér-Rao bounds from that same chapter teach us.

The rotations to estimate are denoted R1, . . . , RN ∈ SO(n). Consider
the slightly modified noise model

Hij = RiZijR
>
j ,

where Zij is a random rotation. As per an argument similar to Remark 8.1,
this noise model is equivalent to the standard model (5.3). It turns out to
be more practical to work with for the present analysis.1 The symmetry
Hij = H>ji implies Zij = Z>ji. For simplicity, assume the noise matrices
Zij are i.i.d. and such that E {Zij} = βIn, for some 0 < β ≤ 1—we show
below that this is always the case for the unbiased, isotropic noise models
covered by Assumptions 8.1–8.3. Further assume that all measurements are
acquired (the measurement graph is complete) and build the block matrices
H,Z ∈ RnN×nN such that the off-diagonal blocks are given by the Hij ’s and
the Zij ’s respectively, and the diagonal blocks are defined as Hii = Zii =
βIn. This definition of the diagonal blocks is a technical necessity for the
analysis. In practice, β is unknown and the diagonal blocks are set to the
identity. This small perturbation shifts all eigenvalues of H and Z by 1−β,
which is negligible compared to their top eigenvalues which grow with N
(see below). Now let R ∈ RnN×n be a tall block matrix with blocks Ri and
let DR ∈ RnN×nN be a block diagonal matrix with diagonal blocks Ri. The
matrices H and Z are similar:

H = DRZD
>
R.

The basic observation underpinning the eigenvector method follows. The
expectation of the measurement matrix, or synchronization matrix, H con-
tains the sought information:

E {Z} = β(1N×N ⊗ In) = β(1N ⊗ In)(1N ⊗ In)>,

E {H} = DRE {Z}D>R = βRR>,

1In hindsight, this form of the noise model would have been a convenient choice for
Chapter 8 also, as it encodes some symmetries of the problem perhaps more explicitly
than the convention ZijRiR

>
j .
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where 1N and 1N×N are the vector and the matrix of all ones and ⊗ is the
Kronecker product. Indeed, E {H} has rank n and the sought matrix R is an
orthonormal basis of its dominant eigenspace (E {H}R = βNR) with top
eigenvalues βN repeated n times. Because H and Z are similar, they share
the same spectrum. Separate Z into its mean and random components:

Z = E {Z}+ Y.

Thus, Y is a symmetric, random matrix with zero diagonal blocks Yii = 0
and i.i.d., zero-mean above-diagonal blocks

Yij = Zij − βIn.

The intuition goes as follows: H is a random symmetric matrix per-
turbed by a rank-n matrix βRR> which is to be estimated. To succeed,
the perturbation should dominate the noise, which suggests the following
algorithm: compute the top n eigenvectors of H to form an orthonormal
matrix R̂. If there is no noise, then

√
NR̂ = RQ for some orthogonal ma-

trix Q. If there is noise, then the hope is that R̂ will still be correlated
with R and rounding the blocks of R̂ to rotation matrices would provide
a meaningful estimator. For the perturbation to dominate the noise, it is
necessary that the top n eigenvalues of H be separate from the spectrum of
the noise. Since H and Z are similar, they have the same spectrum and we
may study Z instead of H. Work on small rank perturbations of random
(Wigner) matrices suggests that the top eigenvalues of Z pop out of the
noise spectrum as soon as

βN >
1

2
λmax(Y ) (5.14)

and concentrate at βN+λ2
max(Y )/4βN > λmax(Y ) (Capitaine et al., 2009).

The theorems in (Capitaine et al., 2009) do not apply directly to the present
situation because Y does not have all of its entries independent: the entries
inside a block Yij are dependent because of the constraint Zij ∈ SO(n). Nev-
ertheless, as N grows, the (constant) size n of the blocks becomes relatively
small and it is expected that the phase transition will occur at the same
point. This is indeed observed numerically and confirmed by the accuracy
of the phase transition point prediction in Section 5.5.

Thus, we expect to see a phase transition point in the performance of the
eigenvector method for N and β such that 2βN = λmax(Y ). Girko (1995)
studies the limiting spectral distribution of random symmetric matrices with
independent blocks, which we now leverage to evaluate λmax(Y ). Consider
Ỹ = Y/

√
N : its above-diagonal blocks are centered, i.i.d. with Frobenius

norm deterministically bounded by 1/
√
N times a constant and its diagonal
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blocks are deterministically zero. Then, Girko’s theorem applies and states
that Ỹ has a limiting spectral distribution FN (x) whose Stieltjes transform
obeys

∀z ∈ C,=(z) 6= 0,

∫
R

1

x− z
dFN (x) =

1

nN

N∑
k=1

trace(Ck(z)), (5.15)

where for k = 1, . . . , N , the n× n matrices Ck(z) satisfy

Ck(z) = −

zIn +
∑
s6=k

E
{
ỸksCs(z)Ỹ

>
ks

}−1

.

The matrices Ck(z) exist and are unique if one further constrain them to
be analytic and to satisfy =(z)=(Ck(z)) > 0 when =(z) 6= 0.

Given the uniqueness of the solutions Ck(z), it is satisfactory to propose
a solution and check its validity. Try solutions of the form Ck(z) = C(z) =
α(z)In. Then, since

E
{
ỸksỸ

>
ks

}
=

1

N
E
{

(Zks − βIn)(Zks − βIn)>
}

=
1

N
(1− β2)In,

the analytic function α(z) must obey(
z +

N − 1

N
(1− β2) · α(z)

)
· α(z) = −1.

This defines a quadratic in α(z). The condition =(z)=(Ck(z)) > 0 when
=(z) 6= 0 singles out one solution, leading to

α(z) =
−z +

√
z2 − 4

[
N−1
N (1− β2)

]
2
[
N−1
N (1− β2)

] .

This well-defined solution validates the hypothesized form of the Ck(z)’s.
Equation (5.15) implies that the Stieltjes transform of the limiting distri-
bution FN (x) is α(z). Inverting the transform reveals that the limiting
spectral distribution of Y =

√
NỸ follows, unsurprisingly, a semicircle law

of radius 2σ with σ =
√

(N − 1)(1− β2). The largest eigenvalue of Y is
expected to concentrate at or near the edge of this compactly supported
distribution,2 that is, for large N ,

λmax(Y ) ≈ 2σ = 2
√

(N − 1)(1− β2).

2This is not immediate. See for example work by Bai & Yin (1988) for a confirmation
when the random matrix has all of its entries independent (Wigner model). Again, we
stretch such results to apply them to Y , whose blocks are independent.
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Plugging this into the condition (5.14), the n top eigenvalues of the synchro-
nization matrix H are expected to jump out of the (semicircular) spectrum
of the noise for β and N satisfying

β >

√
N − 1

N2 +N − 1
≈ 1√

N
. (5.16)

The next step in the analysis is to verify that when condition (5.14) is
fulfilled and the top eigenvalues of H are separated from the noise, then
the associated top eigenvectors correlate better than randomly with R.
Thus, assume βN = sσ for some s > 1. Let U ∈ RnN×n be such that
U>U = NIn and the columns of U are n dominant eigenvectors of Z.
The eigenvector method computes the dominant eigenvectors of H, i.e.,
R̂ = DRU . Since (5.14) holds, the top n eigenvalues of Z all concentrate
around sσ + σ/s. Thus, for large N ,

trace(U>ZU) = N

n∑
i=1

λi(Z) ≈ nN(s+ 1/s)σ. (5.17)

On the other hand, Z = E {Z}+ Y . Hence,

trace(U>ZU) = βtrace(U>(1N ⊗ In)(1N ⊗ In)>U)

+ trace(U>Y U). (5.18)

On the right hand side, the first term evaluates to β‖
∑N
i=1 Ui‖2F where U is

partitioned into blocks U1, . . . , UN of size n. This is a quality criterion for
the (unrounded) eigenvector method, since Ui = R>i R̂i. Indeed, successful

estimation leads to R̂ ≈ RQ for some orthogonal matrix Q, that is, to∥∥∥∥∥
N∑
i=1

Ui

∥∥∥∥∥
2

F

=

∥∥∥∥∥
N∑
i=1

R>i R̂i

∥∥∥∥∥
2

F

≈ ‖NQ‖2F = nN2.

In comparison, when estimation fails completely, then U is a random matrix
such that U>U = NIn. Letting the entries of U be i.i.d. Gaussian with mean
zero and variance 1/n yields matrices such that E

{
U>U

}
= NIn. For large

N , U>U concentrates around this expectation and provides an acceptable
model of random dominant eigenvectors. For such U , it holds that

E


∥∥∥∥∥
N∑
i=1

Ui

∥∥∥∥∥
2

F

 = nN.

Indeed, it is the sum of n2 expectations of the square of sums of N i.i.d.
Gaussian variables with variance 1/n.
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To observe better than random correlation of R̂ with R with high prob-
ability, it is thus necessary that (using equality of (5.17) and (5.18))

β

∥∥∥∥∥
N∑
i=1

Ui

∥∥∥∥∥
2

F

≈ nN(s+ 1/s)σ − trace(U>Y U) > nβN = nsσ. (5.19)

The term involving Y is bounded with high probability since the top eigen-
values of Y concentrate around 2σ. Hence, trace(U>Y U) < 2nNσ and a
sufficient condition for (5.19) is:

N(s+ 1/s)− 2N > s.

The right hand side is negligible for large N and the condition reads:

s2 − 2s+ 1 = (s+ 1)(s− 1) > 0.

Therefore, as soon as s > 1 (which we already had to assume to let the dom-
inant eigenvalues of H pop out of the semicircle), that is, as soon as (5.16)
holds, we may expect the eigenvector method to return a better than ran-
dom estimator of R.

It remains to show that under Assumptions 8.1–8.3 from Chapter 8, it
indeed holds that E {Zij} = βIn. In doing so, we use tools which will be
introduced in Section 8.3. Notably, µ denotes the Haar measure on the
group of rotations.

To this end, let Z be a random rotation matrix in SO(n) with probability
density function f and let f be a spectral function, that is, f(QZQ>) = f(Z)
for all orthogonal Q. Then,

E {Z} =

∫
SO(n)

Zf(Z)dµ(Z) =

∫
SO(n)

exp(log(Z))f(Z)dµ(Z).

The second equality holds because, restricted to SO(n), the matrix expo-
nential and logarithm exp and log are smooth and inverse of each other.
Expand the matrix exponential in Taylor series:

E {Z} =

∞∑
k=0

1

k!

∫
SO(n)

logk(Z)f(Z)dµ(Z) :=

∞∑
k=0

1

k!
Ak,

with Ak = E{logk(Z)}. Since log(Z) is skew-symmetric, for k odd Ak is
skew-symmetric too. For any orthogonal Q, the change of variable Z 7→
QZQ> in the integral below shows that

Ak =

∫
SO(n)

logk(Z)f(Z)dµ(Z) =

∫
SO(n)

logk(QZQ>)f(Z)dµ(Z) = QAkQ
>.
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This holds because SO(n), f and dµ are invariant under the change of
variable and log(QZQ>) = Q log(Z)Q>. Since Ak is skew-symmetric, it is a
normal matrix and there exists an orthogonal matrix Q such that QAkQ

>=
A>k. Indeed, Ak and A>k share the same spectrum. Therefore, Ak = A>k =
−Ak = 0. For k even, Ak is symmetric and it similarly holds that Ak =
QAkQ

> for all orthogonal Q. In particular, since Ak is symmetric, we may
choose Q such that QAkQ

> is diagonal, showing that Ak has to be diagonal.
Now let Q be a permutation matrix to see that the diagonal entries of Ak
have to be equal, that is, Ak = ckIn for some constant ck. Finally, it holds
as expected that

E {Z} =

∞∑
k=0

c2k
(2k)!

In = βIn.

In practice, it is instructive to compute β for certain noise models. Since
trace(Z) = nβ, β may be obtained by evaluating this integral of a class
function over SO(n), as instructed in Appendix A:

β =
1

n

∫
SO(n)

trace(Z)f(Z)dµ(Z) =
1

n
E {trace(Z)} .

In particular, for noise matrices Zij distributed following a Langevin (5.4)
and for n = 2, 3, βn(κ) is given by:

β2(κ) =
I1(2κ)

I0(2κ)
, β3(κ) =

1

3

I1(2κ)− I2(2κ)

I0(2κ)− I1(2κ)
, (5.20)

where Iν(x) is the modified Bessel function of the first kind (A.4). It is easily
checked that βn(κ) increases monotonically with κ and that βn(0) = 0 and
βn(∞) = 1. For the mixture of Langevin model (5.5), it holds that

βn(κ, κ′, p) = pβn(κ) + (1− p)βn(κ′).

For the perfect-or-outlier noise model κ =∞, κ′ = 0 in (Singer, 2011), this
evaluates to p and one recovers the phase transition point p = 1/

√
N .

5.4 An algorithm to compute the maximum
likelihood estimator

We now propose an algorithm to compute R̂MLE. Because the optimization
problem (5.8) is nonconvex, we only guarantee the computation of a local

maximizer, so that our “MLE” is really only a proxy for the true R̂MLE.
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Nevertheless, Section 5.5 shows that the algorithm performs well in practice,
as compared to Cramér-Rao bounds.

The parameter space PA (5.7) is a Riemannian submanifold of (Rn×n)N .
The log-likelihood function

LA = L|PA , (5.21)

that is, the restriction of L (5.6) to PA, is a smooth objective function
defined over that manifold. Maximizing LA over PA is thus an instance of
a smooth optimization problem on a manifold, as covered in Chapter 3.

In this section, we start by describing a procedure to obtain an initial
guess (a first iterate). It is based on the eigenvector method presented
in the previous section. We then go on to establish the gradient and the
Hessian of the cost function LA to be maximized. The second-order Rie-
mannian trust-region method from Section 3.2 is then applied within the
Manopt framework to improve on the initial guess, exploiting the gradient
and Hessian information.

Notice that the parameters of the noise model (κ, κ′ and p) are assumed
known at first. In practice, these have to be estimated from the data. We
propose one approach which we call MLE+ in Section 5.4.5. It is tested on
real data in Section 5.6, with convincing performance.

5.4.1 An initial guess based on a spectral relaxation

Depending on the initial guess (the initial iterate) R̂(0), the iterative opti-
mization algorithm used may converge to different critical points. Heuristi-
cally, to increase the chances of converging to a “good” critical point (ide-

ally, the global optimizer), we want R̂(0) to be a decent estimator itself.
For that purpose, convex relaxations of the synchronization problem, such
as the max-cut–like relaxation for synchronization (Arie-Nachimson et al.,
2012; Singer, 2011) and the more robust LUD method (Wang & Singer,
2013), are prime candidates. Unfortunately, they tend to be costly to com-
pute. On the other hand, the spectral relaxations of the synchronization
problem developed in (Singer, 2011) for SO(2) then (Singer & Shkolnisky,
2011) for SO(3) and finally in (Bandeira et al., 2013b) for the general case
are suitable to produce cheap yet good solutions. Here, we show how (Ban-

deira et al., 2013b, Algorithm 16) can be used to produce R̂(0) in PA from
a structured eigenvalue problem. Algorithm 5 summarizes the procedure.

Let D ∈ RN×N be a diagonal matrix such that Dii =
∑
i∼j κ, i.e., κ

times the degree of node i. Following notations in (Bandeira et al., 2013b),
define D1 = D⊗In (Kronecker product). Let W1 ∈ RnN×nN be a symmetric
matrix composed of n × n blocks such that the (i, j)-block (W1)ij is κHij

if nodes i and j are connected, and zero otherwise.
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Let X ∈ RnN×n be composed of N stacked n × n blocks X1, . . . , XN .
Consider the following quadratic expressions:

X>D1X =

N∑
i=1

DiiX
>
i Xi, (5.22)

X>W1X =
∑
i∼j

κX>i HijXj + κX>j HjiXi. (5.23)

Maximizing trace(X>W1X) subject to Xi ∈ SO(n) is equivalent to comput-
ing the maximum likelihood estimator for synchronization under a Langevin
prior (see Remark 5.1, eq. (5.9)). This is difficult because of the noncon-
vexity of the constraints. Now observe that, under these same constraints,
X>D1X = trace(D) In. If we relax and simply impose the latter, i.e., that
the columns of X be D1-orthogonal, then maximizing trace(X>W1X) be-
comes easy: it is a generalized eigenvector problem with pencil (W1, D1).

This observation underpins (Bandeira et al., 2013b, Algorithm 16). Com-
pute the n dominant D1-orthonormal eigenvectors of W1, i.e., compute
X ∈ RnN×n as the solution of (notice that the scaling of X is irrelevant
as long as it is fixed):

max
X

trace(X>W1X) such that X>D1X = In. (5.24)

The global optimum of this problem can be computed efficiently, for example
using eigs in Matlab.

In a noiseless scenario, the blocks Xi in the obtained solution will be
orthogonal matrices (up to scaling). Because of noise in the measurements,
this is, in general, not the case and one needs to project the Xi’s to con-
struct a feasible solution for the original problem. The proposed rounding

procedure is to project each block to SO(n) as R
(a)
i = ΠSO(n)(Xi), where

ΠSO(n) : Rn×n → SO(n) assigns to R
(a)
i the rotation matrix that is closest to

Xi in the sense of the Frobenius norm in Rn×n. This may be computed via
the SVD decomposition S = UΣV >, s = det(UV >) (Sarlette & Sepulchre,
2009):

ΠSO(n)(S) = U diag(1, . . . , 1, s)V >, (5.25)

where Σ is diagonal with decreasing entries and s is either 1 or −1 since U
and V are orthogonal. As long as the smallest singular value of S has multi-
plicity one, this is uniquely defined (Sarlette & Sepulchre, 2009, Prop. 3.3).

The solution X of the eigenvalue problem (5.24) is defined up to an
orthogonal transformation. This means that even in the noiseless case where
the individual blocks Xi would be orthogonal (up to scaling), they could
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Algorithm 5 EIG (anchored): Computes the initial guess R̂(0)

1: Form the sparse matrices D1 (5.22) and W1 (5.23) ;
2: Compute X ∈ RnN×n, the dominant eigenvectors of the pencil (W1, D1)

[Matlab: [X,∼] = eigs(W1, D1, n)] ;
3: for all i ∈ 1 . . . N do
4: R

(a)
i = ΠSO(n)(Xi) and R

(b)
i = ΠSO(n)(XiJ) ;

5: end for

6: R̃ =

{
R(a) if L(R(a)) ≥ L(R(b)),

R(b) otherwise ;

7: Anchor alignment: Q = ΠSO(n)

(∑
i∈A R̃

>
i Ri

)
;

8: for all i ∈ 1 . . . N do

9: R̂
(0)
i =

{
Ri if i ∈ A,
R̃iQ otherwise ;

10: end for

turn out not to be rotation matrices, having negative determinant. To
resolve this ambiguity, we also compute the projections of XJ , with J =

diag(1, . . . , 1,−1). Compute R
(b)
i = ΠSO(n)(XiJ). Finally, keep either R(a)

or R(b) depending on which is more likely (eq. (5.6)). That is, set R̃ = R(a)

if L(R(a)) ≥ L(R(b)), and R̃ = R(b) otherwise.
This procedure yields an initial guess of rotations R̃ that does not, in

general, comply with the anchor constraints. We thus further globally align
R̃ with the anchors by computing (Sarlette & Sepulchre, 2009):

Q = min
Q∈SO(n)

∑
i∈A
‖Ri − R̃iQ‖2F = ΠSO(n)

(∑
i∈A

R̃>i Ri

)
.

The initial guess for the optimization step is R̂(0), where R̂
(0)
i is set to Ri

if node i is anchored and to R̃iQ otherwise.

5.4.2 Gradient of the log-likelihood LA

The function LA (5.21) is defined on PA (5.7), a Riemannian submanifold
of (Rn×n)N endowed with the usual inner product

〈X,Y〉 =

N∑
i=1

trace(X>i Yi). (5.26)

The gradient of a LA at R̂ is a tangent vector which we now compute.
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Let L̄ be the function defined on (Rn×n)N by the same analytic formula
as L (5.6), such that LA is merely the restriction of L̄ to PA:

L̄ : (Rn×n)N → R, L̄(R̂) =
∑
i∼j

log f(R̂>iHijR̂j).

(We permuted the matrices in the argument to f , which is fine since f only
depends on the trace of its input.) The gradient of L̄ can be computed in
the usual way. Because PA is a Riemannian submanifold of (Rn×n)N , the

gradient of LA at a point R̂ ∈ PA is related to the gradient of L̄ by this
simple equation (see Section 2.3):

gradLA(R̂) = ProjR̂
(
grad L̄(R̂)

)
,

where ProjR̂ is the orthogonal projector (w.r.t. the metric (5.26)) from the

ambient space (Rn×n)N to the tangent space to PA at R̂ (see Section 5.2).
Explicitly, the ith component of the gradient of LA, that is, the gradient of
LA w.r.t. the ith rotation R̂i, is given by:

gradi LA(R̂) =

{
R̂i skew

(
R̂>i gradi L̄(R̂)

)
if i /∈ A,

0 if i ∈ A.
(5.27)

Gradient components pertaining to anchored rotations are forced to zero by
the projector since these rotations cannot move. The other components are
projected to a form R̂iΩi where Ωi is skew-symmetric.

By definition, gradi L̄(R̂) is the unique matrix in Rn×n satisfying, for
all X in Rn×n,

trace
(
X>gradi L̄(R̂)

)
= DiL̄(R̂)[X], (5.28)

where the right hand side is the directional derivative of L̄ at R̂ w.r.t. the
ith rotation R̂i along the direction X. In order to compute the gradient of
L̄, we thus compute its directional derivatives and proceed by identification
in (5.28). Let us define

Ẑij , R̂
>
iHijR̂j .

By the chain rule,

DiL̄(R̂)[X] =
∑
i∼j

1

f(Ẑij)
Df(Ẑij)[X

>HijR̂j ]. (5.29)

The summation is over the nodes j that are neighbors of node i. The
differential of f (5.5) is obtained as follows:

Df(Z)[Y ] = pD`κ(Z)[Y ] + (1− p) D`κ′(Z)[Y ],

D`κ(Z)[Y ] = κ`κ(Z) trace(Y ). (5.30)
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Combining (5.29)–(5.30), we further obtain:

DiL̄(R̂)[X] =
∑
i∼j

g(Ẑij) trace(X>R̂iẐij),

g(Ẑij) =
pκ`κ(Ẑij) + (1− p)κ′`κ′(Ẑij)

f(Ẑij)
. (5.31)

By identification with (5.28) and in combination with (5.27), this establishes
the gradient of LA:

gradi LA(R̂) =

{
R̂i
∑
i∼j g(Ẑij) skew

(
Ẑij

)
if i /∈ A,

0 if i ∈ A.
(5.32)

Notice that the ith component of the gradient can be computed based solely
on the information pertaining to node i and its neighbors. This hints toward
gradient-based decentralized synchronization algorithms (which we do not
discuss).

5.4.3 Hessian of the log-likelihood LA

Second-order optimization algorithms on Riemannian manifolds require the
computation of the Riemannian Hessian of the objective function. For the
particular case of Riemannian submanifolds such as PA, the Hessian ad-
mits a simple formulation in terms of the differential of the gradient in the
ambient space.

For unanchored nodes (i /∈ A), introduce the functions Gi : (Rn×n)N →
Rn×n (see (5.31) for g):

Gi(R̂) = R̂i
∑
i∼j

g(Ẑij) skew
(
Ẑij

)
.

From (5.32), we know that the restriction of Gi to PA yields the ith gradient
component of LA. Then, following Section 2.4, the ith component of the
Hessian of LA at R̂ applied to the tangent vector R̂Ω is given by (Ω is a
tuple of skew-symmetric matrices):

Hessi LA(R̂)[R̂Ω] = R̂i skew
(
R̂>i DGi(R̂)[R̂Ω]

)
.

That is, it is sufficient to differentiate the gradient vector field in the ambient
space and then to (orthogonally) project the resulting vector field to the
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tangent spaces of PA. By the chain rule and the product rule:

R̂>i DGi(R̂)[R̂Ω] =
∑
i∼j

Dg(Ẑij)[Ω̂ij ] skew
(
Ẑij

)
+ Ωi

∑
i∼j

g(Ẑij) skew
(
Ẑij

)
+
∑
i∼j

g(Ẑij) skew
(

Ω̂ij

)
,

where Ω̂ij is the directional derivative of Ẑij when R̂i and R̂j are moved

(infinitesimally) along R̂iΩi and R̂jΩj :

Ω̂ij = Ω>i R̂
>
iHijR̂j + R̂>iHijR̂jΩj = ẐijΩj − ΩiẐij .

This is not, in general, a skew-symmetric matrix. Some algebra yields the
following identity:

Dg(Ẑij)[Ω̂ij ] =

(
pκ2`κ(Ẑij) + (1− p)κ′2`κ′(Ẑij)

f(Ẑij)
− g2(Ẑij)

)
trace(Ω̂ij).

Combining equations in this subsection yields an explicit expression for the
component Hessi LA(R̂)[R̂Ω] for non-anchored nodes. For anchored nodes,

Hessi LA(R̂) vanishes.

5.4.4 Maximizing the likelihood

We use the second-order Riemannian trust-region method described in Sec-
tion 3.2 to maximize the likelihood over PA. This method converges glob-
ally (that is, from any initial guess) toward critical points (typically local
optimizers) with quadratic local convergence. The initial guess is set as
discussed previously, based on the eigenvector method.

The optimization algorithm is stopped once the norm of the gradient
drops below 10−6/|E|, where |E| is the number of measurements. The max-
imum trust-region radius is set to ∆̄ = π

√
n(N − |A|), which scales likes

the diameter of the compact manifold PA; the initial radius is ∆0 = ∆̄/8.
We allow up to 100 Hessian evaluations to solve each inner problem, but
seldom if ever use that many. The other parameters are set to their default
value.

5.4.5 MLE+: estimating both the noise distribution
and the rotations

When the mixture parameters κ, κ′ and p are unknown, which is the case
in most if not all applications, it is desirable to estimate these parameters
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from the data. Given an estimator R̂ for the rotations, an estimator for the
noise matrices Zij is given by

Ẑij = R̂>iHijR̂j .

(As only the trace of these will matter, the ordering is not important.) The
rotations Ẑij constitute an estimate of a sample of the noise distribution.
Assuming the noise model is parametrized by κ, κ′ and p, the log-likelihood
of the Ẑij ’s is

∑
i∼j log f(Ẑij) (see (5.5)). Then, a maximum likelihood

estimator for κ, κ′ and p can be obtained by maximizing the above quantity
for fixed Ẑij ’s. This suggests estimating the parameters by minimizing the
following function:

g(κ, κ′, p) = − 1

M

∑
i∼j

log
(
p `κ(Ẑij) + (1− p) `κ′(Ẑij)

)
. (5.33)

It is easily seen that the derivative of the Langevin normalization coefficients
cn(κ) (8.10) is given by c′n(κ) = nβn(κ)cn(κ), see (5.20). The derivative of
`κ w.r.t. κ ensues:

∂

∂κ
`κ(Z) = (trace(Z)− nβn(κ)) `κ(Z).

Thus, the gradient of g follows:

∂

∂κ
g(κ, κ′, p) = − 1

M

∑
i∼j

p

f(Ẑij)

∂

∂κ
`κ(Ẑij),

∂

∂κ′
g(κ, κ′, p) = − 1

M

∑
i∼j

1− p
f(Ẑij)

∂

∂κ′
`κ′(Ẑij),

∂

∂p
g(κ, κ′, p) = − 1

M

∑
i∼j

1

f(Ẑij)

(
`κ(Ẑij)− `κ′(Ẑij)

)
.

The function g is to be minimized under the constraints that κ, κ′ > 0 and
that 0 ≤ p ≤ 1. Furthermore, the concentration parameters scale logarith-
mically. This motivates the introduction of g̃, defined without constraints:

g̃(γ, γ′, q) = g

(
κ = eγ , κ′ = eγ

′
, p =

1 + cos q

2

)
.
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Algorithm 6 MLE+ : Alternate maximum likelihood estimation of R and
of κ, κ′, p.

Require: Initial estimates: R̂, κ̂, κ̂′, p̂.
1: for i = 1 . . .max number of iterations do
2: Estimate the noise: ∀i ∼ j, Ẑij := R̂>iHijR̂j ;
3: Compute new values for κ̂, κ̂′, p̂ by minimizing g (5.33),
4: with the present values to build the initial guess (Section 5.4.5) ;
5: if the parameter estimate did not change significantly then
6: Stop.
7: else
8: Compute a new estimator R̂ using the proposed MLE method
9: (Section 5.4.4), with the present R̂ as initial guess ;

10: end if
11: end for

Its gradient is tied to that of g:

∂

∂γ
g̃(γ, γ′, q) = κ

∂

∂κ
g(κ, κ′, p),

∂

∂γ′
g̃(γ, γ′, q) = κ′

∂

∂κ′
g(κ, κ′, p),

∂

∂q
g̃(γ, γ′, q) = − sin q

2

∂

∂p
g(κ, κ′, p).

For p /∈ {0, 1}, it holds that sin q 6= 0 and the critical points of g are 1-
to-1 with the critical points of g̃. For p ∈ {0, 1}, g̃ might be at a critical
points that does not correspond to a critical point of g, so that we never let
p ∈ {0, 1} in an initial guess. (An alternative change of variable for p is the
sigmoid p = tanh(q), which is such that all critical points of g̃ correspond
to critical points of g but it excludes the values 0 and 1 for p altogether.)

A strategy to estimate the noise model parameters appears clearly now:
given an estimator R̂ and an a priori guess of κ, κ′, p, compute the ma-
trices Ẑij and apply the change of variables γ = log(κ), γ′ = log(κ′), q =
arccos(2p − 1). In practice, prior to the change of variables, we project p
to [0.01, 0.99] to avoid a spurious zero derivative along that direction, as
per the discussion above. Furthermore, we project κ and κ′ to [10−6, 106]
to avoid numerical breakdown. Using any solver for smooth, unconstrained
optimization problems (we use the conjugate gradient solver in Manopt
on the Euclidean manifold R3, see Section 3.1), find a critical point of g̃
(hopefully a good minimizer) starting from (γ, γ′, q) as initial guess. Apply
the reverse change of variable to obtain a new estimate of the parameters
κ, κ′, p. Unfortunately, given that g̃ is nonconvex, the initial estimate of the
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parameters typically influences the outcome.

Table 5.1 reports on numerical experiments where the parameters of a
known mixture of Langevin are estimated from a pseudorandom sample
(see Remark 5.3), using the procedure described above with different initial
guesses. The overall accuracy is excellent. On a desktop computer from
2010, the median estimation time is 0.10 second, 75% of the estimations
run in under 0.22 second and the slowest estimation lasts 4.98 seconds.

Of course, the procedure using R̂ to estimate κ, κ′, p can be iterated,
as we now have new values for the mixture parameters which lead to a
new estimator R̂. This suggests Algorithm 6, which we refer to as MLE+.
There is no guarantee that this procedure always converges, but we observe
excellent practical behavior in Section 5.6.

The initial guess for step 8 in Algorithm 6 is important. If κ is large
and κ′ is small, then poor estimators are located in almost flat regions of
the likelihood function, essentially jamming the iteration. This also means
that it may not be practical to estimate the parameters of the noise distri-
bution for a given application once and for all: reaching the final estimator
iteratively may be a necessary ingredient of Algorithm 6.

5.5 Numerical experiments

We now perform a few experiments on synthetic data to showcase prop-
erties of the proposed maximum likelihood estimator. Our main goal in
this section is to study the performance of the MLE compared to the the-
oretical limits established in Chapter 8 in the form of Cramér-Rao bounds
(CRB’s). Hence, in all tests, the measurements are generated following the
noise model proposed in Section 5.1 and the specific parameters (κ, κ′ and
p) are known to the algorithm. We will see that, under these favorable
conditions, the MLE appears to reach the CRB in many cases. This sug-
gests two appreciable conclusions: (i) the proposed estimator appears to be
asymptotically efficient in spite of the nonconvex nature of the maximum
likelihood problem, and (ii) if the CRB’s are tight, then their interpretation
gives valuable insight into the synchronization problem (Section 8.7). We
further observe that the MLE tends to concentrate the estimation error on
a few rotations and suggest a PageRank-like procedure to detect these.

5.5.1 Performance criterion and Cramér-Rao bounds

For a given estimator R̂ of the true rotations R with anchors indexed by A,
assuming there is at least one anchor, the performance criterion we choose is
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the mean squared error (MSE) based on the geodesic distance on PA (5.13):

MSE(R, R̂) =
1

N − |A|
∑
i/∈A

‖log(R>i R̂i)‖2F.

For rotations in the plane or in space (n = 2 or 3), ‖log(R>i R̂i)‖F/
√

2 is the

angle in radians of the rotation R>i R̂i. For small errors, ‖log(R>i R̂i)‖F ≈
‖Ri − R̂i‖F.

In the absence of anchors, this performance criterion is unsuitable be-
cause the sought rotations can only be recovered up to a global rotation—see
Section 8.5.2 for an alternative.

Because measurements are noisy, there is no hope to reduce the MSE
to zero all the time. Chapter 8 establishes that the expected MSE for syn-
chronization is lower-bounded by some number which heavily relies on the
topology of the measurement graph. The relevant features of the topology
of the graph are captured by the spectrum of the graph Laplacian. We give
an executive overview of these bounds here, as a motivation for Chapter 8.

Define the information weight of a measurement ZRiR
>
j as in (8.22):

w = E
{
‖grad log f(Z)‖2

}
, (5.34)

where the expectation is taken w.r.t. Z distributed with pdf f (5.5). In the
extreme case, if Z is uniformly distributed over SO(n), then f is constant
and w is zero, i.e., the measurement contains no information. The more f is
concentrated (that is, the less uncertainty there is), the larger the gradient
of log f and thus the larger w is. A formula for w = wn(κ, κ′, p) is derived in
Appendix A.2 using Weyl’s integration formula. Numerically computable
formulas for the special case κ′ = 0 are given explicitly in Example 8.5.

Let us weigh each edge of the measurement graph with w. The Laplacian
of the resulting graph is the symmetric, positive semidefinite matrix L ∈
RN×N defined by:

Lij =


wdi if i = j,

−w if i ∼ j,
0 otherwise,

where di is the degree of node i. Further define the masked Laplacian
LA which is obtained by forcing to zero the rows and columns of L that
correspond to anchored rotations:

(LA)ij =

{
Lij if i, j /∈ A,
0 otherwise.
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Then, the CRB on the expected MSE of any unbiased estimator R̂ for the
anchored synchronization problem is lower-bounded as follows:

E
{

MSE(R, R̂)
}
≥ (n(n− 1)/2)2

N − |A|
trace(L†A) + curvature terms,

where † denotes Moore-Penrose pseudoinversion. This bound is valid in a
large signal-to-noise ratio (SNR) regime. The curvature terms vanish for
n = 2 and are negligible at large SNR for n ≥ 3.

For complete graphs with one anchor, at large SNR, the CRB for rota-
tions in SO(3) reduces to:

E
{

MSE(R, R̂)
}
≥ 18

wN

(
1− 1

wN

)
,

where the term −1/wN accounts for the curvature terms. The larger the
SNR (that is, the larger κ, κ′ and p), the larger w (5.34) and the lower the
CRB.

Remark 5.2 (The unbiasedness assumption). The CRB’s constrain the
variance of unbiased estimators (Definition 6.5). It is hence not entirely
clear that the CRB’s are applicable to the estimators at hand before these
are shown to be unbiased. Intuitively, one expects this to be the case, given
the strong symmetries of the problem. Unfortunately, there is currently no
proof supporting this statement.

Because the parameter space PA is compact, even estimators that disre-
gard measurements completely and return a random estimator would have
finite MSE. Any reasonable estimator should perform at least as well as
a random estimator. Hence, an upperbound on the MSE for rotations in
SO(3) is given in Section 8.7.1:

E
{

MSE(R, R̂)
}
≤ 2π2

3
+ 4.

5.5.2 The least unsquared deviation algorithm (LUD)

We here describe the LUD algorithm introduced by Wang & Singer (2013)
and against which we compare in the experiments below. Consider this
formulation of anchor-free (or single-anchor) synchronization:

min
R̂1,...,R̂N∈SO(n)

∑
i∼j
‖R̂iR̂>j −Hij‖

q
F. (5.35)

The constraints are not convex and, unsurprisingly, this is a difficult problem
to solve to global optimality. As has been observed in (Arie-Nachimson
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et al., 2012; Singer, 2011), letting q = 2 makes it possible to relax (5.35) to an
SDP which can be solved globally in polynomial time (up to some precision).
Unfortunately, even though it can be proven that these relaxations perform
well, it remains true that least-squares loss functions are not adequate to
cope with outliers. Furthermore, empirically, these SDP’s appear to not
perform significantly better than the eigenvector method, which is both
faster and simpler.

As a reaction, Wang & Singer (2013) suggest letting q = 1, hence the
name LUD for their method. The unsquared loss does not unduly penalize
large errors and thus better accommodates outliers. The relaxation goes as
follows. Let

R̂ =
(
R̂>1 · · · R̂>N

)>
, G = R̂R̂>.

Then, relaxing (5.35) a first time to only enforce R̂i ∈ O(n), that is, simply
dropping the determinant constraints, yields this program:

min
G∈RnN×nN

∑
i∼j
‖Gij −Hij‖F,

s.t. G = G>� 0, Gii = In for i = 1, . . . , N,

rank(G) = n.

This formulation only references G (not the R̂i’s). The LUD algorithm
consists in relaxing (ignoring) the rank constraint. The resulting program
is convex but is not an SDP because its cost function is not linear in G
(it can be made linear for q = 2). LUD solves the convex program up to
some precision using ADM (an alternating direction augmented Lagrangian
method) (Wen et al., 2010), adapted to this non-SDP scenario. ADM re-
turns a matrix G which can be thought of as a denoised version of the mea-
surement matrix W1 ∈ RnN×nN which appears in the eigenvector method,
see Section 5.4.1. Applying the eigenvector method to G then yields an
estimator for the rotations R̂1, . . . , R̂N .

Remarkably, for a complete measurement graph with i.i.d. noise distrib-
uted following a perfect-or-outlier model (κ =∞, κ′ = 0 and some value of
p), LUD recovers the rotations exactly as soon as p exceeds some threshold
(0.46 for n = 2 and 0.49 for n = 3). Furthermore, in case the good mea-
surements are not perfect but somewhat noisy (0 < κ <∞), the recovery is
stable in the sense that the estimation error is proportioned to 1/κ. These
same results also apply (appropriately modified) for incomplete measure-
ment graphs when the available measurements are selected independently,
uniformly at random, that is, following an Erdős-Rényi model.
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5.5.3 Synthetic experiments

Figures 5.2–5.6 show the expected MSE reached by the MLE for varying
noise parameters, in comparison with the CRB and the expected MSE
reached by the initial guess alone. The expected MSE of the LUD algo-
rithm (Wang & Singer, 2013) is also displayed, computed with code supplied
by its authors. LUD does not have perfect knowledge of the noise model
but still performs excellently.

All tests are performed for synchronization of rotations in R3 (n = 3)
with one anchor (A = {1}) on complete measurement graphs with N =
400 nodes, i.i.d. noise, κ′ = 0. Setting κ′ = 0 means measurements are
either complete outliers (w.p. 1−p) or concentrated around the true relative
rotation they measure with concentration κ (w.p. p).

The performance plots display an estimate of the expected MSE of esti-
mators by averaging the MSE’s obtained over a number of realizations of the
noise. As a means to interpret the experiments, we point out that Langevin
measurements with concentration κ = 0.1, 1, 5 and 10 are, on average, off
by 123◦, 81◦, 30◦ and 21◦, resp. See also Figure 5.1. Likewise, it is useful
to understand how good or bad an MSE level is. For n = 3, assuming the
error is spread over all the rotations equally so that each rotation is off by

an angle θ, then θ and the MSE are related by θ = 180
π

√
MSE

2 (in degrees).

MSE’s of 10−2, 10−1 and 100 correspond to average errors of, respectively,
4◦, 13◦ and 40◦ on each rotation.

Remark 5.3 (Generating random rotations). To perform the tests pre-
sented in this section, random realizations of the noise are generated. A
number of algorithms exist to generate pseudo-random rotation matrices
from the uniform distribution (Chikuse, 2003, §2.5.1) (Diaconis & Shahsha-
hani, 1987). Possibly one of the easiest methods to implement is the follow-
ing O(n3) algorithm, adapted from (Diaconis & Shahshahani, 1987, Method
A, p. 22) with implementation details as cautioned in (Mezzadri, 2007) (for
large n, see the former paper for algorithms with better complexity):

1. Generate A ∈ Rn×n, such that the entries Aij ∼ N (0, 1) are i.i.d.
normal random variables;

2. Obtain a QR decomposition of A: QR = A;

3. Set Z := Qdiag(sign(diag(R))) (this ensures the mapping A 7→ Z is
well-defined; see (Mezzadri, 2007));

4. Z is now uniform on O(n). If det(Z) = −1, permute columns 1 and
2 of Z. Return Z.
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Mean angle (in degrees) of a rotation in R
3 with concentration κ

Concentration κ

10−2 10−1 100 101 102
0

30

60

90

120

Figure 5.1: To understand the concentration parameter κ of the Langevin
distribution (5.4), this plot shows the average error, in degrees, for a
Langevin measurement of a rotation in SO(3). More precisely, the curve
has equation 180

π E
{
‖log(Z)‖ /

√
2
}

, where the expectation is taken w.r.t. Z,
distributed around the identity matrix with a Langevin of concentration κ.
For n = 2 and n = 3, the quantity ‖log(Z)‖ /

√
2 indeed corresponds to the

angle θ (in radians) by which Z rotates around some axis. For example, at
κ = 5, measurements are typically off by 30◦.

Based on a uniform sampling algorithm on SO(n), a simple acceptance-
rejection scheme to sample from the Langevin distribution (Chikuse, 2003,
§2.5.2) goes as follows:

1. Generate Z ∈ SO(n), uniform;

2. Generate t ∈ [0, enκ], uniform;

3. If t ≤ exp(κ trace(Z)), return Z (accept); Otherwise, try again (re-
ject).

This is what we use. Not surprisingly, for large values of κ, this tends
to be very inefficient. Chiuso et al. report using a Metropolis-Hastings–type
algorithm instead (Chiuso et al., 2008, §7). Hoff describes an efficient Gibbs
sampling method to sample from a more general family of distributions on
the Stiefel manifold, which can be modified to work on SO(n) (Hoff, 2009).

Figures 5.2–5.4 show nontrivial scenarios where the MLE rapidly reaches
the CRB and solves the synchronization problem as well as possible, even
at unfavorable SNR’s. Figure 5.6 shows that for extremely low SNR’s, the
MLE may not reach the CRB. Even for such scenarios, most rotations are
actually well estimated by the MLE: the error is mostly concentrated on
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a few unlucky rotations. We describe an ad hoc method to detect these
poorly estimated rotations now.

We propose a simple a posteriori criterion whose purpose is to rank
the estimators R̂i from most likely to least likely to be accurate. This is
heuristic and, admittedly, many approaches could be tested. For the sake
of conciseness, we do not compare different ranking strategies here.

In the presence of many outliers, some rotations may be much harder to
estimate than the others because too many of the measurements they are
involved with happen to be outliers. We expect the maximum likelihood
estimator to still be able to accurately estimate the other rotations. Com-
paratively, a least-squares based estimator such as the eigenvector method
has a tendency to spread the error over all measurements, yielding overall
poor synchronization in those cases.

For each measurement Hij , compute a consistency score sij of agreement

with the estimators R̂i and R̂j as follows, forming a symmetric matrix
S = (sij)i,j=1...N :

sij = `κ(R̂>iHijR̂j) =
1

cn(κ)
exp

(
κ trace(R̂>iHijR̂j)

)
. (5.36)

Let sij = 0 if there is no measurement Hij . Furthermore, let

D = diag(d1, . . . , dN ), with di =
∑
i∼j

sij .

The summation is over the neighbors j of node i in the measurement graph.
The consistency score of each estimator R̂i is then defined as si through a
PageRank-like procedure:

si =
∑
i∼j

sij
dj
sj , (5.37)

that is, node i is given a large score if it is connected to nodes which have a
large score themselves through measurements well explained by R̂. By the
Perron-Frobenius theorem, such scores exist, are positive and are uniquely
defined if we further impose that they sum to N and require the mea-
surement graph to be connected. Indeed, the vector s is simply the right
eigenvector of the column-stochastic matrix SD−1 with eigenvalue 1. With
proper normalization, it verifies s = SD−1s.

As confirmed by Figure 5.7, a relatively low consistency score si indicates
a higher chance that R̂i is a relatively bad estimator for the rotation Ri. The
data in the latter figure comes from Figure 5.6, where it is seen that dropping
a few of the worst R̂i’s, which may be acceptable in some applications, can
decrease the MSE of the remaining estimators.

Finally, Figure 5.8 demonstrates a scenario where neither MLE nor LUD
reach the CRB, but both seem to improve at the CRB rate.



130 Chapter 5. Synchronization of rotations

κ̂
0

=
20,

κ̂
′0

=
0,

p̂
0

=
1.00

κ̂
0

=
2
0
,

κ̂
′0

=
0
,

p̂
0

=
0.5

0

κ̂
0

=
2
0
,

κ̂
′0

=
5
,

p̂
0

=
1.0

0

κ
=

3
,

κ
′

=
0
,

p
=

1.0
0

κ̂
:

(3.01,0
.04
,2
.95
,3.12),

κ̂
′

:
(0.00

,0.00
,0.00,0

.00),
p̂

:
(1.00,0.00

,1
.00
,1.00)

κ̂
:

(3.01
,0.04

,2.9
5,3

.1
2
),

κ̂
′

:
(0.00

,0
.0

0
,0.0

0
,0.0

0
),

p̂
:

(1.00
,0.00

,1.0
0,1

.0
0
)

κ̂
:

(6.3
6
,8.9

0,2.9
7,5

4
.01),

κ̂
′

:
(2.9

3,0.1
7,2

.0
0
,3.07),

p̂
:

(0.1
1
,0
.1

8
,0.0

0
,0.93)

κ
=

8
,

κ
′

=
0
,

p
=

0.8
0

κ̂
:

(7.98,0
.17
,7
.61
,8.36),

κ̂
′

:
(0.00

,0.00
,0.00,0

.00),
p̂

:
(0.80,0.01

,0
.78
,0.82)

κ̂
:

(7.98
,0.17

,7.6
1,8

.3
6
),

κ̂
′

:
(0.00

,0
.0

0
,0.0

0
,0.0

0
),

p̂
:

(0.80
,0.01

,0.7
8,0

.8
2
)

κ̂
:

(8.0
0
,0.1

7
,7.6

1
,8.40),

κ̂
′

:
(0.0

2,0.0
3
,0
.0

0
,0.10),

p̂
:

(0.8
0
,0
.0

1
,0.7

7
,0.82)

κ
=

8
,

κ
′

=
0
,

p
=

0.4
0

κ̂
:

(8.04,0
.22
,7
.54
,8.50),

κ̂
′

:
(0.00

,0.00
,0.00,0

.00),
p̂

:
(0.40,0.01

,0
.36
,0.43)

κ̂
:

(8.04
,0.22

,7.5
4,8

.5
0
),

κ̂
′

:
(0.00

,0
.0

0
,0.0

0
,0.0

0
),

p̂
:

(0.40
,0.01

,0.3
6,0

.4
3
)

κ̂
:

(8.0
7
,0.2

2
,7.5

4
,8.50),

κ̂
′

:
(0.0

1,0.0
2
,0
.0

0
,0.08),

p̂
:

(0.4
0
,0
.0

1
,0.3

6
,0.43)

κ
=

8
,

κ
′

=
2
,

p
=

0.6
0

κ̂
:

(4.20,0
.13
,3
.92
,4.48),

κ̂
′

:
(0.00

,0.00
,0.00,0

.00),
p̂

:
(0.96,0.01

,0
.95
,0.97)

κ̂
:

(4.20
,0.13

,3.9
2,4

.4
8
),

κ̂
′

:
(0.00

,0
.0

0
,0.0

0
,0.0

0
),

p̂
:

(0.96
,0.01

,0.9
5,0

.9
7
)

κ̂
:

(7.9
4
,0.3

8
,7.2

0
,8.87),

κ̂
′

:
(2.0

1,0.0
9
,1
.8

2
,2.20),

p̂
:

(0.6
0
,0
.0

3
,0.5

3
,0.66)

T
a
b

le
5.1:

E
stim

ation
of

th
e

p
aram

eters
of

a
m

ix
tu

re
of

L
an

gev
in

o
n

S
O

(3
).

T
h

e
p
a
ra

m
eters

o
f

th
e

m
ix

tu
re

are
sta

ted
in

th
e

left
colu

m
n

.
T

h
e

top
row

in
d

icates
d

iff
eren

t
valu

es
fo

r
th

e
in

itia
l

g
u

ess
u

sed
in

o
p

tim
izin

g
g

(5.33).
F

or
each

m
ix

tu
re

(row
),

w
e

sam
p

le
2

000
rotation

s
from

th
e

m
ix

tu
re

a
n

d
reco

rd
th

e
estim

a
ted

κ̂
,κ̂
′,p̂

reach
ed

u
sin

g
each

in
itial

gu
ess

(co
lu

m
n

).
T

h
is

is
rep

eated
50

tim
es

an
d

each
cell

rep
o
rts,

in
a

tu
p

le,
th

e
m

ea
n

valu
e

reach
ed

,
th

e
sta

n
d

ard
d

ev
iatio

n
,

th
e

sm
allest

an
d

th
e

largest
ob

served
valu

e.
T

h
e

tw
o

fi
rst

co
lu

m
n

s
a
re

id
en

tical,
w

h
ich

sh
ow

s
so

m
e

rob
u

stn
ess

w
.r.t.

th
e

in
itial

gu
ess.

T
h

e
estim

ation
is

ex
cellen

t,
ex

cep
t

fo
r

th
e

la
st

row
,

w
h

ere
κ
′

is
n

on
zero.

In
th

a
t

scen
a
rio

,
on

ly
th

e
th

ird
in

itial
gu

ess
su

cceed
s,

su
ggestin

g
th

a
t

to
estim

a
te

a
n
o
n

zero
κ
′

th
e

in
itial

gu
ess

for
th

e
latter

n
eed

s
to

b
e

n
o
n

zero
itself.

R
egard

in
g

th
e

top
-righ

t
cell,

n
ote

th
a
t

th
e

m
o
d

els
(κ

=
3,p

=
1.0

0
,
κ
′

arb
itrary

)
an

d
(κ
′

=
3,p

=
0.00

,
κ

arb
itrary

)
are

eq
u
ivalen

t:
th

e
estim

ation
m

o
stly

su
cceed

s
th

ere
to

o
.



5.5. Numerical experiments 131

Proportion p of good measurements

Expected MSE, estimated over 100 realizations

random estimator

CRB
EIG (initial guess)

MLE

MLE (rand)

LUD

5% 25% 50% 75% 100%
10−3

10−1

101

Figure 5.2: Synchronization of a complete graph of N = 400 rotations
in SO(3) with a variable proportion p of good measurements (concentra-
tion κ = 5). The remaining measurements are complete outliers (κ′ = 0).
As predicted in Section 5.3, a phase transition occurs for the eigenvector
method when β = 0.9p = 1/

√
N , that is, at p = 5.6%. For smaller p, the

eigenvector method (and actually all estimators observed) perform as badly
as a random estimator. For larger p, the MLE rapidly reaches the CRB and
appears to be efficient. The initial guess, based on the eigenvector method,
is much improved by the MLE at low SNR. The curve MLE (rand) uses a
random initial estimator instead of the eigenvector method and refines this
estimator with the MLE optimization approach. The results clearly demon-
strate the importance of picking a good initial iterate. LUD is the method
proposed in (Wang & Singer, 2013): it has no knowledge of the noise model
but still performs well. The initial guess is computed in 4 to 6 seconds. The
MLE needs 2 to 20 additional seconds for p larger than 15%. For smaller p
(corresponding to harder problems), the MLE may need 4 to 6 minutes to
converge.
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Concentration κ of the measurements

Expected MSE, estimated over 60 realizations (no outliers)

CRB

random estimator

EIG

MLE

LUD

10−1 100 101
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Figure 5.3: Synchronization of a complete graph of N = 400 rotations in
SO(3) without outliers (p = 100%). The measurements are distributed fol-
lowing a Langevin with variable concentration κ. All estimators seem to
rapidly reach the CRB as the SNR increases. The vertical dashed line indi-
cates the predicted point at which the eigenvector method starts performing
better than a random estimator (Section 5.3).
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Concentration κ of the good measurements

Expected MSE, estimated over 60 realizations (p = 5/
√

N)

CRB

random estimator

EIG (initial guess)

MLE LUD

10−1 100 101
10−3

10−1

101

Figure 5.4: Same experiment as Figure 5.3, this time with outliers. A
(comfortable) p = 25% of the measurements have variable concentration κ.
The remaining 75% are complete outliers (κ′ = 0). The proposed maximum
likelihood estimator seems to rapidly reach the CRB as the SNR increases.
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Concentration κ of the good measurements

Expected MSE, estimated over 240 realizations (p = 2.5/
√

N)

CRB

random estimatorMLE (cheat)

EIG (initial guess)

MLE

LUD

10−1 100 101
10−3

10−1

101

Figure 5.5: Same experiment as Figure 5.4, with p = 2.5/
√
N = 12.5%

inliers. The MLE (cheat) dashed curve shows the expected MSE reached
when using the true rotations as initial guess for the optimization stage. The
comparison suggests that, at this noise level, the legitimate MLE method is
still able to converge to optimizers of good quality.
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Concentration κ of the good measurements

Expected MSE, estimated over 240 realizations (p = 2/
√

N)

CRB

random estimatorMLE (cheat)

MLE (top)

EIG (initial guess)

MLE LUD

10−1 100 101
10−3

10−1

101

Figure 5.6: Same experiment as Figure 5.4, with a challenging fraction
of outliers: p = 10% and the remaining 90% of the measurements bear
no information. In this extreme scenario, the computed MLE does not
seem to reach the CRB. This is in part due to non-global optimization
of the likelihood function. Indeed, experimentally, for κ larger than the
critical value (dashed vertical line), the MLE (cheat) algorithm (dashed
curve, see Figure 5.5) reaches better critical points (according to LA) than
the legitimate MLE algorithm more than 9 out of 10 times, and indeed
performs better. This suggests that the lesser performance of our proxy for
the MLE is due to local optimizer traps. The MLE (top) curve (dash-dot)
displays the MSE reached by the 395 best estimated rotations according to
the score (5.37).
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Figure 5.7: For each of the 240 repetitions of the experiment in Figure 5.6
at the largest concentration value (κ = 10), both for the eigenvector method
(green +’s) and for the MLE method (blue �’s), we compute the 399 in-
dividual estimation errors ‖log(R>i R̂i)‖F and plot them in degrees against

the scores si (5.37) the corresponding R̂i’s obtained in that repetition. All
240 × 399 = 95 760 points are used to produce the marginal distributions
on the sides of the plot (only for MLE), but only 5% of the points are ac-
tually plotted, for legibility. Observe how, for the MLE method, (i) the
error tends to be concentrated on just a few rotations, and (ii) the score
is an excellent predictor to identify those poorly estimated rotations. The
blue �’s in the middle (large score even though large error) correspond
to a repetition where the unique anchor was connected through too few
good measurements, resulting in overall large absolute errors despite small
relative errors.
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Concentration κ of the good measurements

Expected MSE, estimated over 360 realizations (p = 7/
√

N)

CRB

random estimator

EIG (initial guess)

MLE

LUD
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Figure 5.8: Synchronization of a complete graph of N = 100 rotations in
SO(2) (notice the n = 2 instead of 3 in the other figures) with 30% out-
liers (p = 70%). The measurements are distributed following a Langevin
with variable concentration κ. (This experiment is a rerun of the setup
in (Wang & Singer, 2013, Fig. 8.3)) As the accuracy of the good measure-
ments increases (larger κ), the MSE of the eigenvector method levels off.
Interestingly, although neither the MLE nor the LUD method reach the
CRB, their MSE decreases at about the same rate as the CRB. This is
especially remarkable for LUD, which has no knowledge of the noise dis-
tribution. Unfortunately, LUD is also slower to compute than MLE (by a
factor of 10 to 100).
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5.6 Application: 3D scan registration

Following the experimental setup in (Tzveneva et al., 2011; Wang & Singer,
2013), the three synchronization methods discussed (EIG, LUD and MLE+)
are presented with data from an idealized 3D scan registration problem. The
scans composing the Lucy statue 3D model (Figure 5.9) are downloaded
from the Stanford 3D Scanning repository.3 We extract N = 368 of these
scans which cover most of the model, totaling 3.5 million triangles out of
116 million. As noted on the repository’s webpage, this experimental setup
is strongly idealized compared to true 3D scanning tasks. The Lucy dataset
is heavily processed before it reaches the experiments in this section, hence
the results should be taken with a grain of salt. Nevertheless, the noise
affecting the measurements is largely out of our control, which gives some
credit to the engaging performance of MLE+ reported below.

Figure 5.9: Left: virtual representation of Lucy provided by the Stanford
3D Scanning Repository. Right: representation of the subset of 368 scans
of Lucy (each in a different color) with their reference alignment, using
trimesh2.

Each scan is represented in its own reference frame. Let (Ri, ti) ∈
SO(3) × R3 represent the transformation from the local reference frame
of scan i to the global reference frame, such that a point p ∈ R3 is trans-
formed from the local to the global frame via p 7→ Rip + ti. If two scans i
and j contain two points pi,k and pj,` which correspond to the same physical
point, then the following equation should hold, up to noise terms:

Ripi,k + ti = Rjpj,` + tj .

3http://graphics.stanford.edu/data/3Dscanrep/
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Figure 5.10: Alignments of the 368 patches of Lucy. Left to right: rotations
are synchronized with EIG, LUD and MLE+. The fourth image depicts the
reference alignment.

Thus, the rigid transformation of a point in frame i to a corresponding point
in frame j is given by

pj,` = R>jRipi,k +R>j (ti − tj).

The iterative closest point (ICP) algorithm (Rusinkiewicz & Levoy, 2001),
as implemented in the trimesh2 library,4 is applied to all 67 528 pairs of scans
to produce estimates of the relative rigid transformation (R>jRi, R

>
j (ti−tj)).

Based on an initial guess of the relative alignment of two scans, ICP pro-
ceeds by matching their points according to a nearest neighbor criterion.
Based on these matches, the scans are optimally aligned (this is a classical
orthogonal Procrustes problem, solved by SVD). The new alignment is used
to produce a new matching of the points and the procedure is iterated. If
ICP finds sufficient overlap between the patches, it outputs a relative rigid
transformation measurement. The expectation is that a correct overlap
detection yields a good quality measurement whereas a false overlap detec-
tion yields an essentially random outlier, justifying the mixture of Langevin
model. ICP identified 2 006 overlapping scans for Lucy.

The relative rotation measurements are readily processed by any of the
synchronization algorithms discussed to obtain R̂. We then further syn-
chronize the translational alignments based on the measurements

tij ≈ R>j (ti − tj) ≈ R̂>j (ti − tj).

4Trimesh2 by S. Rusinkiewicz, see http://gfx.cs.princeton.edu/proj/trimesh2/.
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A simple least-squares procedure to compute estimates t̂1, . . . , t̂N consists
in solving the following minimization problem:

min
t̂1,...,t̂N

∑
i∼j

sij‖t̂i − t̂j − R̂jtij‖2.

The weights are set according to (5.36). The rationale is that if the rotation
measurement between scans i and j appears to be poor (according to our

current estimator R̂), then the translation measurement is probably poor
too. And indeed, setting uniform weights in this step would lead to poor
results in the sequel. Ordering the measurement edges arbitrarily, build
the matrix Tmeas ∈ R3×M such that the columns of Tmeas correspond to
the rotated measurements R̂jtij , in order. Let K ∈ RN×M such that the
column corresponding to edge (i, j) is zero except for a 1 on row i and a
-1 on row j. Further let S ∈ RM×M be a diagonal matrix with diagonal
entries sij , in order. Then, for T̂ ∈ Rn×N a matrix whose columns are the
estimated translations t̂i, the alignment problem reads

min
T̂∈Rn×N

∥∥∥(T̂K − Tmeas)S
1/2
∥∥∥2

F
.

The solution follows easily:

T̂ = TmeasSK
>(KSK>)†. (5.38)

Notice that KSK> is the Laplacian of the measurement graph, weighted by
sij . The latter graph is theoretically connected, hence the above formula-

tion makes T̂ the unique optimal solution centered at the origin (to check,

multiply by 1N on both sides). Numerically though, when R̂ is obtained
from MLE+, the graph has two isolated nodes (147 and 293). These are
scans for which all measurements are trusted with sij close to zero (they
have a score (5.37) of 10−17 compared to a median score of 0.8), so that we
omit them in the plots. By default, the formulation above centers isolated
scans at the origin.

We proceed as follows to generate Figure 5.10: for each of EIG, LUD
and MLE+, obtain an estimate R̂ of the rotations. From this estimate,
compute Tmeas and S. Use these with (5.38) to compute T̂ , an estimate
of the translations. Then apply the computed rigid transformations to the
scans and render them using trimesh2. From the figure, it is clear that
MLE+ attains the best reconstruction. Table 5.2 collects some statistics re-
garding the performance of all algorithms. Table 5.3 collects more statistics
regarding the iterations of MLE+.

In Tables 5.2 and 5.3, the median data error (in degrees) is the median
value of

180

π

√
2 dist(Hij , R̂iR̂

>
j ).
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Method
Total

time (s)
median data
error (deg)

median synch.
error (deg)

MSE

EIG 0.6 5.37 9.99 3.898 · 10−2

LUD 2400 1.51 2.93 8.251 · 10−3

MLE+ 27.6 0.81 1.70 4.698 · 10−3

Table 5.2: Performance metrics for EIG, LUD and MLE+ estimating rota-
tions on the Lucy dataset. The large running time of LUD (40 minutes for
almost 2000 iterations) is possibly due to its implementation not taking full
advantage of the sparsity of the measurement graph (only 3% of the edges
are present).

The mean squared error (MSE), in the context of this section, is given by

min
Q∈SO(n)

N∑
i=1

‖Ri − R̂iQ‖2F/N,

where R are the reference rotations considered as ground truth. This is
the metric used in (Singer, 2011; Tzveneva et al., 2011; Wang & Singer,

2013). The rotation Q optimally aligns R with R̂ in this sense. It is given
by (5.25):

Q = ΠSO(n)

(
N∑
i=1

R̂>i Ri

)
.

The median synchronization error (in degrees) is the median value of

180

π

√
2 dist(Ri, R̂iQ). (5.39)

We note that Tzveneva et al. (2011) reach a reconstruction of almost the
same quality as MLE+ using a simple outlier rejection iteration on top of
the eigenvector method: from the estimation of the rotations, the quality
of the measurements is assessed; based on this assessment, some measure-
ments are discarded according to a user-supplied criterion and the procedure
is iterated. In contrast, an advantage of MLE+ is that it never completely
discards measurements and the distinction between inlier and outlier, which
is not binary anymore, is automatically determined from the data. A pos-
sible combination of both ideas to accelerate MLE+ would be to replace
the MLE estimation with an eigenvector estimation based on the weights
sij (5.36).
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Individual errors in degrees

S
co
re
s

0 30 60 90
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2

4

Figure 5.11: Scores (5.37) versus individual synchronization errors (5.39)
for the MLE+ estimator of the rotations on the Lucy dataset. Notice the
concentration of error: only a few scans are badly aligned.

5.7 Conclusions

This chapter framed synchronization of rotations as an estimation problem
on a manifold. The maximum likelihood approach made it clear how tools
from optimization on manifolds can be leveraged to perform the estimation.
Many smooth Riemannian optimization algorithms guarantee convergence
toward critical points, but in general there is no guarantee of global opti-
mality. This called for two actions. First, a known spectral relaxation of the
problem is used as initial guess, for which a known analysis establishes that
it performs well even in the face of outliers. In practice, a good initial guess
enhances the chance to converge toward a good local optimum. Second, it
is necessary to develop tools to assess the quality of the computed estima-
tor. To this end, we develop in Chapter 8 CRB’s for the present estimation
problem and saw in the synthetic experiments that the proposed estimator,
MLE, appears to be efficient, at least asymptotically. Furthermore, we pro-
posed one particular way of estimating the parameters of the noise model,
leading to MLE+. The latter algorithm should prove useful for practical
problems too, as indicated by the experiments on the Lucy dataset.

Code for both the estimators and the CRB’s is available on my web page,
currently hosted at http://perso.uclouvain.be/nicolas.boumal/.
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Chapter 6

Estimation on manifolds

In this part of the thesis, we study estimation problems on Riemannian
manifolds. In such problems, one would like to estimate a deterministic
but unknown parameter θ belonging to a manifold P, given a measurement
y belonging to a probability space M. The measurement y is a random
variable whose probability density function is shaped by θ. It is because y
is distributed differently for different θ’s that sampling (observing) y reveals
information about θ. In particular, we focus on developing Cramér-Rao
bounds (CRB’s), that is, lower bounds on the variance of estimators for
certain tasks.

Estimation problems on manifolds arise naturally in camera network
pose estimation (Tron & Vidal, 2009), angular synchronization (Singer,
2011), covariance matrix estimation and subspace estimation (Smith, 2005),
the generalized Procrustes problem (Chaudhury et al., 2013), Wahba’s prob-
lem (Markley, 1988) and many other applications, see references therein.
CRB’s relate the covariance matrix of estimators to the Fisher informa-
tion matrix (FIM) of an estimation problem through matrix inequalities.
The classical results deal with estimation on Euclidean spaces (Rao, 1945).
More recently, a number of authors have established similar bounds in the
manifold setting, see (Smith, 2005; Xavier & Barroso, 2005) and the many
references therein.

This chapter covers the main results established in (Smith, 2005) re-
garding intrinsic CRB’s, with a focus on unbiased estimators. This chapter
serves both as an introduction to intrinsic estimation theory and as a ref-
erence point for the next chapter, which hosts a useful adaptation of the
CRB’s for the special case of Riemannian submanifolds and Riemannian
quotient manifolds. The contents of this chapter are attributable to Smith
(2005), our contribution being a (somewhat) original exposition.

The CRB’s presented in this chapter hold at large SNR. The origin of this

147
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provision is double. Firstly, the definition of covariance on a manifold uses
the logarithmic map on that manifold, which is only locally well-defined.
It is thus necessary to require the noise level to be low enough so that the
estimator of a parameter θ will, almost surely, belong to a neighborhood
of θ where the logarithm is well-defined. This can be relevant even on flat
manifolds such as the circle SO(2) for example, which is compact. Secondly,
on curved manifolds, the proof of Theorem 6.4 relies on truncated Taylor
expansions. Those are legitimate only at large enough SNR so that typ-
ical errors are small compared to the scale at which curvature becomes a
dominant feature.

6.1 Fisher information, bias and covariance

We consider the problem of estimating a (deterministic) parameter θ based
on a measurement y. The parameter belongs to the parameter space P, a
Riemannian manifold. The measurement is a realization of a random vari-
able Y defined over a probability space M, the measurement space. Notice
the somewhat different notation from usual: M need not be a manifold. P
is equipped with a Riemannian metric 〈·, ·〉 and a Riemannian connection
∇ (Theorem 2.2). M is equipped with a probability measure µ such that
µ(M) = 1.

Naturally, we need the realization y to convey information about θ. This
is the case if and only if the distribution of Y is conditioned on θ:

Y ∼ f(·; θ). (6.1)

Sampling from Y reveals information about the distribution of Y . The more
this distribution depends on θ, the more sampling from Y reveals about θ.
This is the intuition we set out to quantify.

Assume the parameter space has dimension dimM = d and let

e = (e1, . . . , ed)

be an orthonormal basis of the tangent space TθP with respect to the Rie-
mannian metric. The results derived in this section are intrinsic: they do
not depend on the choice of basis e. Nevertheless, working “in coordinates”
simplifies much of the algebra, warranting a sidestep from perfectly intrinsic
notations. The intuition laid out above suggests that the information about
θ in y is linked to how much the probability density function (pdf) of Y
changes when θ changes. This motivates the following definitions:

Definition 6.1 (Log-likelihood function). The log-likelihood function L is
a random function over the parameter space defined by

L : P → R : θ 7→ L(θ) = log f(Y ; θ). (6.2)
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Definition 6.2 (Score). The score vector s = s(θ) ∈ Rd is a random
coordinate vector defined w.r.t. the orthonormal basis e as

si = DL(θ)[ei]. (6.3)

The relevance of the log will become clear in the derivations.
We are especially interested in the amount of information an observation

y reveals on average. This prompts us to take expectations with respect to
Y—all expectations in this chapter are with respect to Y , the only source
of randomness in the present setting.

The score vector has zero mean. The covariance of the score vector is
an important quantity for our purpose, known as the Fisher information
matrix (FIM).

Lemma 6.1. The score vector has zero mean: E {s} = 0.

Proof. For each i ∈ {1, . . . , d}, with Dθ denoting the directional derivative
w.r.t. θ, the expectation of si is given by:

E {si} = E {DL(θ)[ei]}

=

∫
M

Dθ log f(y; θ)[ei] f(y; θ)dµ(y)

=

∫
M

Dθf(y; θ)[ei] dµ(y)

= Dθ

(
θ 7→

∫
M
f(y; θ) dµ(y)

)
(θ)[ei]

= Dθ (θ 7→ 1) (θ)[ei] = 0.

We commuted integration overM with a derivative w.r.t. θ, which requires
f to meet mild regularity conditions.

Definition 6.3 (Fisher information matrix (FIM)). The Fisher information
matrix F = F (θ) is the symmetric, positive semidefinite matrix of size d
defined w.r.t. the basis e as

F = E
{
ss>
}
.

Thus, the entries of F are given by:

Fij = F (θ)ij = E {DL(θ)[ei] ·DL(θ)[ej ]} .

When F is everywhere positive definite, it defines a Riemannian met-
ric in its own right. The study of Riemannian manifolds equipped with
the Fisher information metric is called information geometry (Amari & Na-
gaoka, 2007). This is not our focus.

The goal is to estimate θ, leading to the definition of estimators.
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Definition 6.4 (Estimator). An estimator θ̂ : M → P is a determinis-
tic mapping which to each realization y of the measurement associates a
parameter θ̂(y).

The estimation error is classically defined to be the random variable
θ̂(Y ) − θ. The difference between two points θ and θ̂ on a manifold is
not defined intrinsically though. Remember from Section 2.6 that the log-
arithmic map (or inverse exponential map) is a good replacement for the
difference between two points on a manifold:

Xθ = Logθ(θ̂).

Thus, X is a random tangent vector field. For each realization y of the mea-
surement and each value of the parameter θ, it generates Xθ(y), a tangent

vector at θ. This vector “points toward” θ̂ and its length coincides with the
geodesic distance dist(θ, θ̂). In coordinates, we write

xi = x(θ)i =
〈

Logθ(θ̂), ei

〉
θ
. (6.4)

Notice that the norm of x is the magnitude of the estimation error:

‖x‖ =
√
x>x = ‖Logθ(θ̂)‖θ = dist(θ, θ̂).

Definition 6.5 (Bias). In coordinates w.r.t. the basis e, the bias of an
estimator for a given parameter value θ ∈ P is the average error vector
b = b(θ) ∈ Rd:

b = b(θ) = E {x} .

Thus, bi quantifies the bias of θ̂ along the direction ei:

bi = E
{〈

Logθ(θ̂), ei

〉
θ

}
.

An estimator is unbiased if its bias vector is zero everywhere on P:

∀θ ∈ P, b(θ) = 0.

We restrict our analysis to unbiased estimators. See the reference paper
of this chapter for a treatment of biased estimators (Smith, 2005). The
following definition quantifies the covariance of the estimation error.

Definition 6.6 (Covariance). For an unbiased estimator θ̂, the covariance
matrix C = C(θ) ∈ Rd×d w.r.t. the basis e of TθP is a symmetric, positive
semidefinite matrix defined by

C = C(θ) = E
{
xx>

}
.
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Thus, the entries of C are given by:

Cij = C(θ)ij = E {xixj} = E
{〈

Logθ(θ̂), ei

〉
θ
·
〈

Logθ(θ̂), ej

〉
θ

}
.

In particular, the variance of θ̂ at θ is

trace(C(θ)) = E
{
x>x

}
= E

{
‖Logθ(θ̂)‖2θ

}
= E

{
dist2(θ, θ̂)

}
,

with dist denoting the Riemannian distance on P w.r.t. the chosen Rie-
mannian metric.

6.2 Intrinsic Cramér-Rao bounds

In the previous section, we defined the covariance C of an estimator, which
quantifies the average estimation error of that estimator, and the Fisher
information matrix F of an estimation problem, which quantifies the average
amount of information the random measurement y reveals about the sought
parameter θ ∈ P. Necessarily, the smaller F is, the larger C has to be.
This section quantifies that relationship in the form of a matrix inequality.
For P a Euclidean space, we will recover the celebrated result C � F−1.
For P a Riemannian manifold, additional terms are in order, related to the
possible curvature of P.

We first establish the following two lemmas about the cross-correlation
between the score s and the estimation error x.

Lemma 6.2. For all u, v ∈ Rd and for any tangent vector fields U, V such
that Uθ =

∑d
i=1 uiei and Vθ =

∑d
i=1 viei,

u>E
{
sx>
}
v = −E {〈(∇UX)θ, Vθ〉θ} , (6.5)

where Xθ = Logθ(θ̂) defines the random error tangent vector field X and ∇
is the Riemannian connection on P.

Proof. The no-bias assumption reads, for all θ ∈ P,

E {Xθ} =

∫
M
Xθ(y)f(y; θ)dµ(y) = 0 ∈ TθP,

where Xθ(y) = Logθ(θ̂(y)). This defines a zero vector field on P. Tak-
ing covariant derivatives with respect to U on both sides of the equation,
then taking inner products with V at θ on both sides too yields the scalar
equation: ∫

M
〈(∇U (fX))θ, Vθ〉θ dµ(y) = 0.
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Notice that the covariant derivative ∇U commutes with the integral over
M. Apply the product rule for affine connections:∫

M
〈Dθf(y; θ)[Uθ] ·Xθ + f(y; θ)(∇UX)θ, Vθ〉θ dµ(y) = 0,

where Dθ denotes a directional derivative w.r.t. θ. The following holds:

Dθ log f(y; θ)[Uθ] =
1

f(y; θ)
Dθf(y; θ)[Uθ].

Inject the latter into the previous equation to obtain, with L(θ) = log f(y; θ):∫
M

(
DL(θ)[Uθ] · 〈Xθ, Vθ〉θ + 〈(∇UX)θ, Vθ〉θ

)
f(y; θ)dµ(y) = 0.

From equations (6.3) and (6.4), we obtain respectively DL(θ)[Uθ] = u>s
and 〈Xθ, Vθ〉θ = x>v. In expectation notation:

u>E
{
sx>
}
v = −E {〈(∇UX)θ, Vθ〉θ} ,

which concludes the proof.

The right hand side of equation (6.5) deserves a closer inspection. It
involves infinitesimally thin geodesic triangles. Figure 6.1 depicts a regular
triangle in a Euclidean space compared to a geodesic triangle on a curved
manifold. To begin, assume that the parameter space P is a Euclidean
space. Then, the error vector is simply Xθ = θ̂ − θ. Furthermore, the
covariant derivative reduces to the classical directional derivative, so that

(∇UX)θ = D(θ 7→ θ̂ − θ)(θ)[Uθ] = −Uθ.

Hence, u>E
{
sx>
}
v = u>v for all u, v ∈ Rd. In conclusion, for P a Euclidean

space, E
{
sx>
}

= I is the identity matrix. As Figure 6.1 suggests, this is no
longer the case for a curved manifold P. Lemma 6.3 quantifies the effects
of curvature. Refer to Section 2.8 for a brief introduction to curvature.

Lemma 6.3. (Continued from Lemma 6.2.) The matrix E
{
sx>
}

is sym-
metric and depends on the curvature of the manifold P such that

E
{
sx>
}

= E
{
xs>
}

= I − 1

3
Rm(C) +O

(
E
{

(
√
Kmax‖Xθ‖)3

})
,

where Kmax is an upper bound on the absolute value of the sectional curva-
tures of P and Rm : Rd×d → Rd×d is a linear operator expressed w.r.t. the
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Figure 6.1: Comparison of a classical triangle and a geodesic triangle.
Lemma 6.3 investigates how Logθ(θ̂) varies when the root point θ is moved
infinitesimally along the direction tUθ to Expθ(tUθ) (think of t very small).

In a Euclidean space (left), Expθ(tUθ) = θ+tUθ and Logθ(θ̂) = θ̂−θ. Hence,
the variation is simply −tUθ. On a curved Riemannian manifold (right), the
difference between the logarithm at Expθ(tUθ) (parallel transported back to
θ) and the logarithm at θ is not simply −tUθ anymore: the curvature of P is
responsible for additional terms, elucidated by Lemma 6.3. As an extreme
example of this, think of P as the sphere and place θ̂ at a pole and θ on
the equator. Moving θ along tUθ parallel to the equator does not change
the logarithm at all (up to parallel translation), meaning that the curvature
terms are responsible for a large deviation from the normal (flat) behavior

in this case. When θ and θ̂ are close-by compared to the scale at which
curvature becomes a dominant feature, the curvature terms remain small.

basis e and in terms of the Riemannian curvature tensor R on P. It maps
d× d symmetric matrices to d× d symmetric matrices as follows:1

Rm(C)ij = E
{
〈R(Xθ, ei)ej , Xθ〉θ

}
. (6.6)

Since the right hand side is the expectation of a quadratic expression in Xθ,
it is linear in the matrix C. Hence, this implicitly defines Rm(A) for any
symmetric A. If P is flat, then R ≡ 0 and similarly Rm ≡ 0 so that

E
{
sx>
}

= E
{
xs>
}

= I.

Proof. We give a proof for manifolds of constant sectional curvature K ∈ R,
that is, such that for all vector fields X,Y, Z,

R(X,Y )Z = K(〈Y,Z〉X − 〈X,Z〉Y ). (6.7)

1This definition differs from (Smith, 2005). In the latter paper, the notation Rm

includes the higher-order terms and equation (6.6) only holds for sufficiently small errors.
Comparatively, we define Rm via (6.6) and spell out the error terms where needed.
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(See for example (Lee, 1997, Lemma 8.10).) For a general proof, we direct
the reader to (Smith, 2005, Lemma 1). The proof in the latter reference
is arguably difficult to follow, which prompted us to provide the present
restricted but explicit argument. Our proof relies on a direct solve of the
Jacobi equation, which may remain possible beyond manifolds of constant
curvature provided they have additional structure (such as symmetry) but
is impossible (analytically) for the general case.

We focus on the impact of curvature on the vector (∇UX)θ. Assume θ

and θ̂ are close enough such that there exists a unique minimizing geodesic
γ with γ(0) = θ̂ and γ(1) = θ:

γ(t) = Expθ̂(tLogθ̂(θ)).

Being a geodesic, γ has constant speed ‖γ̇(t)‖ = dist(θ̂, θ) = ‖Xθ‖. Our aim
is to elucidate how γ is modified when the end-point θ is moved infinites-
imally along Uθ. The language of Jacobi fields is dedicated to the study
of such questions. Specifically, consider the vector fields J along γ which
satisfy the (linear, differential) Jacobi equation (Lee, 1997, Thm. 10.2)

D2
tJ +R(J, γ̇)γ̇ = 0. (6.8)

Above, Dt denotes covariant derivative along γ:

DtJ(t) , (∇γ̇(t)J)γ(t).

The solutions of (6.8) form a 2d-dimensional linear subspace (Lee, 1997,
Cor. 10.5). Imposing two independent initial or boundary conditions singles
out a unique solution. Impose J(0) = 0 and J(1) = Uθ to obtain the Jacobi

field related to the perturbation of γ such that θ̂ remains fixed and θ is
moved along Uθ. Then, Karcher (1977, App. C.3) relates J to (∇UX)θ via

−(∇UX)θ = DtJ(1). (6.9)

To leverage (6.9), we must first solve (6.8). We do so following mostly
the method used in (Lee, 1997, Lemma 10.8). Plug the constant curvature
assumption (6.7) in the Jacobi equation to obtain

D2
tJ +K

(
〈γ̇, γ̇〉 J − 〈J, γ̇〉 γ̇

)
= 0.

Since the solution exists and is unique, it is acceptable to “guess” J and
check its validity. Decompose Uθ as

Uθ = U⊥θ + αXθ, such that
〈
U⊥θ , Xθ

〉
= 0.
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Let E(t) be a parallel vector field along γ (that is, DtE(t) ≡ 0) such that
E(1) = U⊥θ . Observe that both E and γ̇ are parallel along γ and are
orthogonal. Then, assume solutions of the form

J(t) = u1(t)E(t) + u2(t)γ̇(t),

that is, J is the superposition of a normal and a tangent vector field to γ.
The scalar functions u1 and u2 should satisfy the following ODE:

(u′′1 +K‖Xθ‖2u1)E + u′′2 γ̇ = 0. (6.10)

Since γ̇(1) = −Xθ, the boundary conditions are u1(0) = u2(0) = 0 and
u1(1) = 1, u2(1) = −α. Given that E and γ̇ are orthogonal, equation (6.10)
reduces to two separate ODE’s for u1 and u2. First, u′′2 = 0 and it is easy
to see that

u2(t) = −αt.
Second, the linear, constant coefficient ODE u′′1 +K‖Xθ‖2u1 = 0 is readily
solved:

u1(t) =


t if K = 0;

1
sin(
√
K‖Xθ‖)

sin(
√
K‖Xθ‖t) if K > 0;

1
sinh(

√
−K‖Xθ‖)

sinh(
√
−K‖Xθ‖t) if K < 0.

Hence, J = u1E+u2γ̇ indeed solves the Jacobi equation. Motivated by (6.9),
we now compute DtJ(1):

DtJ(t) = u′1(t)E(t)− αγ̇(t),

DtJ(1) = u′1(1)U⊥θ + αXθ. (6.11)

The derivative u′1(1) is readily computed:

u′1(1) =


1 if K = 0;√
K‖Xθ‖ cot(

√
K‖Xθ‖) if K > 0;√

−K‖Xθ‖ coth(
√
−K‖Xθ‖) if K < 0.

Remarkably, owing to the two Taylor expansions x cot(x) = 1−x2/3+O(x4)
and x coth(x) = 1 + x2/3 +O(x4), it holds for any K that:

u′1(1) = 1− 1

3
K‖Xθ‖2 +O(K2‖Xθ‖4).

Plugging this into (6.11) yields, for all K,

DtJ(1) = Uθ −
1

3
K‖Xθ‖2U⊥θ +O(K2‖Xθ‖4)U⊥θ .
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We now aim at suppressing explicit references to K in favor of a more
general-looking formulation involving R. Owing to the skew-symmetry
of the curvature tensor, R(X,X) = −R(X,X) = 0 and it follows that
R(X,U) = R(X,U⊥), where U⊥ is the vector field obtained from U by
suppressing the component parallel to X. Let V be any vector field on P.
Then, resorting to (6.7):

〈R(X,U)V ,X〉θ =
〈
R(X,U⊥)V ,X

〉
θ

= K‖Xθ‖2
〈
U⊥θ , Vθ

〉
.

Thus,

〈DtJ(1), Vθ〉 = 〈Uθ, Vθ〉 −
1

3
〈R(X,U)V ,X〉θ +O(K2‖Xθ‖4)

〈
U⊥θ , Vθ

〉
.

Owing to (6.9) and Lemma 6.2, taking expectations in the latter equation
further shows

u>E
{
sx>
}
v = −E {〈(∇UX)θ, Vθ〉θ}

= 〈Uθ, Vθ〉 −
1

3
E {〈R(X,U)V ,X〉θ}

+O(E
{
K2‖Xθ‖4

}
)
〈
U⊥θ , Vθ

〉
.

With the definition of Rm(C) (6.6), in matrix notation this is equivalent to:

E
{
sx>
}

= I − 1

3
Rm(C) +O(E

{
K2‖Xθ‖4

}
).

Smith (2005, Lemma 1) argues that, even if P does not have constant
sectional curvature, the latter equation holds but the error term decays only
cubically rather than quartically as O(E

{
(
√
Kmax‖Xθ‖)3

}
), with Kmax an

upper bound on the maximum absolute value of sectional curvatures on
P.

In particular, the curvature terms are negligible when the dimensionless
number

√
Kmax‖Xθ‖ is small, that is, when estimation errors obey ‖Xθ‖ �

1/
√
Kmax. The main theorem follows.

Theorem 6.4 (Intrinsic Cramér-Rao bound). Let P be a Riemannian man-
ifold, let θ ∈ P and let e = (e1, . . . , ed) be an orthonormal basis of TθP.
Consider an estimation problem on P such that the FIM F = F (θ) (Defini-
tion 6.3) is invertible and λmax(F−1) is small compared to 1/Kmax. Then,
for any unbiased estimator, the covariance matrix C = C(θ) (Definition 6.6)
obeys the following matrix inequality, where both F and C are expressed
w.r.t. the basis e:

C � F−1 − 1

3

(
F−1Rm(F−1) +Rm(F−1)F−1

)
+O(λmax(F−1)2+1/2),
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with Rm as defined by equation (6.6). If the parameter space P is flat,
Rm ≡ 0 and the inequality simplifies to the celebrated

C � F−1.

Even for flat manifolds, these only hold for small enough errors so that
the logarithm Logθ(θ̂) is well defined. For Euclidean spaces, there are no
restrictions.

Proof. The main argument consists in building a well-chosen random vector
v ∈ Rd such that the trivial matrix inequality E

{
vv>
}
� 0 leads to the

sought result. Consider the following vector:2

v = x− F−1s.

Notice that v has zero mean, since x and s have zero mean:

E {v} = E {x} − F−1E {s} = 0.

Now for the main argument:

E
{
vv>
}

= E
{
xx>

}
+ F−1E

{
ss>
}
F−1 − F−1E

{
sx>
}
− E

{
xs>
}
F−1 � 0.

Inject E
{
xx>

}
= C, E

{
ss>
}

= F and Lemma 6.3 for E
{
sx>
}

= E
{
xs>
}

:

C + F−1 − F−1 +
1

3
F−1Rm(C)− F−1 +

1

3
Rm(C)F−1

+O(E
{
‖Xθ‖3

}
· λmax(F−1)) � 0.

Hence,

C +
1

3

(
F−1Rm(C) +Rm(C)F−1

)
� F−1 +O(E

{
‖Xθ‖3

}
· λmax(F−1)).

The left hand side of this inequality is a linear function of the entries of
the matrix C, with Id: Rd×d → Rd×d the identity operator and ∆: Rd×d →
Rd×d defined by

∆(C) =
1

3

(
F−1Rm(C) +Rm(C)F−1

)
,

so that the inequality reads

(Id +∆)(C) � F−1 +O(E
{
‖Xθ‖3

}
· λmax(F−1)).

2In (Smith, 2005), the vector v = x− E
{
sx>

}
F−1s is considered instead, leading to

the same result.
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At large SNR, the operator ∆ is small compared to Id, so that Id +∆ is
positive definite and its inverse admits the Taylor expansion (Id +∆)−1 =
Id−∆+∆2−· · · . Applying this to both sides of the inequality finally yields

C � F−1 − 1

3

(
F−1Rm(F−1) +Rm(F−1)F−1

)
+

O(E
{
‖Xθ‖3

}
· λmax(F−1)).

At large SNR, that is, for small F−1, at best the average squared error ‖Xθ‖2
is on the same order of magnitude as λmax(F−1), so that the error terms
scale as O(λmax(F−1)2+1/2), which is indeed higher order than the terms
which are spelled out. Smith (2005) indicates an error term in λmax(F−1)3

but we could not reproduce the argument.

Note that C and F are tied by an inequality even though C (as a tensor)
depends on the chosen Riemannian metric whereas F (still as a tensor) does
not. This apparent incompatibility is resolved by observing that the inverse
of a tensor is defined with respect to the metric, so that F−1 (as a tensor)
indeed depends on the metric too.



Chapter 7

Cramér-Rao bounds on
submanifolds and quotient
manifolds

In this chapter, we further consider estimation problems on Riemannian
manifolds. Contrary to the previous chapter, we now focus on estimation
problems such that the Fisher information matrix (FIM) F is not necessarily
positive definite. Singularity of F typically arises when the measurements
y are not sufficient to determine the parameter θ, that is, structural ambi-
guities remain. For example, locating a point p = (x, y, z) in space based
solely on information about the bearing p/‖p‖ is impossible, since nothing
is known about the distance between p and the origin. The FIM of such a
problem would only be positive semidefinite.

To resolve these ambiguities, one can proceed in at least two ways.
Firstly, one can add constraints on θ, based on additional knowledge about
the parameter. By restricting the parameter space to P̄ ⊂ P, a subman-
ifold of P, one may hope that the resulting estimation problem is well-
posed. For example, if one knows beforehand that the distance between
p and the origin is 1, one should perform the estimation on the sphere
P̄ = S2 = {(x, y, z) : x2 + y2 + z2 = 1} rather than on P = R3. Alterna-
tively, one can recognize that the parameter space is made of equivalence
classes, that is, sets of parameters that are equally valid estimators for they
give rise to the same measurement distribution. In this scenario, one ends
up with an estimation problem on a quotient manifold P̄ = P/∼, where
∼ is an equivalence relation on P stating that θ, θ′ ∈ P are equivalent if
they give rise to the same distribution of the measurements. Continuing
with our example, all points p with the same bearing p/‖p‖ give rise to the

159
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same measurement distribution, hence are indistinguishable and should be
grouped into an equivalence class.

The treatment of submanifolds hereafter may also be useful when the
FIM is invertible. In that scenario, one is interested in studying the Cramér-
Rao bounds (CRB’s) of the original problem, and the effect on those bounds
caused by incorporating additional knowledge about θ.

The direct way to address ambiguities is to work on the smaller space
P̄ directly, writing down Fisher information and covariance with respect
to bases of the tangent spaces to P̄, leading to CRB’s according to (Smith,
2005) (see the previous chapter). However, we argue that the tangent spaces
of P sometimes make more sense to the user: that is why the problem was
defined on P rather than P̄ to begin with. Furthermore, when P̄ is a
quotient manifold, its tangent spaces are rather abstract objects to work
with. It is hence desirable to have equivalent CRB’s expressed as matrix
inequalities w.r.t. bases of tangent spaces of P instead. This is what the
theorems in this chapter achieve. The present work derives the consequences
of (Smith, 2005) for unbiased estimators in the presence of indeterminacies
(ambiguities) or under additional constraints.

The case of constrained CRB’s, that is, estimation on Riemannian sub-
manifolds of Rd, has been studied extensively (Ben-Haim & Eldar, 2009;
Gorman & Hero, 1990; Stoica & Ng, 1998). Notably, in (Stoica & Ng, 1998),
the authors describe P̄ through a set of equality constraints and they ex-
press the covariance in terms of distances in the embedding Euclidean space
Rd. In this chapter, we more generally consider Riemannian submanifolds
of any Riemannian manifold P. Furthermore, for the simple versions of the
CRB’s, only an orthogonal projector from the tangent spaces of P to those
of P̄ are required. More importantly, the covariance matrix in the proposed
bounds is expressed in terms of the Riemannian, or geodesic, distance on
P̄, which may be more natural for a number of applications.

The case of CRB’s for estimation problems with singular FIM has also
been investigated extensively (Ben-Haim & Eldar, 2009; Stoica & Marzetta,
2001; Xavier & Barroso, 2004). The classical remedy is to use the Moore-
Penrose pseudoinverse, hereafter referred to as the pseudoinverse, of the
FIM instead of the inverse in the CRB. We use the notation A† to denote
the pseudoinverse of a matrix A. When the singularity is due to indetermi-
nacies (a notion we make precise in Section 7.2), Xavier & Barroso (2004)
showed a nice interpretation of the role of the pseudoinverse by recasting
the estimation problem on a Riemannian quotient manifold P̄. In the latter
reference, the authors give a geometric interpretation for the kernel of the
FIM and propose a CRB-type bound they name IVLB (Xavier & Barroso,
2005) for the variance of unbiased estimators for such problems. In their
bound, the possible curvature of P̄ is captured through a single number:
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an upper bound on the sectional curvatures of P̄. In comparison, since the
present results are based on (Smith, 2005), the proposed bounds concern
the whole covariance matrix (the trace of which coincides with the vari-
ance). The pseudoinverse of the FIM appears naturally through the same
manipulations as in (Xavier & Barroso, 2004). The additional curvature
terms in the CRB (Section 7.3) take the whole Riemannian curvature ten-
sor into account. This is especially useful when P̄ is flat or almost flat
in most directions but has significant curvature in a few directions, which
happens naturally for product spaces. In such scenarios, the IVLB tends to
be overly optimistic, i.e., less restrictive—hence less informative—because
it has to assume maximum curvature in all directions. In comparison, the
bounds derived here based on (Smith, 2005) are able to capture complex
curvature structures if need be.

Let e = {e1, . . . , ed} be an orthonormal basis of TθP w.r.t. the Riemann-
ian metric 〈·, ·〉θ. The FIM of the estimation problem on P w.r.t. the basis e
is a d×d symmetric, positive semidefinite matrix defined by (Definition 6.3):

(Fe)ij = E {DL(θ)[ei] ·DL(θ)[ej ]} , (7.1)

where L(θ) = log f(Y ; θ) is the log-likelihood function (Definition 6.1). The
covariance matrix Ce w.r.t. the basis e is defined separately for the sub-
manifold (Section 7.1) and the quotient manifold (Section 7.2) cases, then
Fe and Ce are linked through matrix inequalities. At first, we neglect cur-
vature terms that may appear due to the possible curvature of P̄. This
results in simple statements (Theorems 7.2 and 7.3). These are practically
useful because the curvature terms are often negligible at large SNR. Then,
we establish the CRB’s including curvature terms (Section 7.3). Finally,
we illustrate the use of these theorems through an example (Section 7.4).
The next chapter constitutes a more involved example of application for the
theorems in this chapter.

7.1 Riemannian submanifolds

Consider the constrained estimation problem on the space P̄ ⊂ P, a Rie-
mannian submanifold of P, such that θ ∈ P̄ and for which the log-likelihood
function L̄ = L|P̄ is the restriction of L to P̄. This situation arises when
one adds supplementary constraints on the parameter θ. For example, some
of the target parameters are known or deterministically related. We assume
that the FIM for the estimation problem on P̄ is invertible, that is, the
added constraints fix possible ambiguities in the estimation problem. Fig-
ure 7.1 depicts the situation.

Let θ̂ be any unbiased estimator for the estimation problem, that is,
θ̂ : M → P̄ maps every possible realization of the measurement y to a
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Figure 7.1: P̄ is a Riemannian submanifold of P. We consider estimation
problems for which the parameter to estimate is θ, a point of P̄. In this
drawing, for simplicity, we chose P = R2. The vectors e = (e1, e2) form an
orthonormal basis of TθP ≡ R2, while ē = (ē1) is an orthonormal basis of
the tangent space TθP̄. The operator Projθ projects vectors of TθP orthog-
onally onto TθP̄. We express the Cramér-Rao bounds for such problems in
terms of the basis e, which at times may be more convenient than defining
a basis ē for each point θ.

parameter θ̂(y) and has zero bias (Definition6.5):

∀θ ∈ P, b(θ) = E
{

Logθ(θ̂(y))
}

= 0,

where Logθ : P̄ → TθP̄ is the logarithmic map at θ on P̄ (Section 2.6). For

example, on a Euclidean space, Logθ(θ̂(y)) = θ̂(y)− θ. For conciseness, we

often write θ̂ to mean θ̂(y). The covariance matrix of θ̂ w.r.t. the basis e is
defined following Definition 6.6 as:

(Ce)ij = E
{〈

Logθ(θ̂), ei

〉
θ
·
〈

Logθ(θ̂), ej

〉
θ

}
, (7.2)

where, as always in this chapter, the expectation is taken w.r.t. the mea-
surements y ∼ f(y; θ). The goal is to link Ce and Fe through a matrix
inequality.

Let ē = {ē1, . . . , ēd̄} be an orthonormal basis of TθP̄ ⊂ TθP w.r.t. the
Riemannian metric 〈·, ·〉θ. Let E be the d̄ × d matrix such that Eij =

〈ēi, ej〉θ. E is orthonormal: EE> = Id̄, but in general, Pe , E>E 6= Id.
Furthermore, let Projθ : TθP → TθP̄ be the orthogonal projector onto TθP̄.
Clearly, Pe is the matrix representation of Projθ w.r.t. the basis e, that is:
〈Projθei, ej〉 = (Pe)ij .
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A direct application Theorem 6.4 to the estimation problem on P̄ would
link the covariance matrix Cē of θ̂ and the inverse FIM F̄−1

ē w.r.t. the basis
ē. More precisely,

(Cē)ij = E
{〈

Logθ(θ̂), ēi

〉
θ
·
〈

Logθ(θ̂), ēj

〉
θ

}
,

(F̄ē)ij = E
{

DL̄(θ)[ēi] ·DL̄(θ)[ēj ]
}
,

Cē � F̄−1
ē + curvature terms. (7.3)

We argue that it is sometimes convenient to work with Ce and Fe di-
rectly, to avoid the necessity to define and work with the basis ē. This is
what the next theorem achieves, right after we establish a technical lemma.

Lemma 7.1. Let E ∈ Rd̄×d, A ∈ Rd×d, B ∈ Rd̄×d̄, with d̄ ≤ d, A = A>,
B = B> and EE> = Id̄, i.e., E is orthonormal. Further assume that
kerE ⊂ kerA. Then,

EAE>� B ⇒ A � E>BE.

Proof. Since Rd = imE>⊕ kerE, for all x ∈ Rd, there exist unique vectors
y ∈ Rd̄ and z ∈ Rd such that x = E>y + z and Ez = 0. It follows that:

x>Ax = y>EAE>y + z>Az + 2y>EAz

= y>EAE>y (since Ez = 0⇒ Az = 0)

≥ y>By (since EAE>� B)

= x>E>BEx (since Ex = EE>y + Ez = y.)

This holds for all x, hence A � E>BE.

Theorem 7.2 (CRB on submanifolds). Given any unbiased estimator θ̂ for
the estimation problem on the Riemannian submanifold P̄ with log-likelihood
L̄ = L|P̄ (6.2), at large SNR, the d × d covariance matrix Ce (7.2) and
the d × d Fisher information matrix Fe (7.1) obey the matrix inequality
(assuming rank(PeFePe) = d̄):

Ce � (PeFePe)
† + curvature terms, (7.4)

where the d× d matrix Pe = E>E represents the orthogonal projector from
TθP to TθP̄ w.r.t. the basis e and † denotes Moore-Penrose pseudoinver-
sion. Furthermore, the spectrum of (PeFePe)

† is the spectrum of F̄−1
ē with

d− d̄ additional zeroes. In particular, neglecting curvature terms:

trace(Ce) = trace(Cē) ≥ trace(F̄−1
ē ) = trace((PeFePe)

†).
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Proof. Since θ̂ ∈ P̄, Logθ(θ̂) ∈ TθP̄. Consequently, for all u ∈ TθP,〈
Logθ(θ̂), u

〉
θ

=
〈

Logθ(θ̂),Projθu
〉
θ
,

where Projθu is the orthogonal projection of u on TθP̄. The orthogonal
projection of the basis vector ei on TθP̄ expands in the basis ē as

Projθei =
∑
j

〈ēj , ei〉θ ēj =
∑
j

Ejiēj .

Then, by bilinearity, (Ce)ij =
∑
k,`EkiE`j (Cē)k`. In matrix form,

Ce = E>CēE.

Since EE>= Id̄, it also holds that Cē = ECeE
>. The vectors of ē expand

in the basis e as ēi =
∑
j 〈ēi, ej〉θ ej =

∑
j Eijej . By bilinearity again,

(F̄ē)ij =
∑
k,`EikEj` (Fe)k`. In matrix form,

F̄ē = EFeE
>.

Notice that the assumption rank(PeFePe) = d̄ is equivalent to the assump-
tion that F̄ē is invertible. Then, substituting in (7.3), we find ECeE

> �
(EFeE

>)−1. Since kerCe = ker(E>CēE) ⊃ kerE, Lemma 7.1 applies and
it follows that (neglecting curvature terms):

Ce � E>(EFeE>)−1E.

Finally, from the definition of pseudoinverse, it is easily checked that

E>(EFeE
>)−1E = (E>EFeE

>E)†.

Since Pe = E>E, this concludes the proof of the main part.
We now establish the spectrum property. Since F̄−1

ē is symmetric pos-
itive definite, there exist a diagonal matrix D and an orthogonal matrix U
of size d̄× d̄ such that F̄−1

ē = UDU>. Hence,

(PeFePe)
† = E>UDU>E = V

(
D

0

)
V >,

with V =
(
E>U (E>U)⊥

)
a d× d orthogonal matrix. The trace property

follows easily (neglecting curvature terms):

trace(Ce) = trace(E>CēE) = trace(Cē) ≥ trace(F̄−1
ē ) = trace((PeFePe)

†).
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The trace property is especially interesting, as it bounds the variance of
the estimator θ̂, expressed w.r.t. the Riemannian distance dist on P̄:

trace(Ce) = trace(Cē) = E
{
‖Logθ(θ̂)‖2

}
= E

{
dist2(θ, θ̂)

}
.

Here is one way of interpreting the bound (7.4). Expand the random error

vector Logθ(θ̂) =
∑
i xiei with random coefficients xi. From the definition,

(Ce)ii = E
{
x2
i

}
. Then, equation (7.4) implies E

{
x2
i

}
≥ (PeFePe)

†
ii, which

limits how well the ith coordinate can be estimated. For example, when P̄
is Euclidean, Logθ(θ̂) = θ̂ − θ and E

{
x2
i

}
= E

{
(θ̂i − θi)2

}
.

Notice that it is not necessary to explicitly construct a basis ē in order
to use Theorem 7.2. Indeed, the orthogonal projector Pe is often easy to
compute without requiring an explicit factorization as E>E. For example,
the orthogonal projector from R3 onto the tangent space to the sphere S2

at θ, denoted TθS2, w.r.t. the canonical basis of R3 is simply Pe = I3− θθ>,
where I3 is the 3×3 identity matrix. This is fortunate since, because of the
hairy ball theorem, it is impossible to define bases ē of TθS2 for all θ in a
smooth way, making it rather inconvenient to work with such bases.

7.2 Riemannian quotient manifolds

Whenever two parameters θ, θ′ ∈ P give rise to the same measurement
distribution, they are indistinguishable, in the sense that no argument based
on the observed measurement can be used to favor one parameter over the
other as estimator. This observation motivates the definition of the following
equivalence relation (remember the definitions of the parameterized pdf of
the measurements f (6.1) and of the log-likelihood function L (6.2)):

θ ∼ θ′ ⇔ f(·, θ) ≡ f(·, θ′) almost everywhere on M. (7.5)

The quotient space P̄ = P/∼—that is, the set of equivalence classes—
then becomes the natural parameter space on which the estimation should
be performed. Figures 7.2 and 7.3, courtesy of Xavier & Barroso (2004),
depict the concept of quotient manifold and of the related basic objects
we introduce hereafter, namely submersions and horizontal/vertical spaces.
See also sections 2.2.2, 2.3.2 and 2.4.2.

We now consider the mapping π from P to P̄, which maps each param-
eter θ to its equivalence class [θ],

π : P → P̄ : θ 7→ π(θ) = [θ] , {θ′ ∈ P : θ′ ∼ θ},

and concentrate on the case where π is a Riemannian submersion, see Absil
et al. (2008); O’Neill (1983) or Section 2.3.2. That is, P̄ is a Riemannian
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Figure 7.2: The parameter space P is partitioned into equivalence classes,
called fibers. The Riemannian submersion π maps each θ ∈ P to its cor-
responding equivalence class [θ] ∈ P̄. The space of equivalence classes is
the quotient space P̄ = P/∼, also a Riemannian manifold. Figure courtesy
of Xavier & Barroso (2004).

quotient manifold of P. In particular, [θ] is a Riemannian submanifold
of P (a fiber). The log-likelihood function L̄ : P̄ → R is well-defined by
L̄([θ]) , L(θ).

The tangent space to [θ] at θ, named the vertical space Vθ, is a sub-
space of the tangent space TθP. The orthogonal complement of the vertical
space, named the horizontal space Hθ, is such that TθP = Hθ ⊕ Vθ. The
pushforward Dπ(θ) : TθP → T[θ]P̄ of a Riemannian submersion induces a
metric on the abstract tangent space T[θ]P̄:

∀u, v ∈ Hθ, 〈Dπ(θ)[u],Dπ(θ)[v]〉[θ] , 〈u, v〉θ .

The definition of Riemannian submersion ensures that this is well-defined,
see (Absil et al., 2008). We mention two key properties, with ker denoting
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Figure 7.3: Each fiber π(θ) = [θ] is a Riemannian submanifold of P. The
tangent space to a fiber at θ is the vertical space Vθ. The orthogonal
complement of Vθ in TθP is the horizontal space Hθ. The differential of
π, noted Dπ(θ), is an isometry between Hθ and the abstract tangent space
T[θ]P̄. This makes it convenient to represent abstract tangent vectors to P̄
as horizontal vectors. Figure courtesy of Xavier & Barroso (2004).

the kernel or null space:

ker Dπ(θ) = Vθ, and

Dπ(θ)|Hθ : Hθ → T[θ]P̄ is an isometry.

Let [θ̂] : M → P̄ be any unbiased estimator for the present problem.

Define the covariance matrix of [θ̂] w.r.t. the basis e following Definition 6.6
as:

(Ce)ij = E
{
〈ξ, ei〉θ · 〈ξ, ej〉θ

}
, with

ξ = (Dπ(θ)|Hθ )−1[Log[θ]([θ̂])]. (7.6)

The error vector ξ is the shortest horizontal vector at θ such that Expθ(ξ) ∈
[θ̂]. The exponential map is the inverse of the logarithmic map, see Sec-
tion 2.6. On a Euclidean space, Expθ(ξ) = θ + ξ.
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Let ē = (ē1, . . . , ēd̄) be an orthonormal basis of T[θ]P̄. A direct ap-
plication of Theorem 6.4 to the estimation problem on P̄ would link the
covariance matrix Cē of [θ̂] and the inverse FIM F̄−1

ē w.r.t. the basis ē.
More precisely,

(Cē)ij = E
{〈

Log[θ]([θ̂]), ēi

〉
[θ]
·
〈

Log[θ]([θ̂]), ēj

〉
[θ]

}
,

(F̄ē)ij = E
{

DL̄([θ])[ēi] ·DL̄([θ])[ēj ]
}
,

Cē � F̄−1
ē + curvature terms. (7.7)

Since T[θ]P̄ is an abstract space, we argue that it is often convenient to
work with the more concrete objects Ce and Fe instead.

Theorem 7.3 (CRB on quotient manifolds). Given any unbiased estimator

[θ̂] for the estimation problem on the Riemannian quotient manifold P̄ =
P/∼ (7.5) with log-likelihood L (6.2), at large SNR, the d × d covariance
matrix Ce (7.6) and the d× d Fisher information matrix Fe (7.1) obey the
matrix inequality (assuming rank(Fe) = d̄):

Ce � F †e + curvature terms,

where † denotes Moore-Penrose pseudoinversion. Furthermore, the spec-
trum of F †e is the spectrum of F̄−1

ē with d−d̄ additional zeroes. In particular,
neglecting curvature terms:

trace(Ce) = trace(Cē) ≥ trace(F̄−1
ē ) = trace(F †e ).

Proof. It is convenient to introduce the orthonormal basis of Hθ related to
ē as ẽ = (ẽ1, . . . , ẽd̄), with ēi = Dπ(θ)[ẽi]. The d̄ × d matrix E such that
Eij = 〈ẽi, ej〉θ will prove useful. E is orthonormal: EE> = Id̄, but in
general, E>E 6= Id.

Let us denote the orthogonal projection of u ∈ TθP onto the horizon-
tal space Hθ as Projhθu. Since ξ (7.6) is a horizontal vector, 〈ξ, u〉θ =〈
ξ,Projhθu

〉
. Furthermore, Dπ(θ)[Projhθu] = Dπ(θ)[u]. Then, using the fact

that Dπ(θ)|Hθ is an isometry, it follows that

(Ce)ij = E
{
〈ξ, ei〉θ · 〈ξ, ej〉θ

}
= E

{〈
ξ,Projhθei

〉
θ
·
〈
ξ,Projhθej

〉
θ

}
= E

{〈
Log[θ]([θ̂]),Dπ(θ)[ei]

〉
[θ]
·
〈

Log[θ]([θ̂]),Dπ(θ)[ej ]
〉

[θ]

}
.

The vector Dπ(θ)[ei] ∈ T[θ]P̄ expands in the basis ē as Dπ(θ)[ei] =
∑
j Ejiēj .

Indeed,

〈Dπ(θ)[ei], ēj〉[θ] = 〈Dπ(θ)[ei],Dπ(θ)[ẽj ]〉[θ] = 〈ei, ẽj〉θ .
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It follows that (Ce)ij =
∑
k,`EkiE`j (Cē)k`. In matrix form:

Ce = E>CēE.

Since EE>= Id̄, it also holds that Cē = ECeE
>.

We now similarly link Fe and F̄ē. In doing so, we exploit the fact that
the gradient gradL(θ) is a horizontal vector. This stems from the fact that
the log-likelihood function L is constant over fibers (equivalence classes).

(Fe)ij = E {DL(θ)[ei] ·DL(θ)[ej ]}
= E

{
〈gradL(θ), ei〉θ · 〈gradL(θ), ej〉θ

}
= E

{〈
gradL(θ),Projhθei

〉
θ
·
〈

gradL(θ),Projhθej

〉
θ

}
(expand Projhθei and Projhθej in the basis ẽ)

=
∑
k,`

EkiE`j E {〈gradL(θ), ẽk〉θ · 〈gradL(θ), ẽ`〉θ}

=
∑
k,`

EkiE`j E
{
〈Dπ(θ)[gradL(θ)], ēk〉[θ] · 〈Dπ(θ)[gradL(θ)], ē`〉[θ]

}
=
∑
k,`

EkiE`j E
{〈

grad L̄([θ]), ēk
〉

[θ]
·
〈
grad L̄([θ]), ē`

〉
[θ]

}
=
∑
k,`

EkiE`j E
{

DL̄([θ])[ēk] ·DL̄([θ])[ē`]
}

=
∑
k,`

EkiE`j (F̄ē)k`.

In matrix form,

Fe = E>F̄ēE.

Notice that the assumption rank(Fe) = d̄ is equivalent to the assumption
that F̄ē is invertible. The latter equation thus highlights that kerFe = kerE,
which makes sense since kerE is the vertical space Vθ (more precisely, it is
the space of coordinate vectors of vertical vectors w.r.t. the basis e). Again,
by orthonormality of E, it also holds that F̄ē = EFeE

>. Combining these
rules, it follows that:

Fe = E>EFeE
>E.

Applying Lemma 7.1 to the inequality (7.7) and using arguments similar to
the proof of Theorem 7.2 finally yields:

Ce � F †e + curvature terms,
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since

E>(EFeE
>)−1E = (E>EFeE

>E)† = F †e .

The spectrum and trace properties follow directly, see proof of Theorem 7.2.

Again, there is no need to construct bases ẽ or ē in order to use Theo-
rem 7.3. Notice that it still holds that trace(Ce) = trace(Cē) = E

{
‖ξ‖2θ

}
=

E
{

dist2([θ], [θ̂])
}

, where dist is the Riemannian distance on P̄, since the

map Dπ(θ)|Hθ is an isometry.

7.3 Including curvature terms

The intrinsic CRB’s developed in Chapter 6 include special terms account-
ing for the possible curvature of the parameter space P̄. The curvature
terms vanish if P̄ is flat, that is, if it is locally isometric to a Euclidean
space. In such cases, theorems 7.2 and 7.3 suffice. When P̄ is not flat, the
curvature terms may nevertheless often be neglected for high enough SNR.
The argument developed in the previous chapter to that end concludes that
neglecting the curvature terms is legitimate as soon as estimation errors
obey

dist(θ, θ̂)� 1√
Kmax

, (7.8)

where Kmax is an upper bound on the absolute value of the sectional cur-
vatures of P̄ at θ. Intuitively, this is the scale at which curvature plays a
minor role.

Condition (7.8) involves an upper bound on the sectional curvature of P̄.
As a consequence, it may be overly restrictive for parameter spaces which
have small curvature in most directions, and large curvature in a few. An
important class of such spaces consists in all product manifolds.

As an example, let us consider the problem of estimating (θ1, . . . , θN ) ∈
P̄ = S2 × · · · × S2, the product of N spheres. P̄ has unit curvature along
tangent 2-planes (two-dimensional subspaces of the tangent spaces of P̄)
pertaining to a single sphere, but zero curvature along all 2-planes spanning
exactly two distinct spheres. Of course, Kmax = 1. If estimating θi and
θj , i 6= j, are two independent but identical tasks, one should expect the

distribution of dist(θi, θ̂i) to be independent of i. Consequently, dist(θ, θ̂)
grows as

√
N , whereas Kmax remains constant. Hence, condition (7.8) be-

comes increasingly restrictive with growing N . Of course, since the N tasks
are independent and can be considered separately, the negligibility of the
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curvature terms should not depend on N , which brings the conclusion that
simply describing the curvature of P̄ through Kmax may not be enough.

For such parameter spaces, it is necessary to explicitly compute the cur-
vature terms in the intrinsic Cramér-Rao bounds, if only to show that they
are indeed negligible at reasonable SNR. We now set out to give versions of
theorems 7.2 and 7.3 including curvature terms, computable without con-
structing other bases than e, the basis of TθP. This will require the Rie-
mannian curvature tensor of P̄. Useful references to look up/compute this
tensor are (O’Neill, 1983, Lemma 3.39, Cor. 3.58, Thm 7.47, Cor. 11.10)(Lee,
1997)(Chavel, 1993).

7.3.1 Curvature terms for submanifolds

The random error vector Xθ , Logθ(θ̂) expands in the basis ē as Xθ =∑
i x̄iēi, with x̄1, . . . , x̄d̄ random variables. Notice that

(Cē)ij = E
{
〈Xθ, ēi〉θ 〈Xθ, ēj〉θ

}
= E {x̄ix̄j} .

Let R̄ be the Riemannian curvature tensor of P̄ (See Section 2.8 for a
brief introduction to curvature). The mapping (u, v, w, z) ∈ (TθP̄)4 7→
〈R̄(u, v)w, z〉θ is linear in its four arguments. Smith introduces the sym-
metric 2-form R̄m : TθP̄ × TθP̄ → R defined by (Smith, 2005, eq. (34)):

R̄m[ēi, ēj ] = E
{〈
R̄(Xθ, ēi)ēj , Xθ

〉
θ

}
= E

∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
θ
x̄kx̄`


=
∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
θ

(Cē)k`.

From the latter expression, it is apparent that the entries of the matrix
associated to R̄m are linear combinations of the entries of Cē. Generalizing
this to any symmetric matrix, the following linear map is defined, as for (6.6)
in the previous chapter:

R̄m : Rd̄×d̄ → Rd̄×d̄ : M 7→ R̄m(M), with

(R̄m(M))ij =
∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
θ
Mk`.

At large SNR, the CRB with curvature terms is given by Theorem 6.4:

Cē � F̄−1
ē − 1

3

(
R̄m(F̄−1

ē )F̄−1
ē + F̄−1

ē R̄m(F̄−1
ē )

)
. (7.9)
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In order to provide an equivalent of (7.9) only referencing the basis e,
we introduce the following symmetric 2-form on TθP × TθP:

Rm[ei, ej ] , R̄m[Projθei,Projθej ].

Notice that, since Xθ ∈ TθP̄, we have Xθ = ProjθXθ. Expanding in the
basis e, Xθ =

∑
i xiei =

∑
i xiProjθei with random variables x1, . . . , xd and

(Ce)ij = E {xixj}. It follows that:

Rm[ei, ej ] = E
{〈
R̄(Xθ,Projθei)Projθej , Xθ

〉
θ

}
=
∑
k,`

〈
R̄(Projθek,Projθei)Projθej ,Projθe`

〉
θ

(Ce)k`.

From there, we introduce the following linear map:

Rm : Rd×d → Rd×d : M 7→ Rm(M), with

(Rm(M))ij =
∑
k,`

〈
R̄(Projθek,Projθei)Projθej ,Projθe`

〉
θ
Mk`. (7.10)

Riemannian curvature is often specified by a formula for
〈
R̄(u, v)v, u

〉
.

Hence, the standard polarization identity for symmetric bilinear forms may
be useful to compute Rm:

4Rm[ei, ej ] = Rm[ei + ej , ei + ej ]−Rm[ei − ej , ei − ej ].

The linear maps Rm and R̄m appear in the following theorem.

Theorem 7.4 (CRB on submanifolds, with curvature). (Continued from
Theorem 7.2). Including terms due to the possible curvature of P̄, at large

SNR, the covariance matrix Ce (7.2) of any unbiased estimator θ̂ : M→ P̄
and the Fisher information matrix Fe (7.1) w.r.t. the orthonormal basis e
of TθP obey the following matrix inequality (assuming rank(PeFePe) = d̄):

Ce � F̃ †e −
1

3

(
Rm(F̃ †e )F̃ †e + F̃ †eRm(F̃ †e )

)
,

where F̃e = PeFePe and Rm : Rd×d → Rd×d is as defined by (7.10).

Proof. We start from the CRB w.r.t. the basis ē (7.9):

Cē � F̄−1
ē − 1

3

(
R̄m(F̄−1

ē )F̄−1
ē + F̄−1

ē R̄m(F̄−1
ē )

)
.

By expanding the projections Projθei =
∑
j 〈ēj , ei〉 ēj =

∑
j Ejiēj and ex-

ploiting the linearity of
〈
R̄(u, v)w, z

〉
θ

in its four arguments, the matrix
relation below comes forth:

∀M = M>∈ Rd×d, Rm(M) = E>R̄m(EME>)E. (7.11)
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From the proof of Theorem 7.2, recall that Cē = ECeE
> and

F̄−1
ē = E(PeFePe)

†E>.

The relation (7.11) yields R̄m(F̄−1
ē ) = ERm((PeFePe)

†)E>. Substituting in
the CRB gives:

ECeE
>� E

(
F̃ †e −

1

3

(
Rm(F̃ †e )F̃ †e + F̃ †eRm(F̃ †e )

))
E>,

where we used the fact that Rm(M)Pe = PeRm(M) = Rm(M), which is
easily established from (7.11). Lemma 7.1 applies and concludes the proof,
since Pe(PeFePe)

†Pe = (PeFePe)
†.

7.3.2 Curvature terms for quotient manifolds

We follow the same line of thought as for submanifolds. The random error
vector X[θ] , Log[θ]([θ̂]) expands in the basis ē as X[θ] =

∑
i x̄iēi, with

x̄1, . . . , x̄d̄ random variables and (Cē)ij = E {x̄ix̄j}. Let R̄ be the Riemann-
ian curvature tensor of P̄. We consider R̄m : T[θ]P̄ × T[θ]P̄ → R defined
by:

R̄m[ēi, ēj ] = E
{〈
R̄(X[θ], ēi)ēj , X[θ]

〉
[θ]

}
=
∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
[θ]

(Cē)k`.

A linear map on d̄× d̄ symmetric matrices follows, in agreement with (6.6):

R̄m : Rd̄×d̄ → Rd̄×d̄ : M 7→ R̄m(M), with

(R̄m(M))ij =
∑
k,`

〈
R̄(ēk, ēi)ēj , ē`

〉
[θ]
Mk`. (7.12)

Again, at large SNR, the CRB (7.9) holds. To express it only referencing
the basis e, we introduce the following symmetric 2-form:

Rm[ei, ej ] , R̄m [Dπ(θ)[ei],Dπ(θ)[ej ]] .

Let ξ = (Dπ(θ)|Hθ )−1[X[θ]] be the unique horizontal vector at θ such that
Dπ(θ)[ξ] = X[θ] (the lift of the error vector). Expanding ξ in the basis
e as ξ =

∑
i xiei, we find X[θ] =

∑
i xiDπ(θ)[ei] with random variables

x1, . . . , xd and (Ce)ij = E {xixj}. It follows that:

Rm[ei, ej ] =
∑
k,`

〈
R̄(Dπ(θ)[ek],Dπ(θ)[ei]) Dπ(θ)[ej ],Dπ(θ)[e`]

〉
[θ]

(Ce)k`.
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From there, we introduce the following linear map from and to symmetric
matrices:

Rm : Rd×d → Rd×d : M 7→ Rm(M), with (7.13)

(Rm(M))ij =
∑
k,`

〈
R̄(Dπ(θ)[ek],Dπ(θ)[ei])Dπ(θ)[ej ],Dπ(θ)[e`]

〉
[θ]
Mk`.

Theorem 7.5 (CRB on quotient manifolds, with curvature). (Continued
from Theorem 7.3). Including terms due to the possible curvature of P̄,
at large SNR, the covariance matrix Ce (7.6) of any unbiased estimator

θ̂ : M → P̄ and the Fisher information matrix Fe (7.1) w.r.t. the or-
thonormal basis e of TθP obey the following matrix inequality (assuming
rank(Fe) = d̄):

Ce � F †e −
1

3

(
Rm(F †e )F †e + F †eRm(F †e )

)
,

where Rm : Rd×d → Rd×d is as defined by (7.13).

Proof. The proof is very similar to that of Theorem 7.4. We start from the
CRB w.r.t. the basis ē (7.9). Expanding

Dπ(θ)[ei] = Dπ(θ)[Projhθei] =
∑
j

〈ẽj , ei〉Dπ(θ)[ẽj ] =
∑
j

Ejiēj

and exploiting linearity of 〈R̄(·, ·)·, ·〉[θ] in its four arguments, relation (7.11)
is established for the operators R̄m (7.12) and Rm (7.13) too. From the
proof of Theorem 7.3, recall that Cē = ECeE

> and F̄−1
ē = EF †eE

>. The
relation (7.11) yields R̄m(F̄−1

ē ) = ERm(F †e )E>. Substituting in the CRB
gives:

ECeE
>� E

(
F †e −

1

3

(
Rm(F †e )F †e + F †eRm(F †e )

))
E>,

where we used the fact that Rm(M)Pe = PeRm(M) = Rm(M), which is
easily established from (7.11). Lemma 7.1 applies and concludes the proof,
since PeF

†
ePe = F †e .

7.4 Example

We take a look at an example of the family of synchronization problems.
In such problems, one considers a group G and a set of N group elements
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g1, . . . , gN ∈ G. The gi’s are to be estimated based on noisy measurements
of group element ratios gig

−1
j . When G has a manifold structure, that

is, when it is a Lie group, synchronization falls within the spectrum of
estimation on manifolds. We investigate synchronization on the group of
translations Rn, which makes for a simple geometry and helps fix ideas.
The next chapter is devoted to synchronization on SO(n), the group of
rotations in Rn. Synchronization problems illustrate how both theorems for
submanifolds and quotient manifolds can apply to the same setting, with
rich interpretation.

Let θ = (θ1, . . . , θN ) be a vector of N unknown but deterministic points
in Rn. Those can be thought of as positions, states, opinions, etc. of N
agents. Let us consider an undirected graph on N nodes with edge set
E , such that for each edge {i, j} ∈ E we have a noisy measurement of
the relative state hij = θj − θi + nij , where the nij ∼ N (0,Σ) are i.i.d.
normally distributed noise vectors. By symmetry, hij = −hji, so nij =
−nji. While it is important to assume independence of noise on distinct
edges to keep the derivation simple, it is easy to relax the assumption that
they have identical distributions. We assume identical distributions to keep
the exposition simple.

The task is to estimate the θi’s from the hij ’s, thus P = (Rn)N , and we
set out to derive CRB’s for this problem. An alternative way of obtaining
this result can be found in (Howard et al., 2010). Decentralized algorithms
to execute this synchronization can be found there and in (Russell et al.,
2011).

The log-likelihood function L : P → R reads, with θ̂ = (θ̂1, . . . , θ̂N ) and
dropping additive constants:

L(θ̂) =
1

2

N∑
i=1

∑
i∼j
−1

2
(hij − θ̂j + θ̂i)

>Σ−1(hij − θ̂j + θ̂i).

The inner summation is over the neighbors j of node i. The coefficient 1/2
accounts for the fact that the two sums cover each edge twice.

In order to compute the FIM for this problem, we need to pick an or-
thonormal basis of TθP ≡ P. We choose the basis such that the first n
vectors correspond to the canonical basis for the first copy of Rn in P, the
next n vectors correspond to the canonical basis for the second copy of Rn
in P, etc., totaling nN orthonormal basis vectors. The gradient of L(θ̂)

w.r.t. θ̂i in this basis is the following vector in Rn:

gradiL(θ̂) =
∑
i∼j

Σ−1(hij − θ̂j + θ̂i).

Hence, gradiL(θ) =
∑
j∈Vi Σ−1nij . The FIM F (7.1) is formed of N × N
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blocks of size n× n. Due to independence of the nij ’s and nij = −nji,

E
{

(Σ−1nij)(Σ
−1nk`)

>} = Σ−1E
{
nijn

>
k

}̀
Σ−1 =


Σ−1 if (i, j) = (k, `),

−Σ−1 if (i, j) = (`, k),

0 otherwise.

Hence, the (i, j)th block of F is given by (with di the degree of node i):

Fij = E
{

gradiL(θ) · gradjL(θ)>
}

=


diΣ
−1 if i = j,

−Σ−1 if i ∼ j,
0 otherwise.

The structure of the graph Laplacian is apparent. Let D = diag(d1, . . . , dN )
be the degree matrix and let A be the adjacency matrix of the measurement
graph. The Laplacian L = D −A is tied to the FIM via:

F = L ⊗ Σ−1,

where ⊗ denotes the Kronecker product.
Of course, since we only have relative measurements, we can only hope to

recover the θi’s up to a global translation. And indeed, for every translation
vector t ∈ Rn, we have L(θ̂) = L(θ̂ + t), where θ̂ + t , (θ̂1 + t, . . . , θ̂N + t).

That is, all θ̂+ t induce the same distribution of the measurements hij , and
are thus indistinguishable. This is the root of the rank deficiency of the
FIM. Surely, if the graph is connected, the all-ones vector 1N forms a basis
of kerL. Consequently, kerF consists of all vectors of the form 1N ⊗ t, with
arbitrary t ∈ Rn. Naturally, these correspond to global translations by t.

To resolve this ambiguity, we can either add constraints, most naturally
in the form of anchors, or work on the quotient space.

With anchors Let us consider A ⊂ {1, . . . , N}, A 6= ∅, such that all θi
with i ∈ A are known; these are anchors. The resulting parameter space
P̄ = {θ̂ ∈ P : θ̂i = θi ∀i ∈ A} is a Riemannian submanifold of P. The
orthogonal projector from TθP to TθP̄ simply sets all components of a
tangent vector corresponding to anchored nodes to zero. Formally, P =
IA⊗ In, where IA is a diagonal matrix of size N whose ith diagonal entry is
1 if i /∈ A and 0 otherwise. It follows that PFP = IALIA⊗Σ−1 = LA⊗Σ−1,
with the obvious definition for LA: the Laplacian with rows and columns
corresponding to anchored nodes forced to zero. P̄ is Euclidean, hence it
is flat and its curvature tensor vanishes identically. Theorem 7.2 yields the
anchored CRB for the covariance matrix C of an unbiased estimator on P̄:

E
{

(θ̂ − θ)(θ̂ − θ)>
}
, C � L†A ⊗ Σ. (7.14)
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We used the commutativity of the Kronecker product and pseudoinver-
sion (Bernstein, 2009, Fact 7.4.32). This bound is easily interpreted in terms
of individual nodes. Indeed, by definition, inequality (7.14) means that for

all x ∈ RnN , x>Cx ≥ x>(L†A ⊗ Σ)x. In particular, setting x = ei ⊗ ek with
ei the ith canonical basis vector of RN and ek the kth canonical basis vector
of Rn, we have:

E
{

(θ̂i − θi)2
k

}
≥ (L†A)ii · Σkk.

Summing over k = 1 . . . n, this translates into a lower bound on the variance
for estimating the state of node i:

E
{
‖θ̂i − θi‖2

}
≥ (L†A)ii · trace(Σ).

This puts forward the importance of the diagonal of L†A, which captures
the topology of the measurement graph and the anchor placement. Taking
traces on both sides of (7.14), we obtain an inequality for the total variance:

E
{

dist2(θ̂,θ)
}

= E
{∑
i/∈A

‖θ̂i − θi‖2
}
≥ trace(L†A)trace(Σ).

Notice that it would have been simple to pick a new basis for TθP̄, but this
would have required a renumbering of the rows and columns of the matrices
appearing in the CRB. If the ambiguities are fixed not by adding anchors
but, more generally, by adding one or more (for example) linear constraints
of the form a1θ1 + · · · + aNθN = b, it becomes less obvious how to pick a
meaningful basis for TθP̄ without breaking symmetry. In comparison, the
projection method used here will apply gracefully, preserving symmetry and
row/column ordering in the CRB matrices.

Without anchors If there are no anchors, perhaps because there is no
meaningful reference to begin with, we work on the quotient space P̄ = P/∼,
where θ ∼ θ′ iff there exists a translation vector t ∈ Rn such that θ = θ′+t.
The distance between the equivalence classes [θ] and [θ′] on P̄ is the distance
between their best aligned members, that is:

dist2([θ], [θ′]) = min
t∈Rn

N∑
i=1

‖θi + t− θ′i‖2.

The optimal t is easily seen to be t = 1
N

∑N
i=1 θ

′
i − θi, which amounts to

aligning the centers of mass of θ and θ′. Consequently, if we denote by θc
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the centered version of θ—i.e., θ translated such that its center of mass is
at the origin—we find that:

dist2([θ], [θ′]) = dist2(θc,θ
′
c) =

N∑
i=1

‖θc,i − θ′c,i‖2.

From the first equality, it follows that the mapping [θ] 7→ θc is an isometry
between P̄ and a Euclidean space. We thus conclude that P̄ is a flat mani-
fold and that its curvature tensor vanishes identically (Lee, 1997, Chap. 7).
Theorem 7.3 and the fact that Kronecker product and pseudoinversion com-
mute (Bernstein, 2009, Fact 7.4.32) then yield:

E
{

(θ̂c − θc)(θ̂c − θc)>
}
, C � L† ⊗ Σ, and (7.15)

E
{ N∑
i=1

‖θ̂c,i − θc,i‖2
}
≥ trace(L†)trace(Σ).

We now interpret the CRB (7.15). Because of the ambiguity in the anchor-
free scenario, it does not make much sense to ask what the variance for
estimating a specific state is going to be. Rather, one should establish
bounds for the variance on estimating the relative state between two nodes,
i and j. Let x = (ei − ej) ⊗ ek with ei, ej the ith and jth canonical basis
vectors of RN and ek the kth canonical basis vector of Rn. Notice that x is
a horizontal vector (its components sum to zero). Applying x> · x on both
sides of (7.15) yields:

E
{(

(θ̂i − θ̂j)− (θi − θj)
)2
k

}
≥ (ei − ej)>L†(ei − ej) · Σkk.

Notice that there is no need to center θ̂ nor θ anymore, since the quantities
involved are relative states. Summing over k = 1 . . . n gives a lower bound
on the variance for estimating the relative state between node i and node j:

E
{∥∥(θ̂i − θ̂j)− (θi − θj)

∥∥2
}
≥ (ei − ej)>L†(ei − ej) · trace(Σ).

A nice interpretation is now possible. Indeed, the quantity (ei−ej)>L†(ei−
ej) is well-known to correspond to the squared Euclidean commute time
distance (ECTD) between nodes i and j (Saerens et al., 2004). It is small
if many short paths connect the two nodes and if those paths have edges
with large weights which, in our case, means measurements of high quality.
Furthermore, Saerens et al. (2004) show how one can produce an embedding
of the nodes in, say, the plane such that two nodes are close-by if the ECTD
separating them is small. This is done via a projection akin to PCA and is
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an interesting visualization tool as it leads to a plot of the graph such that
easily synchronizable nodes are clustered together. See also Section 8.7.2.

Notice that the bound without anchors has a very different interpretation
than that of the bound one would obtain by artificially fixing an arbitrary
node. Notice also that, since we did not need to switch to a different basis
to obtain the bounds, regardless of which anchors we did or did not choose,
it is always the same rows and columns of the matrices in the CRB’s that
refer to a specific node, which is rather convenient.

The maximum likelihood estimator in the absence of anchors is easily
obtained as the minimum-norm solution to the problem maxL(θ̂) (which is
concave, quadratic). This estimator is centered and we state without proof
that it is efficient, i.e., its covariance is exactly L†⊗Σ. In the anchored case,
the maximum likelihood estimator is conveniently obtained via quadratic
programming.

For the sake of simplicity, we considered a connected graph. In general,
the graph might be disconnected, and there would then be more ambiguity.
It is obvious that, in general, there is an Rn ambiguity for each connected
component that does not include an anchor. The CRB’s presented here can
easily be derived to take care of this more general situation: one simply
needs to redefine the equivalence relation ∼ accordingly. This in turn leads
to a new quotient space with an appropriate notion of distance and covari-
ance. The theorems established in this paper apply seamlessly to this more
general scenario.

7.5 Conclusions

We proposed four theorems that are meant to ease the use of the intrin-
sic CRB’s developed in the previous chapter when the actual parameter
space is a Riemannian submanifold or a Riemannian quotient manifold of a
(usually more natural) parent space. We showed on a simple example how
these theorems provide meaningful bounds for estimation problems with in-
determinacies, whether these are dealt with by including prior knowledge
in the form of constraints or by acknowledging the quotient nature of the
parameter space. We also observed on these same examples that fixing in-
determinacies by adding constraints results in different CRB’s than if the
quotient nature is acknowledged. In the next chapter, we derive CRB’s for
synchronization of rotations. The non-commutativity of rotations and the
curvature of the space of rotations calls for a more delicate analysis. The
CRB’s will again be structured by the Laplacian of the measurement graph,
calling for rich interpretations.
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Chapter 8

Cramér-Rao bounds for
synchronization of
rotations

In this chapter, the intrinsic estimation theory tools developed so far are
applied to synchronization of rotations, which was addressed in Chapter 5.
Recall that this is the problem of estimating rotation matrices R1, . . . , RN
from noisy measurements of relative rotations RiR

>
j . Motivated by its per-

vasiveness in applications, we propose a derivation and analysis of Cramér-
Rao bounds for this estimation problem. Our results hold for rotations in
the special orthogonal group (5.1) for arbitrary n and for a large family
of practically useful noise models, of which the mixture of Langevin model
used in Chapter 5 is a particular case. We will see that the topology of the
measurement graph plays a key role in the CRB’s, via its Laplacian.

Previous work

As discussed in Section 5.3 about the eigenvector method, Singer (2011)
studies synchronization of phases, that is, rotations in the plane, and reflects
upon the generic nature of synchronization as the task of estimating group
elements g1, . . . , gN based on measurements of their ratios gig

−1
j . In that

work, the author focuses on synchronization in the presence of many outliers
and establishes that the eigenvector method is remarkably robust: for a
complete measurement graph, if a fraction p of the measurements are perfect
and the remaining measurements are random outliers, then it is sufficient to
have p > 1/

√
N to provide better-than-random estimators. Furthermore,

as p2N →∞, the estimation error goes to zero. In further work, Bandeira
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et al. (2013b) derive Cheeger-type inequalities for synchronization on the
orthogonal group under adversarial noise and generalize the eigenvector
method to rotations in Rn, as we leveraged in Section 5.4.1.

Wang & Singer (2013) propose the robust algorithm for synchronization
called LUD (for least unsquared deviation) which we described and com-
pared against in Section 5.5. It is based on a convex relaxation of an L1
formulation of the synchronization problem and comes with exact and stable
recovery guarantees under a large set of scenarios. In particular, the au-
thors show that for the same perfect-or-outlier scenario as in (Singer, 2011),

there exists a critical value p
(n)
critical (less than 50% for n = 2 or 3) such

that if the fraction of perfect measurements p exceeds p
(n)
critical, then LUD

achieves exact recovery of the rotations. This remarkable feat can be put in
perspective with the famous approximation results of the SDP relaxation of
max-cut (Goemans & Williamson, 1995) and, indeed, the LUD relaxation
bears some resemblance with the latter. The authors furthermore establish
that if the good measurements are affected by noise, then the recovery is
stable.

The analyses about both the eigenvector method and the LUD algo-
rithm provide statements about the performance of two specific algorithms
for synchronization. As such, they can be regarded as upper bounds on
the estimation error one is entitled to expect from competing estimation
algorithms. More fundamentally, they give insight into the complexity of
synchronization tasks.

In comparison, the present chapter focuses on providing lower bounds on
estimation error for synchronization or rotations. Such bounds constitute a
benchmark for estimation algorithms, but more importantly provide further
insight into the decisive features that make a synchronization task more or
less difficult to solve. In particular, because we allow for arbitrary (but
deterministic) measurement graph structures, our analysis sheds light on
the role of the topology of said graph. The original analyses in (Singer,
2011) and (Wang & Singer, 2013) are limited to complete or random Erdős-
Rényi graphs. Analyses by Bandeira et al. (2013b) and Demanet & Jugnon
(2013) provide bounds for the eigenvector method with fixed graphs too,
but under adversarial noise (worst-case analysis).

Barooah & Hespanha (2007) study the covariance of the BLUE estimator
for synchronization on the group of translations Rn, with anchors. This
covariance coincides with the CRB under Gaussian noise and involves the
Laplacian of the measurement graph as in Section 7.4. The authors give
interpretations of the covariance in terms of the resistance distance on the
measurement graph, similar to the interpretations in this chapter for the
anchored case.

Howard et al. (2010) study synchronization on the group of translations
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Rn and on the group of phases SO(2). They establish CRB’s for synchro-
nization in the presence of Gaussian-like noise on these groups and provide
decentralized algorithms to solve synchronization. Their derivation of the
CRB’s is limited to Gaussian-like noise and seems to rely heavily on the
commutativity (and thus flatness) of Rn and SO(2), and hence does not
apply to synchronization on SO(n) in general. The present chapter can be
considered a broad generalization of that work, using different tools.

Other authors have established CRB’s for the related sensor network
localization problem (SNL). Ash & Moses (2007) and Chang & Sahai (2006)
among others study SNL based on inter-agent distance measurements, and
notably give an interpretation of the CRB in the absence of anchors. A
remarkable fact is that, for all these problems of estimation on graphs,
the pseudoinverse of the graph Laplacian plays a fundamental role in the
CRB—although not all authors explicitly reflect on this. As we shall see,
this special structure is rich in interpretations, many of which exceed the
context of synchronization of rotations specifically.

Contributions and outline

In this chapter, we first restate the problem of synchronization of rotations
similarly to the presentation of Chapter 5, but with an emphasis on accom-
modating a large family of noise models rather then the specific mixture-
of-Langevin model—Section 8.1. This estimation problem is stated on a
manifold. In the presence of anchors, this manifold has a Riemannian sub-
manifold geometry which was described in Section 5.2. When no anchors are
known, the parameter space has a Riemannian quotient manifold geometry
which we describe in Section 8.2.

We then spend some time studying probability density functions (pdf)
on SO(n) and exploring the family of noise models concerned by our analysis
in Section 8.3. We show that this family is both useful for applications (it
essentially contains zero-mean, isotropic noise models) and practical to work
with (the expectations one is led to compute via integrals on SO(n) are easily
converted into classical integrals on Rn). In particular, this family includes
heavy-tailed distributions on SO(n) which can prove useful generically for
estimation problems on SO(n) with outliers.

In Section 8.4, we derive the Fisher information matrix (FIM) for syn-
chronization and establish that it is structured by the Laplacian of the
measurement graph, where edge weights are proportional to the quality of
their respective measurements. The FIM plays a central role in the CRB’s
we establish for anchored and anchor-free synchronization in Section 8.5.
The main tools used to that effect are intrinsic versions of the CRB’s, as
developed in Chapter 7. The CRB’s are structured by the pseudoinverse of
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the Laplacian of the measurement graph. We derive clear interpretations of
these bounds in terms of random walks, both with and without anchors.

As a main result for anchored synchronization, we show that for any
unbiased estimator R̂i of the rotation Ri, asymptotically for small errors,

E
{

dist2(Ri, R̂i)
}
≥ d2 (L†A)ii,

where dist(Ri, R̂i) = ‖ log(R>i R̂i)‖F is the geodesic distance on SO(n),
d = n(n − 1)/2, LA is the Laplacian of the weighted measurement graph
with rows and columns corresponding to anchors set to zero and † denotes
the Moore-Penrose pseudoinverse—see (8.30). The better a measurement
is, the larger the weight on the associated edge is—see (8.22). This bound
holds in a small-error regime under the assumption that noise on different
measurements is independent, that the measurements are isotropically dis-
tributed around the true relative rotations and that there is at least one
anchor in each connected component of the graph. The right-hand side of
this inequality is zero if node i is an anchor, and is small if node i is strongly
connected to anchors. More precisely, it is proportional to the ratio between
the average number of times a random walker starting at node i will be at
node i before hitting an anchored node and the total amount of information
available in measurements involving node i.

As a main result for anchor-free synchronization, we show that for any
unbiased estimator R̂iR̂

>
j of the relative rotation RiR

>
j , asymptotically for

small errors,

E
{

dist2(RiR
>
j , R̂iR̂

>
j )
}
≥ d2 (ei − ej)>L†(ei − ej),

where L is the Laplacian of the weighted measurement graph and ei is the
ith column of the N × N identity matrix—see (8.35). This bound holds
in a small-error regime under the assumption that noise on different mea-
surements is independent, that the measurements are isotropically distrib-
uted around the true relative rotations and that the measurement graph
is connected. The right-hand side of this inequality is proportional to the
squared Euclidean commute time distance (ECTD) (Saerens et al., 2004)
on the weighted graph. It measures how strongly nodes i and j are con-
nected. More explicitly, it is proportional to the average time a random
walker starting at node i walks before hitting node j and then node i again.

Section 8.7 hosts a few comments on the CRB’s. In particular, a PCA-
like visualization tool is detailed, a link with the Fiedler value of the graph is
described and the robustness of synchronization versus outliers is confirmed,
via arguments that differ from those in (Singer, 2011).
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8.1 A family of noise models

The target quantities (the parameters) are the rotation matrices R1, . . . , RN
in SO(n). The natural parameter space is thus:

P = SO(n)× · · · × SO(n) (N copies). (8.1)

For each edge {i, j} in the measurement graph (5.2), a measurement (5.3)

Hij = ZijRiR
>
j (8.2)

is available, where Zij is a random variable distributed over SO(n) following
a probability density function (pdf)

fij : SO(n)→ R+

with respect to the Haar measure µ on SO(n)—see Section 8.3. We say that
the measurement is unbiased, or that the noise has zero-mean, if Hij is an
unbiased estimator of RiR

>
j , that is, the expectation of log(Zij) is zero. We

also say that noise is isotropic if its probability density function is only a
function of distance to the identity. Different notions of distance on SO(n)
yield different notions of isotropy. In Section 8.3 we give a few examples of
useful zero-mean, isotropic distributions on SO(n).

By symmetry, define Hji = ZjiRjR
>
i = H>ij and the random variable

Zji and its density fji are defined accordingly in terms of fij and Zij . In
particular,

Zji = RjR
>
i Z
>
ijRiR

>
j , and fij(Zij) = fji(Zji).

The pdf’s fij and fji are linked as such because the Haar measure µ is
invariant under the change of variable relating Zij and Zji.

In this work, we restrict our attention to noise models that fulfill the
three following assumptions:

Assumption 8.1 (smoothness and support). Each pdf fij is a smooth,
positive function.

Assumption 8.2 (independence). The Zij’s associated to different edges
of the measurement graph are independent random variables. That is, if
{i, j} 6= {p, q}, then Zij and Zpq are independent.

Assumption 8.3 (invariance). Each pdf fij is invariant under orthogo-
nal conjugation, that is, ∀Z ∈ SO(n),∀Q ∈ O(n), fij(QZQ

>) = fij(Z).
We say fij is a spectral function, since it only depends on the eigenval-
ues of its argument. The eigenvalues of matrices in SO(2k) have the form
e±iθ1 , . . . , e±iθk , with 0 ≤ θ1, . . . , θk ≤ π. The eigenvalues of matrices in
SO(2k + 1) have an additional eigenvalue 1.
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Assumption 8.1 is satisfied for all the noise models we consider; it could
be relaxed to some extent but would make some of the proofs more techni-
cal. Assumption 8.2 is admittedly a strong restriction but is necessary to
make the joint pdf of the whole estimation problem easy to derive, leading
to an easy expression for the log-likelihood function. As we will see in Sec-
tion 8.4, it is also at the heart of the nice Laplacian structure of the Fisher
information matrix. Assumption 8.3 is a technical condition that will prove
useful in many respects. One of them is the observation that pdf’s which
obey Assumption 8.3 are easy to integrate over SO(n). We expand on this
in Section 8.3, where we also show that a large family of interesting pdf’s
satisfy these assumptions, namely, zero-mean isotropic distributions.

Under Assumption 8.2, the log-likelihood of an estimator R̂ ∈ P, given
the measurements Hij , is given by:

L(R̂) =
∑
i∼j

log fij(HijR̂jR̂
>
i ) =

1

2

N∑
i=1

∑
i∼j

log fij(HijR̂jR̂
>
i ), (8.3)

where the first i ∼ j summation is over all edges {i, j} and the second is over
the neighbors j of each node i. The coefficient 1/2 reflects the fact that in
the second form each measurement is counted twice. Under Assumption 8.1,
L is a smooth function on the smooth manifold P.

The log-likelihood function is invariant under a global rotation. Indeed,

∀R̂ ∈ P, ∀Q ∈ SO(n), L(R̂Q) = L(R̂),

where R̂Q denotes (R̂1Q, . . . , R̂NQ) ∈ P. This invariance encodes the fact

that all sets of rotations of the form R̂Q yield the same distribution of the
measurements Hij , and are hence equally likely estimators.

To resolve the ambiguity, one can follow at least two courses of ac-
tion. One is to include additional constraints, most naturally in the form
of anchors, i.e., assume some of the rotations are known.1 The other is to
acknowledge the invariance by working on the associated quotient space.
Following the first path, the parameter space becomes PA, a Riemannian
submanifold of P described in Section 5.2. Following the second path, the
parameter space becomes P∅, a Riemannian quotient manifold of P de-
scribed in the next section.

Remark 8.1 (A word about other noise models). We show that measure-
ments of the form Hij = Zij,1RiR

>
jZij,2, with Zij,1 and Zij,2 two ran-

dom rotations with pdf’s satisfying Assumptions 8.1 and 8.3, satisfy the

1If we only know that Ri is close to some matrix R̄, and not necessarily equal to it,
we may add a phony node RN+1 anchored at R̄, and link that node and Ri with a high
confidence measure Hi,N+1 = In. This makes it possible to have “soft anchors”.
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noise model considered in the present work. In doing so, we use some
material from Section 8.3. For notational convenience, let us consider
H = Z1RZ2, with Z1, Z2 two random rotations with pdf’s f1, f2 satisfy-
ing Assumptions 8.1 and 8.3, R ∈ SO(n) fixed. Then, the pdf of H is the
function h : SO(n)→ R+ given by (essentially) the convolution of f1 and f2

on SO(n):

h(H) =

∫
SO(n)

f1(Z)f2(R>Z>H) dµ(Z) =

∫
SO(n)

f1(Z)f2(Z>HR>) dµ(Z),

where we used that f2 is spectral: f2(R>Z>H) = f2(RR>Z>HR>). Let Zeq

be a random rotation with smooth pdf feq. We will shape feq such that the
random rotation ZeqR has the same distribution as H. This condition can
be written as follows: for all measurable subsets S ⊂ SO(n),∫

S

h(Z) dµ(Z) =

∫
SR>

feq(Z) dµ(Z) =

∫
S

feq(ZR>) dµ(Z),

where, going from the second to the third integral, we used the change
of variable Z := ZR> and the bi-invariance of the Haar measure µ. In
words: for all S, the probability that H belongs to S must be the same as
the probability that ZeqR belongs to S. This must hold for all S, hence
feq(ZeqR

>) = h(Zeq), or equivalently:

feq(Zeq) = h(ZeqR) =

∫
SO(n)

f1(Z)f2(Z>Zeq) dµ(Z).

This uniquely defines the pdf of Zeq. It remains to show that feq is a spectral
function. For all Q ∈ O(n),

feq(QZeqQ
>) =

∫
SO(n)

f1(Z)f2(Z>QZeqQ
>) dµ(Z)

(f2 is spectral) =

∫
SO(n)

f1(Z)f2(Q>Z>QZeq) dµ(Z)

(change of variable: Z := QZQ>) =

∫
SO(n)

f1(QZQ>)f2(Z>Zeq) dµ(Z)

(f1 is spectral) =

∫
SO(n)

f1(Z)f2(Z>Zeq) dµ(Z)

= feq(Zeq).

Hence, the noise model Hij = Zij,1RiR
>
jZij,2 can be replaced with the model

Hij = Zij,eqRiR
>
j and the pdf of Zij,eq is such that it falls within the scope

of the present work.
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In particular, if f1 is a point mass at the identity, so that H = RZ2

(noise multiplying the relative rotation on the right rather than on the left),
feq = f2, so that it does not matter whether we consider Hij = ZijRiR

>
j or

Hij = RiR
>
jZij: they have the same distribution.

8.2 Geometry of the parameter space,
without anchors

When no anchors are provided, the distribution of the measurements Hij

(8.2) is the same whether the true rotations are R or RQ, regardless of
Q ∈ SO(n). Consequently, the measurements contain no information as to
which of those sets of rotations is the right one. This leads to the definition
of the equivalence relation ∼ over P (8.1):

R ∼ R′ ⇔ ∃Q ∈ SO(n) : R = R′Q. (8.4)

This equivalence relation partitions P into equivalence classes, often called
fibers. The quotient space (the set of equivalence classes)

P∅ , P/ ∼ (8.5)

is again a smooth manifold (in fact, P∅ is a coset manifold because it results
from the quotient of the Lie group P by a closed subgroup of P (O’Neill,
1983, Prop. 11.12)). See Sections 2.2.2, 2.3.2 and 2.4.2 for background on
quotient manifolds, which we use now. The notation P∅ reminds us that
the set of anchors A is empty. Naturally, the log-likelihood function L (8.3)
is constant over equivalence classes and hence descends as a well-defined
function on P∅.

Each fiber

[R] = {RQ : Q ∈ SO(n)} ∈ P∅

is a Riemannian submanifold of the total space P. As such, at each point
R, the fiber [R] admits a tangent space that is a subspace of TRP. That
tangent space to the fiber is called the vertical space at R, noted VR.
Vertical vectors point along directions that are parallel to the fibers. Vectors
orthogonal, in the sense of the Riemannian metric (5.12), to all vertical
vectors form the horizontal space HR = (VR)⊥, such that the tangent space
TRP is equal to the direct sum VR⊕HR. Horizontal vectors are orthogonal
to the fibers, hence point toward the other fibers, i.e., the other points on
the quotient space P∅. See Figures 2.3 and 7.3 for an illustration.

Because P∅ is a coset manifold, the projection

π : P → P∅ : R 7→ π(R) = [R] (8.6)
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is a submersion. That is, the restricted differential Dπ|HR
is a full-rank lin-

ear map between HR and T[R]P∅. Practically, this means that the horizon-
tal space HR is naturally identified to the (abstract) tangent space T[R]P∅.
This results in a practical means of representing abstract vectors of T[R]P∅
simply as vectors of HR ⊂ TRP, where R is any arbitrarily chosen member
of [R]. Each horizontal vector ξR is unambiguously related to its abstract
counterpart ξ[R] in T[R]P∅ via

ξ[R] = Dπ(R)[ξR].

The representation ξR of ξ[R] is called the horizontal lift of ξ[R] at R.
Consider ξ[R] and η[R], two tangent vectors at [R]. Let ξR and ηR be

their horizontal lifts at R ∈ [R] and let ξR′ and ηR′ be their horizontal lifts
at R′ ∈ [R]. The Riemannian metric on P (5.12) is such that 〈ξR, ηR〉R =
〈ξR′ , ηR′〉R′ . This motivates the definition of the metric〈

ξ[R], η[R]

〉
[R]

= 〈ξR, ηR〉R

on P∅, which is then well defined (it does not depend on the choice of R
in [R]) and turns the restricted differential Dπ(R) : HR → T[R]P∅ into an
isometry. This is a Riemannian metric and it is the only such metric such
that π (8.6) is a Riemannian submersion from P to P∅ (Gallot et al., 2004,
Prop. 2.28). Hence, P∅ is a Riemannian quotient manifold of P.

We now describe the vertical and horizontal spaces of P w.r.t. the equiv-
alence relation (8.4). Let R ∈ P and Q : R → SO(n) : t 7→ Q(t) such that
Q is smooth and Q(0) = I. Then, the derivative Q′(0) = Ω is some skew-
symmetric matrix in so(n). Since RQ(t) ∈ [R] for all t, it follows that
d
dt RQ(t)|t=0 = RΩ is a tangent vector to the fiber [R] at R, i.e., it is a
vertical vector at R. All vertical vectors have such form, hence:

VR =
{
RΩ : Ω ∈ so(n)

}
.

A horizontal vector RΩ = (R1Ω1, . . . , RNΩN ) ∈ HR is orthogonal to all
vertical vectors, i.e., ∀Ω ∈ so(n),

0 = 〈RΩ,RΩ〉 =
〈 N∑
i=1

Ωi,Ω
〉
.

Since this is true for all skew-symmetric matrices Ω, we find that the hori-
zontal space is defined as:

HR =
{
RΩ : Ω1, . . . ,ΩN ∈ so(n) and

N∑
i=1

Ωi = 0
}
.
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This is not surprising: vertical vectors move all rotations in the same di-
rection, remaining in the same equivalence class, whereas horizontal vectors
move away toward other equivalence classes.

We now define the logarithmic map on P∅, see Definition 2.26. Consid-
ering two points [R], [R̂] ∈ P∅, the logarithm Log[R]([R̂]) is the smallest
tangent vector in T[R]P∅ that brings us from the first equivalence class to
the other through the exponential map. In other words: it is the error vector
of [R̂] in estimating [R]. Working with the horizontal lift representation

Dπ(R)|−1
HR

[Log[R]([R̂])] = (R1Ω1, . . . , RNΩN ) ∈ HR, (8.7)

the Ωi’s are skew-symmetric matrices solution of:

min
Ωi∈so(n),Q∈SO(n)

‖Ω1‖2F + · · ·+ ‖ΩN‖2F ,

such that Ri exp(Ωi) = R̂iQ, i = 1 . . . N, and

Ω1 + · · ·+ ΩN = 0.

The rotation Q sweeps through all members of the equivalence class [R̂] in
search of the one closest to R. By substituting Ωi = log(R>i R̂iQ) in the
objective function, we find that the objective value as a function of Q is∑

i=1...N

‖ log(R>i R̂iQ)‖2F.

Critical points of this function w.r.t. Q verify
∑N
i=1 Ωi = 0, hence we need

not enforce the last constraint: all candidate solutions are horizontal vectors.
Summing up, we find that the squared geodesic distance on P∅ obeys:

dist2([R], [R̂]) = min
Q∈SO(n)

N∑
i=1

‖log(R>i R̂iQ)‖2F. (8.8)

Since SO(n) is compact, this is a well-defined quantity. Let Q ∈ SO(n) be
one of the global minimizers. Then, an acceptable value for the logarithmic
map is

Dπ(R)|−1
HR

[Log[R]([R̂])] =
(
R1 log(R>1 R̂1Q), . . . , RN log(R>NR̂NQ)

)
.

Under reasonable proximity conditions on [R] and [R̂], the global maximizer
Q is uniquely defined, and hence so is the logarithmic map. An optimal Q is
a Karcher mean—or intrinsic mean or Riemannian center of mass—of the
rotation matrices R̂>1R1, . . . , R̂

>
NRN . Hartley et al. (2013), among others,

give a thorough overview of algorithms to compute such means as well as
uniqueness conditions.
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8.3 Measures, integrals and distributions on
SO(n)

To define a noise model for the synchronization measurements (8.2), we now
cover a notion of probability density function (pdf) over SO(n) and give a
few examples of useful pdf’s.

Being a compact Lie group, SO(n) admits a unique bi-invariant Haar
measure µ such that µ(SO(n)) = 1 (Boothby, 1986, Thm 3.6, p. 247). Such
a measure verifies, for all measurable subsets S ⊂ SO(n) and for all L,R ∈
SO(n), that µ(LSR) = µ(S), where LSR , {LQR : Q ∈ S} ⊂ SO(n).
That is, the measure of a portion of SO(n) is invariant under left and right
actions of SO(n). We will need something slightly more general.

Lemma 8.1 (extended bi-invariance). ∀L,R ∈ O(n) such that det(LR) =
1, ∀S ⊂ SO(n) measurable, µ(LSR) = µ(S) holds.

Proof. LSR is still a measurable subset of SO(n). Let µ′ denote the Haar
measure on O(n) ⊃ SO(n). The restriction of µ′ to the measurables of
SO(n) is still a Haar measure. By the uniqueness of the Haar measure up
to multiplicative constant, there exists α > 0 such that for all measurable
subsets T ⊂ SO(n), we have µ(T ) = αµ′(T ). Then, µ(LSR) = αµ′(LSR) =
αµ′(S) = µ(S).

For the notion of Lebesgue integral associated with µ, Lemma 8.1 trans-
lates into the following statement, with f : SO(n) → R an integrable func-
tion:

∀L,R ∈ O(n) s.t. det(LR) = 1,∫
SO(n)

f(LZR) dµ(Z) =

∫
SO(n)

f(Z) dµ(Z). (8.9)

This property will play an important role in the sequel.
A pdf on SO(n) is a nonnegative measurable function f on SO(n) such

that

µ(f) =

∫
SO(n)

f(Z) dµ(Z) = 1.

In this work, for convenience, we further assume pdf’s are smooth and posi-
tive (Assumption 8.1) to make free use of the derivatives of their logarithm.
Owing to Assumption 8.3, it further holds that pdf’s in this work are class
functions (Definition A.1). Appendix A details how this property helps re-
duce integrals over SO(n) to classical integrals, thus making them accessible
analytically. This is done using the Weyl integration formula.
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Example 8.1 (uniform). The pdf associated with the uniform distribution
is f ≡ 1.

Example 8.2 (isotropic Langevin). Recall the pdf for an isotropic Langevin
distribution on SO(n) with mean In and concentration κ ≥ 0 (5.4):

f(Z) = `κ(Z) =
1

cn(κ)
exp(κ trace(Z)),

where cn(κ) is a normalization constant such that f has unit mass:

cn(κ) =

∫
SO(n)

exp(κ trace(Z)) dµ(Z). (8.10)

As per Weyl’s integration formulas, the following can be derived:

c2(κ) = I0(2κ), (8.11)

c3(κ) = exp(κ)(I0(2κ)− I1(2κ)), (8.12)

c4(κ) = I0(2κ)2 − 2I1(2κ)2 + I0(2κ)I2(2κ), (8.13)

in terms of the modified Bessel functions of the first kind, Iν (A.4). See
Appendix A for details.

For n = 2, the Langevin distribution is also known as the von Mises
or Fisher distribution on the circle (Mardia & Jupp, 2000). The Langevin
distribution on SO(n) also exists in anisotropic form (Chiuso et al., 2008).
Unfortunately, the associated pdf is no longer a spectral function, which is
an instrumental property in the present work. Consequently, we do not treat
anisotropic distributions. Chikuse gives an in-depth treatment of statistics
on the Grassmann and Stiefel manifolds (Chikuse, 2003), including a study
of Langevin distributions on SO(n) as a special case.

The set of pdf’s is closed under convex combinations, as is the set of
functions satisfying Assumptions 8.1 and 8.3. Thus, the mixture of Langevin
model from Chapter 5 falls in the scope of the present chapter.

Example 8.3 (isotropic mixture of Langevin). Recall the definition (5.5):

f(Z) = p`κ(Z) + (1− p)`κ′(Z).

To conclude this section, we remark more broadly that all isotropic
distributions around the identity matrix have a spectral pdf. Indeed, let
f : SO(n) → R be isotropic w.r.t. dist(R1, R2) =

∥∥log(R>1R2)
∥∥

F
(5.11), the

geodesic distance on SO(n). That is, there is a function f̃ such that f(Z) =
f̃(dist(I, Z)) = f̃(‖logZ‖F). It is then obvious that f(QZQ>) = f(Z) for all
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Q ∈ O(n) since log(QZQ>) = Q log(Z)Q>. The same holds for the embed-
ded distance dist(R1, R2) = ‖R1 −R2‖F. This shows that the assumptions
proposed in Section 8.1 include many interesting distributions.

Similarly we establish that all spectral pdf’s have zero bias around the
identity matrix I. The bias is the tangent vector (skew-symmetric matrix)
Ω = E {LogI(Z)}, with Z ∼ f , f spectral. Since LogI(Z) = log(Z) (5.10),
we find, with a change of variable Z := QZQ> going from the first to the
second integral, that for all Q ∈ O(n):

Ω =

∫
SO(n)

log(Z) f(Z)dµ(Z) =

∫
SO(n)

log(QZQ>) f(Z)dµ(Z) = QΩQ>.

Since skew-symmetric matrices are normal matrices and since Ω and Ω>=
−Ω have the same eigenvalues, we may choose Q ∈ O(n) such that QΩQ>=
−Ω. Therefore, Ω = −Ω = 0. As a consequence, it is only possible to treat
unbiased measurements under the assumptions we make in this paper.

8.4 The Fisher information matrix

The relative rotation measurements Hij = ZijRiR
>
j (8.2) reveal informa-

tion about the sought rotations R1, . . . , RN . The Fisher information ma-
trix (FIM) encodes how much information these measurements contain on
average. In other words, the FIM is an assessment of the quality of the
measurements we have at our disposal for the purpose of estimating the
sought parameters. The FIM will be instrumental in deriving CRB’s in the
next section.

Much of the technicalities involved in computing the FIM originate in
the non-commutativity of rotations. It is helpful and informative to first
go through this section with the special case SO(2) in mind. Doing so,
rotations commute and the space of rotations has dimension d = 1, so that
one can reach the final result more directly.

Recall Definition 6.3 for the FIM. We first derive the gradient of the log-
likelihood function L (8.3), gradL(R̂), a tangent vector in TR̂P. The ith

component of this gradient, that is, the gradient of the mapping R̂i 7→ L(R̂)
with R̂j 6=i fixed, is a vector field on SO(n) which can be written as:

gradi L(R̂) =
∑
i∼j

[
grad log fij(HijR̂jR̂

>
i )
]>
HijR̂j .

Evaluated at the true rotations R, this component becomes

gradi L(R) =
∑
i∼j

[grad log fij(Zij)]
>
ZijRi.
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The vector field grad log fij on SO(n) may be factored into:

grad log fij(Z) = ZG>ij(Z), (8.14)

where Gij : SO(n) 7→ so(n) is a mapping that will play an important role in
the sequel. In particular, the ith gradient component now takes the short
form:

gradi L(R) =
∑
i∼j

Gij(Zij)Ri.

Let us consider a canonical orthonormal basis of so(n): (E1, . . . , Ed),
with d = n(n− 1)/2. For n = 3, we pick this one:

E1 =
1√
2

 0 1 0
−1 0 0
0 0 0

 , E2 =
1√
2

0 0 −1
0 0 0
1 0 0

 , E3 =
1√
2

0 0 0
0 0 1
0 −1 0

 .

(8.15)

An obvious generalization yields similar bases for other values of n. We
can transport this canonical basis into an orthonormal basis for the tangent
space TRiSO(n) as (RiE1, . . . , RiEd). Let us also fix an orthonormal basis
for the tangent space at R ∈ P, as

(ξik)i=1...N,k=1...d, with ξik = (0, . . . , 0, RiEk, 0, . . . , 0),

a zero vector except for the ith component equal to RiEk. (8.16)

The FIM w.r.t. this basis is composed of N × N blocks of size d × d. Let
us index the (k, `) entry inside the (i, j) block as Fij,k`. Accordingly, the
matrix F at R is defined by (see Definition 6.3):

Fij,k` = E {〈gradL(R), ξik〉 · 〈gradL(R), ξj`〉}

= E
{
〈gradi L(R), RiEk〉 · 〈gradj L(R), RjE`〉

}
=
∑
i∼r

∑
j∼s

E
{〈
Gir(Zir), RiEkR

>
i

〉
·
〈
Gjs(Zjs), RjE`R

>
j

〉}
. (8.17)

We prove that, in expectation, the mappings Gij (8.14) are zero. This
fact is directly related to the standard result from estimation theory stating
that the average score for a given parameterized probability density function
f is zero, Lemma 6.1.

Lemma 8.2. Given a smooth probability density function f : SO(n)→ R+

and the mapping G : SO(n) → so(n) such that grad log f(Z) = ZG(Z), it
holds that E {G(Z)} = 0, where expectation is taken w.r.t. Z, distributed
according to f .
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Proof. Define h(Q) =
∫

SO(n)
f(ZQ) dµ(Z) for Q ∈ SO(n). Since f is a

probability density function, bi-invariance of µ (8.9) yields h(Q) ≡ 1. Take
gradients with respect to the parameter Q:

0 = gradh(Q) =

∫
SO(n)

gradQf(ZQ) dµ(Z) =

∫
SO(n)

Z>gradf(ZQ) dµ(Z).

With a change of variable Z := ZQ, by bi-invariance of µ, we further obtain:∫
SO(n)

Z>gradf(Z) dµ(Z) = 0.

Using this last result and the fact that grad log f(Z) = 1
f(Z)grad f(Z) con-

cludes:

E {G(Z)} =

∫
SO(n)

Z>grad log f(Z) f(Z)dµ(Z)

=

∫
SO(n)

Z>gradf(Z) dµ(Z) = 0.

We now invoke Assumption 8.2 (independence). Independence of Zij
and Zpq for two distinct edges {i, j} and {p, q} implies that, for any two
functions φ1, φ2 : SO(n)→ R, it holds that

E {φ1(Zij)φ2(Zpq)} = E {φ1(Zij)}E {φ2(Zpq)} ,

provided all involved expectations exist. Using both this and Lemma 8.2,
most terms in (8.17) vanish and we obtain a simplified expression for the
matrix F :

Fij,k` =

∑
i∼r

E
{〈
Gir(Zir), RiEkR

>
i

〉
·
〈
Gir(Zir), RiE`R

>
i

〉}
, if i = j,

E
{〈
Gij(Zij), RiEkR

>
i

〉
·
〈
Gji(Zji), RjE`R

>
j

〉}
, if i 6= j and i ∼ j,

0, if i 6= j and i 6∼ j.
(8.18)

We further manipulate the second case, which involves both Gij and Gji,
by noting that those are deterministically linked. Indeed, by symmetry of
the measurements (Hij = H>ji), we have that (i) Zji = RjR

>
i Z
>
ijRiR

>
j and
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(ii) fij(Zij) = fji(Zji). Invoking Assumption 8.3, since Zij and Zji have
the same eigenvalues, it follows that fij(Z) = fji(Z) for all Z ∈ SO(n). As
a by-product, it also holds that Gij(Z) = Gji(Z) for all Z ∈ SO(n). Still
under Assumption 8.3, we show in the appendix Section B.1 that

∀Q ∈ O(n), Gij(QZQ
>) = QGij(Z)Q>, and

Gij(Z
>) = −Gij(Z). (8.19)

Combining these observations, we obtain:

Gji(Zji) = Gij(Zji) = Gij(RjR
>
i Z
>
ijRiR

>
j ) = −RjR>i Gij(Zij)RiR>j .

The minus sign, which plays an important role in the structure of the FIM,
comes about via the skew-symmetry of Gij . The following identity thus
holds: 〈

Gji(Zji), RjE`R
>
j

〉
= −

〈
Gij(Zij), RiE`R

>
i

〉
. (8.20)

This can advantageously be plugged into (8.18).
Describing the expectations appearing in (8.18) takes us through a cou-

ple of lemmas. Let us, for a certain pair (i, j), i ∼ j, introduce the functions
hk : SO(n)→ R, k = 1 . . . d:

hk(Z) =
〈
Gij(Z), RiEkR

>
i

〉
, (8.21)

where we chose to not overload the notation hk with an explicit reference
to the pair (i, j), as this will always be clear from the context. We may
rewrite the FIM in terms of the functions hk, starting from (8.18) and
incorporating (8.20):

Fij,k` =



∑
i∼r

E {hk(Zir) · h`(Zir)}, if i = j,

−E {hk(Zij) · h`(Zij)}, if i 6= j and i ∼ j,

0, if i 6= j and i 6∼ j.

Another consequence of Assumption 8.3 is that the functions hk(Z) and
h`(Z) are uncorrelated for k 6= `, where Z is distributed according to the
density fij . As a consequence, Fij,k` = 0 for k 6= `, i.e., the d× d blocks of
F are diagonal. We establish this fact in Lemma 8.4, right after a technical
lemma.

Lemma 8.3. Let E,E′ ∈ so(n) such that Eij = −Eji = 1 and E′k` =
−E′`k = 1 (all other entries are zero), with 〈E,E′〉 = 0, i.e., {i, j} 6= {k, `}.
Then, there exists P ∈ O(n) a signed permutation such that P>EP = E′

and P>E′P = −E.
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Proof. See the appendix Section B.2 for a proof and an explanation of why
this is not direct.

Lemma 8.4. Let Z ∈ SO(n) be a random variable distributed according to
fij. The random variables hk(Z) and h`(Z), k 6= `, as defined in (8.21)
have zero mean and are uncorrelated, i.e., E {hk(Z)} = E {h`(Z)} = 0 and
E {hk(Z) · h`(Z)} = 0. Furthermore, it holds that E

{
h2
k(Z)

}
= E

{
h2
`(Z)

}
.

Proof. The first part follows directly from Lemma 8.2. We show the sec-
ond part. Consider a signed permutation matrix Pk` ∈ O(n) such that
P>k`EkPk` = E` and P>k`E`Pk` = −Ek. Such a matrix always exists accord-
ing to Lemma 8.3. Then, identity (8.19) yields:

hk(RiPk`R
>
i Z RiP

>
k`R
>
i ) =

〈
Gij(Z), RiP

>
k`EkPk`R

>
i

〉
= h`(Z).

Likewise,

h`(RiPk`R
>
i Z RiP

>
k`R
>
i ) = −hk(Z).

These identities as well as the (extended) bi-invariance (8.9) of the Haar
measure µ on SO(n) and the fact that fij is a spectral function yield, using
the change of variable Z := RiPk`R

>
i Z RiP

>
k`R
>
i going from the first to the

second integral:

E {hk(Z) · h`(Z)} =

∫
SO(n)

hk(Z)h`(Z) fij(Z)dµ(Z)

=

∫
SO(n)

−h`(Z)hk(Z) fij(Z)dµ(Z) = −E {hk(Z) · h`(Z)} .

Hence, E {hk(Z) · h`(Z)} = 0. We prove the last statement using the same
change of variable:

E
{
h2
k(Z)

}
=

∫
SO(n)

h2
k(Z) fij(Z)dµ(Z)

=

∫
SO(n)

h2
`(Z) fij(Z)dµ(Z) = E

{
h2
`(Z)

}
.

We note that, more generally, it can be shown that the hk’s are identically
distributed.

The skew-symmetric matrices (RiE1R
>
i , . . . , RiEdR

>
i ) form an orthonor-

mal basis of the Lie algebra so(n). Consequently, we may expand each
mapping Gij in this basis and express its squared norm as:

Gij(Z) =

d∑
k=1

hk(Z) ·RiEkR>i , ‖Gij(Z)‖2 =

d∑
k=1

h2
k(Z).
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Since by Lemma 8.4 the quantity E
{
h2
k(Zij)

}
does not depend on k, it

follows that:

E
{
h2
k(Zij)

}
=

1

d
E
{
‖Gij(Zij)‖2

}
, k = 1 . . . d.

This further shows that the d × d blocks that constitute the FIM have
constant diagonal. Hence, F can be expressed as the Kronecker product (⊗)
of some matrix with the identity Id. Let us define the following (positive)
weights on the edges of the measurement graph:

wij = wji = E
{
‖Gij(Zij)‖2

}
, E

{
‖grad log fij(Zij)‖2

}
. (8.22)

Also let wij = wji = 0 if i and j are not connected. Let A ∈ RN×N be
the adjacency matrix of the measurement graph with Aij = wij and let
D ∈ RN×N be the diagonal degree matrix such that Dii =

∑
i∼j wij . Then,

the weighted Laplacian matrix L = D −A, L = L>� 0, is given by:

Lij =


∑
i∼r wir, if i = j,

−wij , if i 6= j and i ∼ j,
0, if i 6= j and i 6∼ j.

(8.23)

It is now apparent that the matrix F ∈ RdN×dN is tightly related to L. We
summarize this in the following theorem.

Theorem 8.5 (FIM for synchronization). Let R1, . . . , RN ∈ SO(n) be un-
known but fixed rotations and let Hij = ZijRiR

>
j for i ∼ j, with the Zij’s

random rotations which fulfill Assumptions 8.1–8.3. Consider the problem
of estimating the Ri’s given a realization of the Hij’s. The Fisher informa-
tion matrix (Definition 6.3) of that estimation problem with respect to the
basis (8.16) is given by

F =
1

d
(L ⊗ Id), (8.24)

where ⊗ denotes the Kronecker product, d = dim SO(n) = n(n− 1)/2, Id is
the d × d identity matrix and L is the weighted Laplacian matrix (8.23) of
the measurement graph.

The Laplacian matrix has a number of properties, some of which will
yield nice interpretations when deriving the Cramér-Rao bounds. One re-
markable fact is that this FIM does not depend on R = (R1, . . . , RN ), the
set of true rotations. This is an appreciable property seen as R is unknown
in practice. This stems from the strong symmetries in our problem.

Another important feature of this FIM is that it is rank deficient. In-
deed, for a connected measurement graph, L has exactly one zero eigenvalue
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(and more if the graph is disconnected) associated to the vector of all ones,
1N . The null space of the FIM is thus composed of all vectors of the form
1N ⊗ t, with t ∈ Rd arbitrary. This corresponds to the vertical spaces of P
w.r.t. the equivalence relation (8.4), i.e., the null space consists in all tan-
gent vectors that move all rotations Ri in the same direction, leaving their
relative positions unaffected. This makes perfect sense: the distribution of
the measurements Hij is also unaffected by such changes, hence the FIM,
seen as a quadratic form, takes up a zero value when applied to the corre-
sponding vectors. We will need the special tools developed in Chapter 7 to
deal with this (structured) singularity when deriving the CRB’s in the next
section.

Notice how Assumption 8.2 (independence) gave F a block structure
based on the sparsity pattern of the Laplacian matrix, while Assumption 8.3
(spectral pdf’s) made each block proportional to the d × d identity matrix
and made F independent of R.

Example 8.4 (Langevin distributions). (Continued from Example 8.2)
Considering the Langevin pdf f (5.4), grad log f(Z) = −κZ skew(Z) and
we find that the weight w associated to this noise distribution is a function
given by:

w = wn(κ) = E
{
‖grad log f(Z)‖2

}
=
κ2

4

∫
SO(n)

‖Z − Z>‖2 f(Z)dµ(Z).

Since the integrand is again a class function, apply the tools from Appen-
dix A to derive for n = 2, 3:

w2(κ) = κ
I1(2κ)

I0(2κ)
, w3(κ) =

κ

2

(2− κ)I1(2κ) + κI3(2κ)

I0(2κ)− I1(2κ)
.

The functions Iν(z) are the modified Bessel functions of the first kind (A.4).
We used formulas for the normalization constants c2 (8.11) and c3 (8.12)
as well as the identity I1(2κ) = κ(I0(2κ)− I2(2κ)).

For the special case n = 2, taking the concentrations for all measure-
ments to be equal, we find that the FIM is proportional to the unweighted
Laplacian matrix D−A, with D the degree matrix and A the adjacency ma-
trix of the measurement graph. This particular result was shown before via
another method in (Howard et al., 2010). For the derivation in the latter
work, commutativity of rotations in the plane is instrumental, and hence the
proof method does not—at least in the proposed form—transfer to SO(n) for
n ≥ 3.

Example 8.5 (Mixture of Langevin). (Continued from Example 8.3) The
information weight w = wn(κ, κ′, p) for this model is derived in the appendix
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Section A.2. Because we need it in Section 8.7 to study the resilience of
synchronization against outliers, we do give explicit formulas for the special
case κ′ = 0 here:

w2(κ, 0, p) =
(pκ)2

c2(κ)

1

π

∫ π

0

(1− cos 2θ) exp(4κ cos θ)

p exp(2κ cos θ) + (1− p)c2(κ)
dθ, (8.25)

w3(κ, 0, p) =
(pκ)2 exp(2κ)

c3(κ)

1

π

∫ π

0

(1− cos 2θ)(1− cos θ) exp(4κ cos θ)

p exp(κ(1 + 2 cos θ)) + (1− p)c3(κ)
dθ.

These integrals may be evaluated numerically.

8.5 The Cramér-Rao bounds

We now apply the CRB’s developed in Chapter 7 to the synchronization
problem, using the FIM derived in the previous section. We distinguish
between the anchored and the anchor-free cases.

We should bear in mind that these intrinsic CRB’s are fundamentally as-
ymptotic bounds for large SNR. At low SNR, the bounds may fail to capture
features of the estimation problem that become dominant for large errors.
In particular, since the parameter spaces PA and P∅ are compact, there is
an upper bound on how badly one can estimate the true rotations. Because
of their local nature (intrinsic CRB’s result from a small-error analysis), the
bounds we establish here are unable to capture this essential feature.

In the sequel, the proviso at large SNR thus designates noise levels such
that efficient estimators commit errors small enough that the intrinsic CRB
analysis holds. For reasons that will become clear in this section, for anchor-
free synchronization, we define a notion of SNR as the quantity

SNR∅ =
(N − 1)E

{
dist2(Zuni, In)

}
d2trace(L†)

,

where the expectation is taken w.r.t. Zuni, uniformly distributed over SO(n).
The numerator is a baseline which corresponds to the variance of a random
estimator—see Section 8.7.1. The denominator has units of variance as
well and is small when the measurement graph is well connected by good
measurements. An SNR can be considered large if SNR∅ � 1. For anchored
synchronization, a similar definition holds with L replaced by the masked
Laplacian LA (8.27) and N − 1 replaced by N − |A|.

8.5.1 Anchored synchronization

When anchors are provided, the rotation matrices Ri for i ∈ A, A 6= ∅
are known. The parameter space then becomes PA (5.7), which is a Rie-
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mannian submanifold of P. The synchronization problem is well-posed on
PA, provided there is at least one anchor in each connected component of
the measurement graph. Let us define the covariance matrix of an esti-
mator for anchored synchronization, in agreement with Definition 6.6 and
equation (7.2).

Definition 8.1 (anchored covariance). The covariance matrix of an esti-

mator R̂ mapping each possible set of measurements Hij to a point in PA,
expressed w.r.t. the orthonormal basis (8.16) of TRP, is given by:

(CA)ij,k` = E
{
〈LogR(R̂), ξik〉 · 〈LogR(R̂), ξj`〉

}
, (8.26)

where the indexing convention is the same as for the FIM. Of course, all
d × d blocks (i, j) such that either i or j or both are in A (anchored) are

zero by construction. In particular, the variance of R̂ is the trace of CA:

traceCA = E
{
‖LogR(R̂)‖2

}
= E

{
dist2(R, R̂)

}
,

where dist is the geodesic distance on PA (5.13).

CRB’s link this covariance matrix to the FIM derived in the previous
section through Theorem 7.4.

Theorem 8.6 (anchored CRB). Given any unbiased estimator R̂ for syn-
chronization on PA, at large SNR, the covariance matrix CA (8.26) and the
FIM F (8.24) obey the matrix inequality (assuming at least one anchor in
each connected component):

CA � F †A −
1

3

(
Rm(F †A)F †A + F †ARm(F †A)

)
,

where FA = PAFPA and PA is the orthogonal projector from TRP to TRPA,
expressed w.r.t. the orthonormal basis (8.16). The operator Rm : RdN×dN →
RdN×dN involves the Riemannian curvature tensor of PA and is detailed in
Section 8.6.

The effect of PA is to set all rows and columns corresponding to anchored
rotations to zero. Thus, we introduce the masked Laplacian LA:

(LA)ij =

{
Lij if i, j /∈ A,
0 otherwise.

(8.27)

Then, the projected FIM is simply:

FA =
1

d
(LA ⊗ Id). (8.28)
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The pseudoinverse of FA is given by F †A = d(L†A ⊗ Id), since for arbitrary
matrices A and B, it holds that (A ⊗ B)† = A† ⊗ B† (Bernstein, 2009,

Fact 7.4.32). Notice that the rows and columns of L†A corresponding to
anchors are also zero. Theorem 8.6 then yields the sought CRB:

CA � d(L†A ⊗ Id) + curvature terms.

In particular, for n = 2, the manifold PA is flat and d = 1. Hence, the
curvature terms vanish exactly (Rm ≡ 0) and the CRB reads:

CA � L†A.

For n = 3, including the curvature terms as detailed in Section 8.6 yields
this CRB:

CA � 3

(
L†A −

1

4

(
ddiag(L†A)L†A + L†Addiag(L†A)

))
⊗ I3, (8.29)

where ddiag sets all off-diagonal entries of a matrix to zero. At large SNR,
that is, for small values of trace(L†A), the curvature terms hence effectively
become negligible compared to the leading term. For general n, neglecting
curvature if n ≥ 3, the variance is lower-bounded as follows:

E
{

dist2(R, R̂)
}
≥ d2 traceL†A,

where dist is as defined by (5.13). It also holds for each node i that

E
{

dist2(Ri, R̂i)
}
≥ d2 (L†A)ii. (8.30)

This leads to a useful interpretation of the CRB in terms of a resistance
distance on the measurement graph, as depicted in Figure 8.1. Indeed, for a
general setting with one or more anchors, it can be checked that (Bouldin,
1973)

L†A = (JA(D −A)JA)† = (JA(IN −D−1A)JA)†D−1,

where JA is a diagonal matrix such that (JA)ii = 1 if i ∈ A and (JA)ii = 0
otherwise. It is well-known, e.g. from (Doyle & Snell, 2000, § 1.2.6), that
in the first factor of the right-hand side, ((JA(IN − D−1A)JA)†)ii is the
average number of times a random walker starting at node i on the graph
with transition probabilities D−1A will be at node i before hitting an an-
chor. This number is small if node i is strongly connected to anchors.
In the CRB (8.30) on node i, (L†A)ii is thus the ratio between this anchor-
connectivity measure and the overall amount of information available about
node i directly, namely Dii =

∑
j∈Vi wij .
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Figure 8.1: The Cramér-Rao bound for anchored synchronization (8.30)
limits how well each individual rotation can be estimated. The two identical
synchronization graphs above illustrate the effect of anchors. All edges have
the same weight (i.i.d. noise). Anchors are red squares. Unknown rotations
are round nodes colored according to the second eigenvector of L to bring
out the clusters. The area of node i is proportional to the lower bound on
the average error for this node E{dist2(Ri, R̂i)}. On the left, there is only
one anchor in the upper-left cluster. Hence, nodes in the lower-left cluster,
which are separated from the anchor by two bottlenecks, will be harder to
estimate accurately than in the situation on the right, where there is one
anchor for each cluster. Node positions in the picture are irrelevant.

8.5.2 Anchor-free synchronization

When no anchors are provided, the global rotation ambiguity leads to the
equivalence relation (8.4) on P, which in turn leads to work on the Rie-
mannian quotient parameter space P∅ (8.5). The synchronization problem
is well-posed on P∅ as long as the measurement graph is connected, which
we always assume in this work. Let us define the covariance matrix of an
estimator for anchor-free synchronization, in agreement with Definition 6.6
and equation (7.6).

Definition 8.2 (anchor-free covariance). The covariance matrix of an es-

timator [R̂] mapping each possible set of measurements Hij to a point in
P∅ (that is, to an equivalence class in P), expressed w.r.t. the orthonormal
basis (8.16) of TRP, is given by:

(C∅)ij,k` = E {〈ξ, ξik〉 · 〈ξ, ξj`〉} , with

ξ = (Dπ(R)|HR
)−1[Log[R]([R̂])]. (8.31)
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That is, ξ (the random error vector) is the shortest horizontal vector such

that ExpR(ξ) ∈ [R̂] (8.7). We used the same indexing convention as for the

FIM. In particular, the variance of [R̂] is the trace of C∅:

traceC∅ = E
{
‖Log[R]([R̂])‖2

}
= E

{
dist2([R], [R̂])

}
,

where dist is the geodesic distance on P∅ (8.8).

CRB’s link this covariance matrix to the FIM derived in the previous
section through Theorem 7.5.

Theorem 8.7 (anchor-free CRB). Given any unbiased estimator [R̂] for
synchronization on P∅, at large SNR, the covariance matrix C∅ (8.31) and
the FIM F (8.24) obey the matrix inequality (assuming the measurement
graph is connected):

C∅ � F † −
1

3

(
Rm(F †)F † + F †Rm(F †)

)
,

where Rm : RdN×dN → RdN×dN involves the Riemannian curvature tensor
of P∅ and is detailed in Section 8.6.

Theorem 8.7 then yields the sought CRB:

C∅ � d(L† ⊗ Id) + curvature terms. (8.32)

We compute the curvature terms explicitly in Section 8.6. and show they
can be neglected for large SNR. In particular, for n = 2, the manifold P∅ is
flat and d = 1. Hence:

C∅ � L†.

For n = 3, the curvature terms are the same as those for the anchored case,
with an additional term that decreases as 1/N . For (not so) large N then,
the bound (8.29) is a good bound for n = 3, anchor-free synchronization.
For general n, neglecting curvature for n ≥ 3, the variance is lower-bounded
as follows:

E
{

dist2([R], [R̂])
}
≥ d2 traceL†, (8.33)

where dist is as defined by (8.8).
For the remainder of this section, we work out an interpretation of (8.32).

This matrix inequality entails that, for all x ∈ RdN (neglecting curvature
terms if n ≥ 3):

x>C∅x ≥ d x>(L† ⊗ Id)x. (8.34)
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As both the covariance and the FIM correspond to positive semidefinite
operators on the horizontal space HR, this is really only meaningful when
x is the vector of coordinates of a horizontal vector η = (η1, . . . , ηN ) ∈ HR.
We emphasize that this restriction implies that the anchor-free CRB, as
it should, only conveys information about relative rotations. It does not
say anything about singled-out rotations in particular. Let ei, ej denote
the ith and jth columns of the identity matrix IN and let ek denote the
kth column of Id. We consider x = (ei − ej)⊗ ek, which corresponds to the
zero horizontal vector η except for ηi = RiEk and ηj = −RjEk, with Ek ∈
so(n) the kth element of the orthonormal basis of so(n) picked as in (8.15).
By definition of C∅ and of the error vector ξ = (R1Ω1, . . . , RNΩN ) ∈
HR (8.31),

x>C∅x = E
{
〈ξ,η〉2

}
= E

{
〈Ωi − Ωj , Ek〉2

}
.

On the other hand, we have

d x>(L† ⊗ Id)x = d (ei − ej)>L†(ei − ej).

These two last quantities are related by inequality (8.34). Summing for
k = 1 . . . d on both sides of this inequality, we find:

E
{
‖Ωi − Ωj‖2F

}
≥ d2 (ei − ej)>L†(ei − ej).

Now remember that the error vector ξ (8.31) is the shortest horizontal vector

such that ExpR(ξ) ∈ [R̂]. Without loss of generality, assume R̂ is aligned

such that ExpR(ξ) = R̂. Then, R̂i = Ri exp(Ωi) for all i. It follows that

R̂iR̂
>
j = Ri exp(Ωi) exp(−Ωj)R

>
j , hence

dist2(RiR
>
j , R̂iR̂

>
j ) =

∥∥log
(

exp(Ωi) exp(−Ωj)
)∥∥2

F
.

For commuting Ωi and Ωj—which is always the case for n = 2—we have

log
(

exp(Ωi) exp(−Ωj)
)

= Ωi − Ωj .

For n ≥ 3, this still approximately holds in small error regimes (that is, for
small enough Ωi,Ωj), by the Baker-Campbell-Hausdorff formula. Hence,

E
{

dist2(RiR
>
j , R̂iR̂

>
j )
}
≈ E

{
‖Ωi − Ωj‖2F

}
≥ d2 (ei − ej)>L†(ei − ej). (8.35)

The quantity trace(D) · (ei−ej)>L†(ei−ej) is sometimes called the squared
Euclidean commute time distance (ECTD) (Saerens et al., 2004) between
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nodes i and j. It is also known as the electrical resistance distance. For a
random walker on the graph with transition probabilities D−1A, this quan-
tity is the average commute time distance, that is, the number of steps it
takes on average for a random walker starting at node i to hit node j then
node i again. The right-hand side of (8.35) is thus inversely proportional
to the quantity and quality of information linking these two nodes. It de-
creases whenever the number of paths between them increases or whenever
an existing path is made more informative, i.e., weights on that path are
increased.

Still in (Saerens et al., 2004), it is shown in Section 5 how principal
component analysis (PCA) on L† can be used to embed the nodes in a low
dimensional subspace such that the Euclidean distance separating two nodes
is similar to the ECTD separating them in the graph. For synchronization,
such an embedding naturally groups together nodes whose relative rotations
can be accurately estimated, as depicted in Figure 8.2.

8.6 Curvature terms

We compute the curvature terms from theorems 8.6 and 8.7 for n = 2 and
n = 3 explicitly. (See Section 2.8 for a brief introduction to curvature.)
We first treat PA (5.7), then P∅ (8.5). We show that for rotations in the
plane (n = 2), the parameter spaces are flat, so that curvature terms vanish
exactly. For rotations in space (n = 3), we compute the curvature terms
explicitly and show that they are on the order of O(SNR−2), whereas domi-
nant terms in the CRB are on the order of O(SNR−1), for the notion of SNR
proposed in Section 8.5. It is expected that curvature terms are negligible
for n ≥ 4 too for the same reasons, but we do not conduct the calculations.

8.6.1 Curvature terms for PA

The manifold PA (5.7) is a (product) Lie group. Hence, the Riemannian
curvature tensor R of PA on the tangent space TRPA is given by a simple
formula (O’Neill, 1983, Corollary 11.10, p. 305):

〈R(X,Y)Y,X〉 =
1

4
‖[X,Y]‖2,

where [X,Y] is the Lie bracket of X = (X1, . . . , XN ) and Y = (Y1, . . . , YN ),
two vectors (not necessarily orthonormal) in the tangent space TRPA. Fol-
lowing Theorem 7.4, in order to compute the curvature terms for the CRB
of synchronization on PA, we first need to compute

Rm[Y′,Y′] , E {〈R(X, PAY′)PAY′,X〉} , (8.36)
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Figure 8.2: The Cramér-Rao bound for anchor-free synchronization (8.35)
limits how well the relative rotation between two nodes can be estimated,
in proportion to the Euclidean commute time distance (ECTD) separating
them in the graph. Left: each node in the synchronization graph cor-
responds to a rotation to estimate and each edge corresponds to a mea-
surement of relative rotation. Noise affecting the measurements is i.i.d.,
hence all edges have the same weight. Nodes are colored according to the
second eigenvector of L (the Fiedler vector). Node positions are irrele-
vant. Right: ECTD-embedding of the same graph in the plane, such that
the distance between two nodes i and j in the picture is mostly propor-
tional to the ECTD separating them, which is essentially a lower bound
on E{dist2(RiR

>
j , R̂iR̂

>
j )}1/2. In other words: the closer two nodes are, the

better their relative rotation can be estimated. Notice that the node col-
ors correspond to the horizontal coordinate in the right picture. See also
Section 8.7.2.

where Y′ is any tangent vector in TRP and PAY′ is its orthogonal projec-
tion on TRPA. We expand X and Y = PAY′ using the orthonormal basis
(ξk`)k=1...N,`=1...d (8.16) of TRP ⊃ TRPA:

X =
∑
k,`

βk`ξk` and Y =
∑
k,`

αk`ξk`,

such that Xk = Rk
∑
` βk`E` and Yk = Rk

∑
` αk`E`. Of course, αk` =

βk` = 0 ∀k ∈ A. Then, since

[X,Y] =
(
[X1, Y1], . . . , [XN , YN ]

)
,
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it follows that:

Rm[Y,Y] = E
{

1

4
‖[X,Y]‖2

}
= E

{
1

4

∑
k

‖[Xk, Yk]‖2
}

=
1

4

∑
k

E

∥∥∥∑
`,s

αk`βks[E`, Es]
∥∥∥2

 . (8.37)

For X the tangent vector in TRPA corresponding to the (random) estima-

tion error LogR(R̂), the coefficients βk` are random variables. The covari-
ance matrix CA (8.26) is given in terms of these coefficients by:

(CA)kk′,``′ = E {〈X, ξk`〉 〈X, ξk′`′〉} = E {βk`βk′`′} .

The goal now is to express the entries of the matrix associated to Rm as
linear combinations of the entries of CA.

For n = 2, of course, Rm ≡ 0 since Lie brackets vanish owing to the
commutativity of rotations in the plane.

For n = 3, the constant curvature of SO(3) leads to nice expressions,
which we obtain now. Let us consider the orthonormal basis (E1, E2, E3)
of so(3) (8.15). Observe that it obeys

[E1, E2] = E3/
√

2, [E2, E3] = E1/
√

2, [E3, E1] = E2/
√

2.

As a result, equation (8.37) simplifies and becomes:

Rm[Y,Y] =

1

8

∑
k

E
{

(αk2βk3−αk3βk2)2 + (αk3βk1−αk1βk3)2 + (αk1βk2−αk2βk1)2
}
.

(8.38)

We set out to compute the dN × dN matrix Rm = Rm(CA) (7.10) asso-
ciated to the bi-linear operator Rm w.r.t. the basis (8.16). By definition,
(Rm)kk′,``′ = Rm[ξk`, ξk′`′ ]. Equation (8.38) readily yields the diagonal
entries (k = k′, ` = `′). Using the polarization identity to determine off-
diagonal entries,

(Rm)kk′,``′ =
1

4

(
Rm[ξk` + ξk′`′ , ξk` + ξk′`′ ]−Rm[ξk` − ξk′`′ , ξk` − ξk′`′ ]

)
,

it follows through simple calculations (taking into account the orthogonal
projection onto TRPA that appears in (8.36)) that:

(Rm)kk′,``′ =


1
8

∑
s 6=`(CA)kk,ss if k = k′ /∈ A, ` = `′,

− 1
8 (CA)kk,``′ if k = k′ /∈ A, ` 6= `′,

0 otherwise.

(8.39)
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Hence, Rm(CA) is a block-diagonal matrix whose nonzero entries are linear
functions of the entries of CA. Theorem 8.6 requires (8.39) to compute the

matrix Rm(F †A). Considering the special structure of the diagonal blocks of

F †A (8.28) (they are proportional to I3), we find that

Rm(F †A) =
1

4
ddiag(F †A) =

3

4
ddiag(L†A)⊗ I3,

where ddiag puts all off-diagonal entries of a matrix to zero. Thus, as the
SNR goes up and hence as L†A goes down, the curvature term Rm(F †A)F †A +

F †ARm(F †A) in Theorem 8.6 will become negligible compared to the main

term in the CRB, F †A.

8.6.2 Curvature terms for P∅
The manifold P∅ (8.5) is a quotient manifold of P. Hence, the Riemann-
ian curvature tensor R of P∅ is given by O’Neill’s formula (O’Neill, 1983,
Thm 7.47, p. 213 and Lemma 3.39, p. 77), showing that the quotient oper-
ation can only increase the curvature of the parameter space:

〈R(DπX,DπY)DπY,DπX〉 =
1

4
‖[X,Y]‖2 +

3

4
‖[X,Y]V‖2, (8.40)

where X,Y are horizontal vectors in HR ⊂ TRP identified with tangent
vectors to P∅ via the differential of the Riemannian submersion Dπ(R) (8.6),
denoted simply as Dπ for convenience. The vector [X,Y]V ∈ VR ⊂ TRP is
the vertical part of [X,Y], i.e., the component that is parallel to the fibers.
Since in our case, moving along a fiber consists in changing all rotations
along the same direction, [X,Y]V corresponds to the mean component of
[X,Y]:

[X,Y]V = (R1ω, . . . , RNω), with ω =
1

N

N∑
k=1

[R>kXk, R
>
kYk].

For n = 2, since [X,Y] = 0, [X,Y]V = 0 also, hence P∅ is still a flat
manifold, despite the quotient operation. We now show that for n = 3
the curvature terms in Theorem 8.7 are equivalent to the curvature terms
for PA with A := ∅ plus extra terms that decay as 1/N and can thus be
neglected.

The curvature operator Rm (Theorem 7.5) is given by:

Rm[ξk`, ξk`] , E {〈R(DπX,Dπξk`)Dπξk`,DπX〉}

= E
{

1

4
‖[X, ξk` − ξVk`]‖2 +

3

4
‖[X, ξk` − ξVk`]

V‖2
}
.



210 Chapter 8. CRB’s for synchronization of rotations

The tangent vector ξk` − ξVk` is, by construction, the horizontal part of ξk`.
The vertical part decreases in size as N grows: ξVk` = 1

N (R1E`, . . . , RNE`).
It follows that:

E
{
‖[X, ξk` − ξVk`]‖2

}
= E

{
‖[X, ξk`]‖2

}
(1 +O(1/N)).

Hence, up to a factor that decays as 1/N , the first term in the curvature
operator Rm is the same as that of the previous section for PA, with A := ∅.
We now deal with the second term defining Rm:

[X, ξk`]
V = (R1ω, . . . , RNω), with

ω =
1

N
[R>kXk, E`] =

1

N

∑
s

βks[Es, E`].

It is now clear that for large N this second term is negligible compared to
E
{
‖[X, ξk`]‖2

}
: ∥∥[X, ξk`]

V∥∥2
= N‖ω‖2 = O(1/N).

Applying polarization to Rm to compute off-diagonal terms then concludes
the argument showing that the curvature terms in the CRB for synchroniza-
tion of rotations on P∅, despite an increased curvature owing to the quotient
operation (8.40), are very close (within a O(1/N) term) to the curvature
terms established earlier for synchronization on PA, with A := 0. We omit
an exact derivation of these terms as it is quite lengthy and does not bring
much insight to the problem.

8.7 Comments on, and consequences of the
CRB

So far, we derived the CRB’s for synchronization in both anchored and
anchor-free settings. These bounds enjoy a rich structure and lend them-
selves to useful interpretations, as for the random walk perspective for ex-
ample. The insight we gather about the synchronization problem by explor-
ing the CRB’s is validated by Chapter 5, where it is shown (numerically)
that the CRB’s seem to be achievable, thus making them relevant. In this
section, we start by pointing out validity limits of the CRB’s, namely the
large SNR proviso. Visualization tools are then proposed to assist in graph
analysis. Finally, we focus on anchor-free synchronization and comment
upon the role of the Fiedler value of a measurement graph, the synchro-
nizability of Erdős-Rényi random graphs and the remarkable resilience to
outliers of synchronization.
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8.7.1 The CRB is an asymptotic bound

As stressed in the introduction of Chapter 6, intrinsic CRB’s are asymptotic
bounds, that is, they are meaningful for small errors. This is in part due
to the curvature terms which are only approximated by a truncated Taylor
series, and in part due to the fact that the parameter spaces PA and P∅ are
compact. Because of that, there is an upper-bound on the variance of any
estimator. The CRB is unable to capture such a global feature because it
is derived under the assumption that the logarithmic map Log is globally
invertible, which compactness prevents. Hence, for arbitrarily low SNR, the
CRB without curvature terms will predict an arbitrarily large variance and
will be violated (this does not show on figures from Section 5.5 since the
CRB’s depicted include curvature terms, which in this case make them go
to zero at low SNR). As a means to locate the point at which the CRB
certainly stops making sense, consider the problem of estimating a rotation
matrix R ∈ SO(n) based on a measurement Z ∈ SO(n) of R, and compute
the variance of the (unbiased) estimator R̂(Z) := Z when Z is uniformly
random, i.e., when no information is available.

Define Vn = E
{

dist2(Z,R)
}

for Z uniformly distributed over SO(n). A
computation using Weyl’s formula yields:

V2 =
1

2π

∫ π

−π
‖log(Z>R)‖2F dθ =

1

2π

∫ π

−π
2θ2 dθ =

2π2

3
, V3 =

2π2

3
+ 4.

A reasonable upper-bound on the variance of an estimator should thus be
N ′Vn, where N ′ is the number of independent rotations to estimate (N − 1
for anchor-free synchronization, N − |A| for anchored synchronization). A
CRB larger than this should be disregarded.

8.7.2 Visualization tools

In deriving the anchor-free bounds for synchronization, we established that
a lower bound on

E
{

dist2(RiR
>
j , R̂iR̂

>
j )
}

is proportional to the quantity (ei−ej)>L†(ei−ej). Of course, this analysis
also holds for anchored graphs. Here, we detail how Figure 8.2 was pro-
duced following a PCA procedure (Saerens et al., 2004) and show how this
translates for anchored graphs, as depicted in Figure 8.3.

We treat both anchored and anchor-free scenarios, thus allowing A to
be empty in this paragraph. Let LA = V DV > be an eigendecomposition
of LA, such that V is orthogonal and D = diag(λ1, . . . , λN ). Let X =
(D†)1/2V >, an N × N matrix with columns x1, . . . , xN . Assume without
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Figure 8.3: The visualization tool described in Section 8.7.2, applied here
to the anchored synchronization tasks from Figure 8.1 (left with one an-
chor, right with three anchors), produces low-dimensional embeddings of
synchronization graphs such that the distance between two nodes is large if
their relative rotation is hard to estimate, and their distance to the origin
(the anchors: red squares) is large if their individual rotation is hard to
estimate.

loss of generality that the eigenvalues and eigenvectors are ordered such that
the diagonal entries of D† are decreasing. Then,

(ei − ej)>L†A(ei − ej) = (ei − ej)>V D†V >(ei − ej) = ‖xi − xj‖2.

Thus, embedding the nodes at positions xi realizes the ECTD in RN . An-
chors, if any, are placed at the origin. An optimal embedding, in the sense of
preserving the ECTD as well as possible, in a subspace of dimension k < N
is obtained by considering X̃: the first k rows of X. The larger the ratio∑k
`=1 λ

†
`/trace(D†), the better the low-dimensional embedding captures the

ECTD.

In the presence of anchors, if j ∈ A, then L†Aej = 0 and (ei−ej)>L†A(ei−
ej) = (L†A)ii = ‖xi‖2 ≈ ‖x̃i‖2. Hence, the embedded distance to the origin
indicates how well a specific node can be estimated.

In practice, this embedding can be produced by computing the m + k
eigenvectors of LA with smallest eigenvalue, where m = max(1, |A|) is the
number of zero eigenvalues to be discarded (assuming a connected graph).
This computation can be conducted efficiently if the graph is structured,
e.g., sparse.
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8.7.3 A larger Fiedler value is better

We now focus on anchor-free synchronization. At large SNR, the anchor-
free CRB (8.33) normalized by the number of independent rotations N − 1
reads:

E {MSE} , E
{

1

N − 1
dist2([R], [R̂])

}
≥ d2

N − 1
trace(L†), (8.41)

where E {MSE} as defined is the expected mean squared error of an unbi-

ased estimator [R̂]. This expression shows the limiting role of the trace
of the pseudoinverse of the information-weighted Laplacian L (8.23) of the
measurement graph. This role has been established before for other syn-
chronization problems for simpler groups and simpler noise models (Howard
et al., 2010). We now shed some light on this result by stating a few ele-
mentary consequences of it. Let

0 = λ1 < λ2 ≤ · · · ≤ λN

denote the eigenvalues of L, where λ2 > 0 means the measurement graph is
assumed connected.

The right-hand side of (8.41) in terms of the λi’s is given by:

d2

N − 1
trace(L†) =

d2

N − 1

N∑
i=2

1

λi
≤ d2

λ2
.

The second eigenvalue λ2 is known as the Fiedler value (or algebraic con-
nectivity) of the information-weighted measurement graph. It is well known
that the Fiedler value is low in the presence of bottlenecks in the graph and
high in the presence of many, heavy spanning trees. The latter equation
translates in the following intuitive statement: by increasing the Fiedler
value of the measurement graph, one can force a lower CRB. Not surpris-
ingly then, expander graphs are ideal for synchronization, since, by design,
their Fiedler value λ2 is bounded away from zero while simultaneously being
sparse (Hoory et al., 2006).

Notice that the Fiedler vector has zero mean (it is orthogonal to 1N )
and hence describes the horizontal vectors of maximum variance. It is thus
also the first axis of the right plot in Figure 8.2.

8.7.4 trace(L†) plays a limiting role in synchronization

We continue to focus on anchor-free synchronization. The quantity trace(L†)
appears naturally in CRB’s for synchronization problems on groups. For
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complete graphs and constant weight w, trace(L†) = N−1
wN . Then, by (8.41),

E {MSE} ≥ d2

wN
. (8.42)

If the measurement graph is sampled from a distribution of random graphs,
trace(L†) becomes a random variable. We feel that the study of this random
variable for various families of random graph models, such as Erdős-Rényi
, small-world or scale-free graphs (Jamakovic & Uhlig, 2007) is a question
of interest, probably best addressed using the language of random matrix
theory.

Let us consider Erdős-Rényi graphs GN,q with N nodes and edge density
q ∈ (0, 1), that is, graphs such that any edge is present with probability q,
independently from the other edges. Let all the edges have equal weight
w. Let LN,q be the Laplacian of a GN,q graph. The expected Laplacian is
E {LN,q} = wq(NIN − 1N×N ), which has eigenvalues λ1 = 0, λ2 = · · · =

λN = Nwq. Hence, trace(E {LN,q}†) = N−1
N

1
wq . A more useful statement

can be made using (Bryc et al., 2006, Thm. 1.4) and (Ding & Jiang, 2010,
Thm. 2). These theorems state that, asymptotically as N grows to infinity,
all eigenvalues of LN,q/N converge to wq (except of course for one zero
eigenvalue). Consequently,

lim
N→∞

E
{

trace(L†N,q)
}

=
1

wq
(in probability). (8.43)

The expectation and concentration of the random variable trace(L†N,q) is
further investigated by Boumal & Cheng (2013). For large N , we use the

approximation trace(L†N,q) ≈ 1/wq. Then, by (8.41), for large N we have:

E {MSE} & d2

wqN
.

Notice how for fixed measurement quality w and density q, the lower bound
on the expected MSE decreases with the number N of rotations to estimate.

8.7.5 Synchronization can withstand many outliers

Consider the mixture of Langevin distribution from Example 8.5 in the
particular case κ′ = 0, that is, an average fraction 1−p of measurements are
sampled uniformly at random. The information weight w(p) = wn(κ, 0, p)
for some fixed concentration κ > 0 is given by equations (8.25) for n = 2
and 3 respectively. A Taylor expansion around p = 0 shows that, when
most measurements are outliers,

w(p) = an,κp
2 +O(p3)
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for some positive constant an,κ. Then, for p � 1, building upon (8.42) for
complete graphs with i.i.d. measurements we get:

E {MSE} & d2

an,κp2N
.

If one needs to get the right-hand side of this inequality down to a tolerance
ε2, the probability p of a measurement not being an outlier needs to be at
least as large as:

pε ,
d

√
an,κε

1√
N
.

The 1/
√
N factor is the most interesting: it establishes that as the number of

nodes increases, synchronization can withstand a larger fraction of outliers.
This result is to be put in perspective with the bound in (Singer, 2011,

eq. (37)) for n = 2, κ = ∞, where it is shown that as soon as p > 1/
√
N ,

there is enough information in the measurements (on average) for the eigen-
vector method to do better than random synchronization (that analysis is
also laid out in Section 5.3). It is also shown in the latter paper that, as
p2N goes to infinity, the correlation between the eigenvector estimator and
the true rotations goes to 1. Similarly, we see here that as p2N increases to
infinity, the right-hand side of the CRB goes to zero. Our analysis further
shows that the role of p2N is tied to the problem itself (not to a specific
estimation algorithm), and remains the same for n > 2 and in the presence
of Langevin noise on the good measurements.

Building upon (8.43) for Erdős-Rényi graphs with N nodes and M edges,
we define pε as:

pε ,
d

√
an,κε

√
N

2M
. (8.44)

To conclude this remark, we provide numerically computable expressions
for an,κ, n = 2 and 3 and give an example:

a2,κ =
κ2

πc22(κ)

∫ π

0

(1− cos 2θ) exp(4κ cos θ)dθ,

a3,κ =
κ2e2κ

πc23(κ)

∫ π

0

(1− cos 2θ)(1− cos θ) exp(4κ cos θ)dθ.

As an example, we generate an Erdős-Rényi graph with N = 2500 nodes and
edge density of 60% for synchronization of rotations in SO(3) with i.i.d. noise
following a mixture of Langevin with κ = 7 and κ′ = 0. The CRB (8.41),
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which requires complete knowledge of the graph to compute trace(L†), tells
us that we need p ≥ 2.1% to reach an accuracy level of ε = 10−1 (for
comparison, ε2 is roughly 1000 times smaller than V3 (Section 8.7.1). The
simple formula (8.44), which can be computed quickly solely based on the
graph statistics N and M , yields pε = 2.2%.

8.8 Conclusions

In this chapter, we considered synchronization of rotations in Rn as dis-
cussed in Chapter 5. We framed it as a Riemannian estimation problem
for arbitrary n under a large family of noise models. We established for-
mulas for the FIM and associated CRB’s of synchronization together with
interpretation and visualization tools for them in both the anchored and
anchor-free scenarios. In the analysis of these bounds, we notably pointed
out the high robustness of synchronization against random outliers and their
random walk interpretation.

The Laplacian of the measurement graph plays the same role in bounds
for synchronization of rotations as for synchronization of translations (see
Section 7.4). Carefully checking the proof given in the present work, it is
reasonable to speculate that the Laplacian would appear similarly in CRB’s
for synchronization on any Lie group, as long as we assume independence
of noise affecting different measurements and some symmetry in the noise
distribution. Such a generalization would in particular yield CRB’s for
synchronization on the special Euclidean group of rigid body motions, R3 o
SO(3). This group appears in the global registration problem addressed
in (Chaudhury et al., 2013) for example, as well as in the study of 3D scan
registration in Section 5.6.

Because of the crucial role of the pseudoinverse of the Laplacian L† of
weighted graphs (and their traces) in the CRB’s we established, it would be
interesting to study efficient methods to compute such objects, see e.g. (Ho
& Van Dooren, 2005; Lin et al., 2009). Likewise, exploring the distribution
of trace(L†) seen as a random variable for various models of random graphs
should bring some insight as to which networks are naturally easy to syn-
chronize. We study the case of Erdős-Rényi graphs in (Boumal & Cheng,
2013).



Chapter 9

Conclusions

This chapter concludes, for now, my investigation of optimization and esti-
mation on manifolds. We first look back and summarize our achievements
so far. Later in this chapter, we anticipate a few possible developments that
might originate from or echo to the present work.

At the onset of this thesis work in late 2010, it was already clear that
Riemannian optimization could have an important role to play in various
areas of applied mathematics, as evidenced for example by the long applica-
tions list given in Section 3.3. By then, researchers in the field had already
reached a stable understanding of the concepts required to deal with opti-
mization on manifolds and of the main general-purpose algorithms, complete
with analysis. However, we found that there was still a significant entrance
barrier precluding more applied researchers from leveraging these tools, in
good part because of the differential geometry prerequisites.

With the Manopt toolbox developed and publicized during this thesis,
we contribute to lowering this barrier. In its present form, the toolbox makes
it possible to rapidly assess the usefulness of Riemannian optimization for
a given problem, with minimal knowledge of unconstrained nonlinear op-
timization, and little to no knowledge of differential geometry. The hope
is that positive outcomes will encourage practitioners to learn about the
underlying algorithms. Being a practical tool of general purpose, we believe
Manopt has the potential to make an impact on a short-term horizon.

We crystallized our investigations around two applications and now
briefly discuss the solutions we proposed for them.

For low-rank matrix completion, we found that Riemannian optimiza-
tion offers a scalable algorithmic framework to attain accurate solutions in
various controlled (synthetic) experiments and decent solutions on the Net-
flix dataset for recommendation systems. In the controlled experiments, we
observed that our methods are competitive with, or even widely outperform,

217
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the state of the art in the face of challenges such as bad conditioning or non
uniform sampling. On the Netflix dataset though, one may argue that the
quality of the obtained recommendations does not warrant the complexity
of the method, in terms of code development and maintenance. However,
the Netflix competition has taught us that the best (RMSE) results are ob-
tained using a blend of many different predictors, so that any new method
sufficiently fast and different from the other ones in use has the potential to
contribute valuably to a blend. In this respect, it is interesting to note that
the proposed preconditioner for our method—which is designed based on a
drastically idealized matrix completion task—reduces the computation time
it requires to make the predictions on the Netflix dataset by a factor of two.
A usual suspect for the limited quality of the Netflix solution provided by
our algorithms is their least-squares nature. This indeed typically leads to
poor outlier rejection, which is often of prime importance on real data. Our
method design, based on optimization over a single Grassmannian, heavily
relies on the least-squares cost. As such, it does not lend itself to an easy
adaptation for alternate costs. A possible extension would be to use any of
our algorithms as a building block in an iteratively reweighted least-squares
scheme, in an attempt to minimize a sum of errors rather than a sum of
squared errors.

For synchronization of rotations, we found that Riemannian optimiza-
tion offers a flexible option to incorporate a noise model in the estimation,
which we did to capture the presence of outliers in the data. The resulting
optimization task presents poor quality local optimizers, as demonstrated
by Figure 5.2 where using a random initial guess leads to catastrophic esti-
mation errors. On the latter figure, it similarly appears that the eigenvector
method constitutes an ideal initial guess, as it is both simple and fast to
compute and it enables our Riemannian MLE procedure to achieve excel-
lent accuracy. We view this observation as a major incentive to pursue the
study of combinations of tractable relaxations with Riemannian refinement
algorithms. On real data such as the Lucy dataset, we found that alter-
natively estimating the rotations and the noise distribution provides a fast
and accurate overall method (dubbed MLE+) which does not require exact
knowledge of the noise parameters. Furthermore, the accuracy of the solu-
tions found on the Lucy dataset validate (to some extent) the usefulness of
the mixture of Langevin noise model we assumed a priori.

In the second part of the manuscript, we focused on fundamental bounds
on the accuracy one can hope for in solving an estimation problem. In
particular, we focused on Cramér-Rao bounds. Such bounds were already
derived for the low-rank matrix completion problem by Tang & Nehorai
(2011a,b) using standard tools, so that we directed our attention to syn-
chronization of rotations. In so doing, we found that existing work by Smith
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(2005) regarding CRB’s on manifolds constituted a firm reference to anchor
our exploration. We first specialized these bounds to the case of Riemannian
submanifolds and Riemannian quotient manifolds, purposefully simplifying
their application to, respectively, the anchored and anchor-free versions of
synchronization.

The main finding is that, under some assumptions, the CRB’s for syn-
chronization of rotations are dictated by the Laplacian of the measurement
graph. The role of the graph Laplacian in the bounds and their ensuing
interpretation in terms of random walks brings appreciable insight to the
synchronization problem. This insight is furthermore validated by the em-
pirical observation in Chapter 5 that the CRB’s seem to be attainable in
non trivial scenarios. One example of a lesson taken from the CRB’s under
the mixture of Langevin noise model is that synchronization is intrinsically
resilient to outliers.

The remarkable structure of the CRB’s for synchronization originates
in three key properties of the problem at hand. First, our assumption
that noise on different measurements is independent induces a block spar-
sity structure for the Fisher information matrix compatible with that of
the Laplacian. Second, the assumption that noise is distributed isotropi-
cally leads to each of these blocks being proportional to the identity matrix.
Together with the strong symmetry of the space of rotations, these proper-
ties lead to the FIM being independent of the rotations to estimate. This
latter point crucially simplifies the interpretation of the CRB’s. Some of
these properties remain valid on broader classes of synchronization prob-
lems, which we see as an incentive to generalize the established results.

Perspectives

Optimization and estimation on manifolds are blossoming fields. As we
argued in this thesis, tools are readily available to solve and analyze data
processing problems on manifolds, and we contributed to some of them.
But as is customary with such research endeavors, more questions are left
unanswered at the end of the journey than at its onset.

To solve nonconvex optimization problems whose search spaces admit a
Riemannian structure, we advocated combining tractable relaxations (when
available) with a Riemannian optimization refinement procedure. The burn-
ing question is whether it is possible to prove that the refinement procedure
indeed improves the solution, not only with respect to the cost function
(which should be the case) but more importantly with respect to the qual-
ity of the solution, for which the cost function may only be an imperfect
proxy. The added knowledge that the initial guess does not exceed cer-
tain error bounds might be a decisive piece of information to conduct the
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proofs. More importantly, can we put together proof techniques to that
effect, which could become useful in more than one context? The OptSpace
algorithm (Keshavan et al., 2010) is one example where such analysis is
successfully derived and could constitute an entry point to this enticing
research question.

When Riemannian optimization problems admit effective semidefinite
relaxations (SDR’s), one may wonder how the strong geometry of the orig-
inal problem affects (or restricts) the structure of these SDR’s. For ex-
ample, in a paper by Journée et al. (2010b), it is shown how certain such
convex programs can be solved efficiently, precisely using optimization on
manifolds as the central tool (see also Section 3.3.2). This raises the ques-
tion of whether all-manifold solutions can be proposed more generally, to
both solve the SDR and execute the refinement. In a more recent pa-
per, Bandeira et al. (2013a) show how a large class of problems (which in-
cludes synchronization of rotations and max-cut as particular cases) admits
a polynomial-time approximation algorithm they call orthogonal-cut. The
latter achieves a guaranteed approximation ratio following the resolution
of an SDR. Because this SDR descends from a Riemannian optimization
problem, we suspect it is amenable to analysis similar to that of Journée
et al. (2010b) and we plan to investigate this lead in future work.

An observation more directly focused on Riemannian optimization in
its own right is that there is currently a relative absence of practical algo-
rithms to address nonsmooth optimization on manifolds. Nonsmooth cost
functions, specifically piecewise smooth cost functions, occur naturally in a
number of applications. An example was given in Section 3.3.3 about sphere
packing on the sphere, where the proposed solution entails a smoothing
of the cost. Another example is the Weiszfeld algorithm for synchroniza-
tion (Hartley et al., 2011), where it is not the sum of squared errors which
is minimized but the sum of unsquared errors, akin to the LUD approach
(see Section 5.5.2). Such cost functions have been observed time and again
to handle outliers in data far better than squared losses. While the nons-
moothness may not be critical for outlier rejection, the theory of compressed
sensing insists it is instrumental when sparse solutions are targeted, hence
ruling out smoothing-based methods. Dirr et al. (2007) have proposed a
subgradient approach to nonsmooth Riemannian optimization problems,
with some success. Nevertheless, the practical implementation of subgradi-
ent techniques remains tedious and we look forward to the development of
more practical algorithms on that front, hopefully very soon.

Riemannian optimization, as presented in Chapter 3, applies to smooth
optimization problems defined over any finite-dimensional Riemannian man-
ifold. In practice though, these tools are only applied on very special mani-
folds, with strong symmetries. A more far-reaching question then would be



221

to assess how much of the success of Riemannian optimization lives and dies
with these rich structures we are granted in our numerical investigations,
yet do not acknowledge in the general theory.

Pertaining to the estimation bounds established for synchronization of
rotations, it is natural to conjecture that the role of the pseudoinverse of
the Laplacian of the measurement graph is not tied to the specific case
of rotations, but is more fundamentally tied to the structure of synchro-
nization in general. As we discussed, synchronization can be thought of
as the generic task of estimating elements g1, . . . , gN belonging to a group
G, based on measurements of relative elements gig

−1
j . Regardless of the

group, the topology of the graph built from these data—with N nodes
and an edge between two nodes if a relative measurement about them is
available—is expected to play a central role. For continuous (Lie) groups
G, we expect the analysis via Cramér-Rao bounds (CRB’s) to carry over in
a generalized version of the statements in this thesis. For discrete groups
(e.g., Z2 = {±1} (Cucuringu, 2013) or the group of permutations (Huang
& Guibas, 2013)), the CRB analysis is no longer appropriate, but it seems
plausible that other types of bounds (such as minimax bounds for example)
would exhibit a similar structure.

The unresolved questions of today are the opportunities of tomorrow,
and I look forward to the answers to come.



222 Chapter 9. Conclusions



Appendix A

Integration over SO(n)

This appendix details how to execute the integrals over the group of ro-
tations SO(n) (5.1) which appear in chapters 5 and 8. Let µ denote the
Haar measure over SO(n) (Section 8.3). We are interested in integrating
g : SO(n) → R over its domain. For a general integrand g, computing this
integral may require parameterizing SO(n) in order to reduce it to a classi-
cal integral over a domain of Rd, with d = dim SO(n). In general, this is not
convenient. Fortunately, when the integrand is a class function we are in a
position to use the Weyl integration formula (Bump, 2004, Exercise 18.1–2).

Definition A.1 (class function). A function g : SO(n) → R is a class
function if for all Z,Q ∈ SO(n), it holds that g(Z) = g(QZQ>), that is,
g is invariant under conjugation.

Weyl’s formula reduces integrals on SO(n) to classical integrals over tori
of dimension bn/2c, typically more amenable to analytical or numerical
evaluation. For n = 2, 3, that is a classical integral on the interval [−π, π]:∫

SO(2)

g(Z) dµ(Z) =
1

2π

∫ π

−π
g

(
cos θ − sin θ
sin θ cos θ

)
dθ,

∫
SO(3)

g(Z) dµ(Z) =
1

2π

∫ π

−π
g

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (1− cos θ) dθ. (A.1)

For n = 4, Weyl’s formula is a double integral:∫
SO(4)

g(Z) dµ(Z) =

1

4(2π)2

∫ π

−π

∫ π

−π
g̃(θ1, θ2) · |eiθ1 − eiθ2 |2 · |eiθ1 − e−iθ2 |2 dθ1dθ2, (A.2)
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with

g̃(θ1, θ2) , g

(
diag

((
cos θ1 − sin θ1

sin θ1 cos θ1

)
,

(
cos θ2 − sin θ2

sin θ2 cos θ2

)))
. (A.3)

In the sections of this appendix, these formulas are leveraged to obtain
computable expressions for some of the coefficients that appear in analyzing
the synchronization of rotations problem.

Since we assume all probability distribution functions in this work are
spectral functions (Assumption 8.3) and since all spectral functions are, a
fortiori, class functions, these tools apply often in this work’s setting. The
converse is also true for SO(2k + 1) but not for SO(2k). Indeed, assume
n is odd and let g : SO(n) → R be a class function. Let Z ∈ SO(n) and
Q ∈ O(n). Certainly, if det(Q) = 1, then g(QZQ>) = g(Z) since g is
a class function. On the other hand, if det(Q) = −1, then, because n is
odd, det(−Q) = 1 and g(Z) = g((−Q)Z(−Q)>) = g(QZQ>). Thus, g is a
spectral function. For n even, this is not true in general. Consider n = 2
and let g([cos θ,− sin θ; sin θ, cos θ]) := sin θ. Certainly, g is a class function
since all functions on SO(2) are class functions owing to the commutativity
of in-plane rotations. But g is not a spectral function since g(Z) = −g(Z>)
even though Z and Z> share the same eigenvalues.

The modified Bessel functions of the first kind (Wolfram, 2001), defined
by the identity

Iν(x) =
1

2π

∫ π

−π
ex cos θ cos(νθ) dθ, (A.4)

will come in handy. Beware that these functions scale exponentially with
their input x. It is often numerically sound to compute e−x Iν(x) instead,
which is possible with many numerical packages. For example, in Matlab,
use besseli(ν, x, 1).

A.1 Langevin density normalization

We now compute the normalization coefficient cn(κ) for n = 4 (8.13) that
appears in the Langevin probability density function (5.4). For generic n,
the necessary manipulations are very similar to the developments in this
section and formulas for n = 2, 3 are provided (8.11)(8.12). The coefficient
cn(κ) is defined by (8.10):

cn(κ) =

∫
SO(n)

exp (κ trace(Z)) dµ(Z),
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In particular, cn(0) = 1. The integrand, g(Z) = exp (κ trace(Z)), is a class
function. Thus, by formula (A.2),

c4(κ) =
1

4(2π)2

∫ π

−π

∫ π

−π
g̃(θ1, θ2) · |eiθ1 − eiθ2 |2

· |eiθ1 − e−iθ2 |2 dθ1dθ2, (A.5)

with g̃ as in (A.3). This reduces the problem to a classical integral over the
square—or really the torus—[−π, π] × [−π, π]. Evaluating g̃ is straightfor-
ward:

g̃(θ1, θ2) = exp
(
2κ · [cos θ1 + cos θ2]

)
. (A.6)

Using trigonometric identities, we also get:

|eiθ1 − eiθ2 |2 · |eiθ1 − e−iθ2 |2

= 4
(
1− cos(θ1 − θ2)

)(
1− cos(θ1 + θ2)

)
= 4
(
1− cos(θ1 − θ2)− cos(θ1 + θ2) + cos(θ1 − θ2) cos(θ1 + θ2)

)
= 4

(
1− 2 cos θ1 cos θ2 +

1

2
(cos 2θ1 + cos 2θ2)

)
. (A.7)

Each cosine factor now only depends on one of the angles. Plugging (A.6)
and (A.7) in (A.5) and using Fubini’s theorem, we get:

c4(κ) =
1

2π

∫ π

−π
e2κ cos θ1 · h(θ1) dθ1, (A.8)

with:

h(θ1) =
1

2π

∫ π

−π
e2κ cos θ2

(
1 +

1

2
cos 2θ1 − 2 cos θ1 cos θ2 +

1

2
cos 2θ2

)
dθ2.

Express h in terms of Bessel functions (A.4):

h(θ1) =

(
1 +

1

2
cos 2θ1

)
· I0(2κ)− 2 cos θ1 · I1(2κ) +

1

2
· I2(2κ). (A.9)

Plugging (A.9) in (A.8) and resorting to Bessel functions again, we finally
obtain the practical formula (8.13) for c4(κ):

c4(κ) =

[
I0(2κ) +

1

2
I2(2κ)

]
· I0(2κ)− 2I1(2κ) · I1(2κ) +

1

2
I0(2κ) · I2(2κ)

= I0(2κ)2 − 2I1(2κ)2 + I0(2κ)I2(2κ).
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In (Chikuse, 2003, Appendix A.6), Chikuse describes how the normal-
ization coefficients for Langevin distributions on O(n) can be expressed
in terms of hypergeometric functions with matrix arguments. One advan-
tage of this method is that it generalizes to non-isotropic Langevin’s. The
method we demonstrated here, in comparison, is tailored for our need (iso-
tropic Langevin’s on SO(n)) and yields simple expressions in terms of Bessel
functions—which are readily available in Matlab for example.

A.2 Mixture of Langevin information weight

In deriving the Fisher information matrix for synchronization of rotations
(Theorem 8.5), the information weight w (8.22) appears and needs to be
computed:

w = E
{
‖grad log f(Z)‖2

}
=

∫
SO(n)

‖grad log f(Z)‖2 f(Z)dµ(Z).

Under the mixture of Langevin noise model from Chapter 5, the pdf f (4.18)
is defined by

f : SO(n)→ R+, f(Z) = p `κ(Z) + (1− p) `κ′(Z),

`κ : SO(n)→ R+, `κ(Z) =
1

cn(κ)
exp
(
κ trace(Z)

)
,

where κ, κ′ ≥ 0 and p ∈ [0, 1] are some fixed parameters and cn(κ) (8.10)
is the normalization constant discussed in the previous section. This is the
model addressed in Example 8.5.

From Section 5.4.2, it follows easily that

‖grad log f(Z)‖2 = g2(Z)

∥∥∥∥Z − Z>2

∥∥∥∥2

F

,

with g as defined by equation (5.31):

g(Z) =
pκ `κ(Z) + (1− p)κ′ `κ′(Z)

f(Z)
.

Thus, computing w reduces to evaluating this integral:

w = wn(κ, κ′, p) =

∫
SO(n)

(
pκ `κ(Z) + (1− p)κ′ `κ′(Z)

)2
p `κ(Z) + (1− p) `κ′(Z)

∥∥∥∥Z − Z>2

∥∥∥∥2

F

dµ(Z).

Let h(Z) denote the integrand, i.e., w =
∫

SO(n)
h(Z)dµ(Z). Notice that

h is a class function (Definition A.1). Then, applying Weyl’s formula for
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n = 2 (A.1):

w2(κ, κ′, p) =

∫
SO(2)

h(Z)dµ(Z) =
1

2π

∫ π

−π
h(Zθ) dθ,

Zθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Observing that `κ(Zθ) = exp(2κ cos θ)/c2(κ) and
∥∥(Zθ − Z>θ )/2

∥∥2

F
= 2 sin2 θ

makes it possible to evaluate this integral numerically. More interestingly,
for n = 3, it holds that

w3(κ, κ′, p) =

∫
SO(3)

h(Z)dµ(Z) =
1

2π

∫ π

−π
h(Zθ) (1− cos θ)dθ,

Zθ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

Again, `κ(Zθ) = exp(κ[1 + 2 cos θ])/c3(κ) and
∥∥(Zθ − Z>θ )/2

∥∥2

F
= 2 sin2 θ

make it possible to evaluate this integral numerically.
Explicit formulas in terms of Bessel functions for p = 1 appear in Exam-

ple 8.4. Numerically integrable formulas for κ′ = 0 appear in Example 8.5.
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Appendix B

CRB’s for synchronization
of rotations: proof details

This appendix hosts technical details of the proof for the Cramér-Rao
bounds of synchronization of rotations, in Chapter 8.

B.1 Proof of two properties of Gij

Recall the definition ofGij : SO(n)→ so(n) (8.14) introduced in Section 8.4:

Gij(Z) = [grad log fij(Z)]
>
Z.

We now establish two properties of this mapping, namely thatGij(QZQ
>) =

QGij(Z)Q>and that Gij(Z
>) = −Gij(Z). Let us introduce a few functions:

g : SO(n)→ R : Z 7→ g(Z) = log fij(Z),

h1 : SO(n)→ SO(n) : Z 7→ h1(Z) = QZQ>,

h2 : SO(n)→ SO(n) : Z 7→ h2(Z) = Z>.

Notice that because of Assumption 8.3 (fij is only a function of the eigen-
values of its argument), we have g ◦ hi ≡ g for i = 1, 2. Hence,

grad g(Z) = grad(g ◦ hi)(Z) = (Dhi(Z))∗ [grad g(hi(Z))] , (B.1)

where (Dhi(Z))∗ denotes the adjoint of the differential Dhi(Z), defined by

∀H1, H2 ∈ TZSO(n), 〈Dhi(Z)[H1], H2〉 = 〈H1, (Dhi(Z))∗[H2]〉 .
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The rightmost equality of (B.1) follows from the chain rule. Indeed, starting
with the definition of gradient, we have, for all H ∈ TZSO(n),

〈grad(g ◦ hi)(Z), H〉 = D(g ◦ hi)(Z)[H]

= Dg(hi(Z))[Dhi(Z)[H]]

= 〈grad g(hi(Z)),Dhi(Z)[H]〉
= 〈(Dhi(Z))∗ [grad g(hi(Z))], H〉 .

Let us compute the differentials of the hi’s and their adjoints:

Dh1(Z)[H] = QHQ>, (Dh1(Z))∗[H] = Q>HQ,

Dh2(Z)[H] = H>, (Dh2(Z))∗[H] = H>.

Plugging this in (B.1), we find two identities (one for h1 and one for h2):

grad log fij(Z) = Q>[grad log fij(QZQ
>)]Q,

grad log fij(Z) = [grad log fij(Z
>)]>.

The desired result about the Gij ’s now follows easily. For any Q ∈ O(n),

Gij(QZQ
>) = [grad log fij(QZQ

>)]>QZQ>

= [Qgrad log fij(Z)Q>]>QZQ>

= QGij(Z)Q>; (B.2)

and similarly:

Gij(Z
>) = [grad log fij(Z

>)]>Z>

= grad log fij(Z)Z>

= ZG>ij(Z)Z>

= −ZGij(Z)Z>

= −Gij(Z),

where we used that Gij(Z) is skew-symmetric and we used (B.2) for the
last equality.
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B.2 Proof of Lemma 8.3

Lemma 8.3 essentially states that, given two orthogonal, same-norm vectors
E and E′ in so(n), there exists a rotation which maps E to E′. Applying
that same rotation to E′ (loosely, rotating by an additional 90◦) recovers
−E. This fact is obvious if we may use any rotation on the subspace so(n).
The set of rotations on so(n) has dimension d(d−1)/2, with d = dim so(n) =
n(n−1)/2. In contrast, for the proof of Lemma 8.4 to go through, we need to
restrict ourselves to rotations of so(n) which can be written as Ω 7→ P>ΩP ,
with P ∈ O(n) orthogonal. We thus have only d degrees of freedom. The
purpose of the present lemma is to show that this can still be done if we
further restrict the vectors E and E′ as prescribed in Lemma 8.3.

Proof. We give a constructive proof, distinguishing among different cases.

1. {i, j} ∩ {k, `} = ∅. Construct T as the identity In with columns i
and k swapped, as well as columns j and `. Construct S as In with
Sii := −1. By construction, it holds that T>ET = E′, T>E′T = E,
SES = −E and SE′S = E′. Set P = TS to conclude: P>EP =
ST>ETS = SE′S = E′, P>E′P = ST>E′TS = SES = −E.

2. i = k, j 6= `. Construct T as the identity In with columns j and `
swapped. Construct S as In with Sjj := −1. The same properties
will hold. Set P = TS to conclude.

3. i = `, j 6= k. Construct T as the identity In with columns j and k
swapped and with Tii := −1. Construct S as In with Sjj := −1. Set
P = TS to conclude.

4. j = k or j = `. The same construction goes through.
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fédérale de Lausanne.



240 BIBLIOGRAPHY

Krishnan, S., Lee, P.Y., Moore, J.B., & Venkatasubramanian, S. 2007.
Optimisation-on-a-manifold for global registration of multiple 3D point
sets. International Journal of Intelligent Systems Technologies and Ap-
plications, 3(3), 319–340.

Lee, J.M. 1997. Riemannian manifolds: An introduction to curvature. Grad-
uate Texts in Mathematics, vol. 176. Springer.

Lee, K., & Bresler, Y. 2010. ADMiRA: Atomic decomposition for minimum
rank approximation. Information Theory, IEEE Transactions on, 56(9),
4402–4416.

Leichtweiss, K. 1961. Zur Riemannschen Geometrie in Grassmannschen
Mannigfaltigkeiten. Math. Z., 76, 334–366.

Lin, L., Lu, J., Ying, L., Car, R., et al. 2009. Fast algorithm for extract-
ing the diagonal of the inverse matrix with application to the electronic
structure analysis of metallic systems. Communications in Mathematical
Sciences, 7(3), 755–777.

Luo, Z., Ma, W., So, AMC, Ye, Y., & Zhang, S. 2010. Semidefinite relax-
ation of quadratic optimization problems. Signal Processing Magazine,
IEEE, 27(3), 20–34.

Mackey, L., Talwalkar, A., & Jordan, M.I. 2011. Divide-and-conquer matrix
factorization. arXiv preprint arXiv:1107.0789.

Mardia, K.V., & Jupp, P.E. 2000. Directional statistics. John Wiley & Sons
Inc.

Markley, F Landis. 1988. Attitude determination using vector observations
and the singular value decomposition. The Journal of the Astronautical
Sciences, 36(3), 245–258.

Meyer, G., Bonnabel, S., & Sepulchre, R. 2011a. Linear regression under
fixed-rank constraints: a Riemannian approach. In: 28th International
Conference on Machine Learning. ICML.

Meyer, G., Bonnabel, S., & Sepulchre, R. 2011b. Regression on fixed-rank
positive semidefinite matrices: a Riemannian approach. The Journal of
Machine Learning Research, 12, 593–625.

Mezzadri, F. 2007. How to generate random matrices from the classical
compact groups. Notices of the AMS, 54(5), 592–604.



BIBLIOGRAPHY 241

Mishra, B., Meyer, G., & Sepulchre, R. 2011a. Low-rank optimization for
distance matrix completion. Pages 4455–4460 of: Decision and Control
and European Control Conference (CDC-ECC), 2011 50th IEEE Confer-
ence on. IEEE.

Mishra, B., Meyer, G., Bach, F., & Sepulchre, R. 2011b. Low-rank opti-
mization with trace norm penalty. Arxiv preprint arXiv:1112.2318.

Mishra, B., Meyer, G., Bonnabel, S., & Sepulchre, R. 2012a. Fixed-rank ma-
trix factorizations and Riemannian low-rank optimization. Arxiv preprint
arXiv:1209.0430.

Mishra, B., Adithya Apuroop, K., & Sepulchre, R. 2012b. A Riemannian ge-
ometry for low-rank matrix completion. Arxiv preprint arXiv:1211.1550.

Nesterov, Y. 2004. Introductory lectures on convex optimization: A basic
course. Applied optimization, vol. 87. Springer.

Ngo, T., & Saad, Y. 2012. Scaled gradients on Grassmann manifolds for
matrix completion. Pages 1421–1429 of: Advances in Neural Information
Processing Systems 25.

Nocedal, J., & Wright, S.J. 1999. Numerical optimization. Springer Verlag.

O’Neill, B. 1983. Semi-Riemannian geometry: with applications to relativity.
Vol. 103. Academic Pr.

Petersen, K.B., & Pedersen, M.S. 2006. The matrix cookbook.

Rao, C.R. 1945. Information and accuracy attainable in the estimation
of statistical parameters. Bulletin of the Calcutta Mathematical Society,
37(3), 81–91.
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